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Abstract

We consider the following fractional reaction-diffusion equation

ut(t) + ∂t

∫ t

0
gα(s)Au(t− s)ds = tγf(u),

where gα(t) = tα−1/Γ(α) (0 < α < 1), f ∈ C([0,∞)) is a non-decreasing
function, γ > −1, and A is an elliptic operator whose fundamental solution
of its associated parabolic equation has Gaussian lower and upper bounds.
We characterize the behavior of the functions f so that the above fractional
reaction-diffusion equation has a bounded local solution in Lr(Ω), for non-
negative initial data u0 ∈ Lr(Ω), when r > 1 and Ω ⊂ RN is either a
smooth bounded domain or the whole space RN . The case r = 1 is also
studied.
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1. Introduction

Let Ω ⊂ RN be a smooth bounded domain or the whole space RN .
Without loss of generality we assume that Ω contains the origin. We study
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the local existence in Lebesgue spaces of the following problem⎧⎪⎪⎨⎪⎪⎩
ut + ∂t

∫ t

0
gα(s)Au(t− s)ds = tγf(u), in Ω× (0, T ),

Bu = 0, on ∂Ω× (0, T ),
u(0) = u0 ≥ 0, in Ω,

(1.1)

where gα(t) = tα−1/Γ(α), 0 < α < 1, γ > −1, f : [0,∞) → [0,∞) is a
continuous and non-decreasing function, u0 ∈ Lr(Ω), 1 ≤ r <∞, and

(H.1) The pair (A,B) defines an unbounded operator A : D(A)→ L2(Ω)
that generates a C0-semigroup (e−tA)t≥0 in L2(Ω), with Green’s
function (or fundamental solution) K such that

(e−tA)ψ(x) =
∫
Ω

K(x, y; t)ψ(y)dy, (1.2)

for ψ ∈ C∞c (Ω), that is, e−tAψ is the solution of the linear problem⎧⎨⎩ ut = −Au, in Ω× (0, T ),
Bu = 0, on Ω,

u(0) = ψ, in Ω.
(1.3)

Here, the set C∞c (Ω) denotes the space of infinitely differentiable
functions with compact support in Ω.

(H.2) K has a Gaussian upper bound

K(x, y; t) ≤ C1t
−N/2 exp

(
−λ1

|x− y|2
t

)
, for t > 0, x, y ∈ Ω, (1.4)

with positive constants C1, λ1.
(H.3) K has a Gaussian lower bound: in the case Ω = RN

K(x, y; t) ≥ C2t
−N/2 exp

(
−λ2

|x− y|2
t

)
, for t > 0, x, y ∈ RN , (1.5)

with positive constants C2, λ2; and in the case that Ω ⊂ RN is a
bounded domain

K(x, y; t) ≥ C2t
−N/2 exp

(
−λ2

|x− y|2
t

)
, for x, y ∈ Ω′ ⊂ Ω, (1.6)

and 0 < t < min{1, d2(y, ∂Ω)/8}, where Ω′ is a convex subset of Ω
such that d(Ω′, ∂Ω) > 0.

The most simple example of such A is the Laplacian operator −Δ with
Dirichlet boundary conditions. Nevertheless, we can consider more general
operators such as

Au = −
N∑

i,j=1

aij(x)uxixj −
N∑
j=1

bj(x)uxj − c(x)u
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with Robin boundary condition, considered also by Fujita and Watanabe
[12]. More details in Section 5.

On one hand, the local existence of the semilinear parabolic problem⎧⎨⎩ ut −Δu = f(u), in Ω× (0, T ),
u = 0, in ∂Ω× (0, T ),

u(0) = u0 ≥ 0, in Ω,
(1.7)

has been studied by Brezis and Cazenave [6], Celik and Zhou [7], and
Weissler [24, 25, 26], for f(u) = up, p > 1 and u0 ∈ Lr(Ω), u0 ≥ 0. More
precisely,

(i) Problem (1.7) has a local solution C([0, T ], Lr(Ω)), r > 1 if and only
if r ≥ N(p− 1)/2.

(ii) If 1 ≤ r < N(p − 1)/2 or r = N(p − 1)/2 = 1, then there exists
an initial data u0 ∈ Lr(Ω), u0 ≥ 0 such that problem (1.7) does not
admit any non-negative solution C([0, T ], Lr(Ω)).

Such results were recently obtained, for a more general f , by Laister et al.
[14] in the following way.

Let f : [0,∞)→ [0,∞) be a continuous and non-decreasing function.

(i) Assume that Ω is a bounded domain.
(a) Problem (1.7) has a local solution for every u0 ∈ Lr(Ω) with

r > 1 if and only if

lim sup
τ→∞

τ−(1+2r/N)f(τ) <∞. (1.8)

(b) Problem (1.7) has a local solution for every u0 ∈ L1(Ω) if and
only if∫ ∞

1
τ−(1+2/N)F (τ)dτ <∞, where F (τ) = sup

1≤σ≤τ
f(σ)/σ. (1.9)

(ii) When Ω = RN , the statements (a) and (b) remain valid if we re-
placed conditions (1.8) and (1.9) by

lim sup
τ→∞

τ−(1+2r/N)f(τ) <∞ and lim sup
τ→0

f(τ)/τ <∞,∫ ∞

1
τ−(1+2/N)F̃ (τ)dt <∞ and lim sup

τ→0
f(τ)/τ <∞,

respectively, where F̃ = sup0≤σ≤τ f(σ)/σ.

It is worth point out that these results were extended by Kexue Li
in [16] for problem (1.7) with the fractional Laplacian (−Δ)α with either
Ω = BR is the ball or Ω = RN . Similar result for weakly coupled systems
were obtained recently by Aparcana et al. in [1].
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On the other hand, the integral version of the fractional diffusion equa-
tion

ut(t, x) = ∂t(gα ∗Δu)(t, x) + f, t > 0, x ∈ Ω, (1.10)

where Ω ⊂ RN , was studied initially by Schneider and Wyss [22], with
f ≡ 0. In [19] the authors present an extensive list of systems displaying
anomalous dynamical behavior of subdiffusive type that can be modeled by
(1.10). We emphasize that (1.10) and

∂α
t u = Δu + f, t > 0, x ∈ Ω, 0 < α < 1, (1.11)

where ∂α
t u denotes the Caputo fractional derivative of u, are equivalent

only for f ≡ 0, but not in general. Other mathematical difference between
these two problems lies on the fact that, for f(u) = uρ, ρ > 1, the critical
Fujita’s exponent for (1.10) ρF = 1+ 2

αN (see [9, 23]) while it is ρF = 1+ 2
N

(the same as the heat equation, case α = 1), for (1.11), according to [27]. It
may suggest that the fractional parameter α plays a more influential role in
(1.10) than in (1.11). From the physical point of view, we emphasize that
considering a source in the diffusion process with memory as (1.10) avoids
the reaction to be affected by the memory effect, as observed by Metzler et
al. [18, p. 346], unlike in (1.11). Recently, Lophushansky et al. [17] studied
the existence and uniqueness of solutions in Bessel potential spaces, for an
equation that is equivalent to (1.11), by means of the abstract approach.
More recently, de Andrade et al. [10] proved, among other issues, a result on
the local well-posedness for (1.10) with u0 ∈ Lq(Ω) and for f(u) # uρ, ρ > 1.
More precisely, their existence results can be read as follows: let v0 ∈ Lq(Ω),
if either

(i) q ≥ 1, q > αN
2 (ρ− 1), and ρα > 1; or

(ii) q ≥ ρ and q > N
2 (ρ− 1); or

(iii) 1 ≤ q < ρ and q ≥ N
2 (ρ− 1); or

(iv) 1 < q = αN
2 (ρ− 1) and ρα > 1;

then, there exist T > 0 and R > 0 such that (1.10) with initial condition
u0 ∈ BLq(Ω)(v0, R/4) has a Lq-mild solution u : [0, T ]→ Lq(Ω).

Therefore, the above mentioned results motivate us to study conditions
for the existence and non-existence of a Lr-local solution for problem (1.1)
with u0 ∈ Lr (see Definition 2.1 for the concept of solution we consider).

Our main result is the following.

Theorem 1.1. Let f : [0,∞)→ [0,∞) be a continuous non-decreasing
function, γ > −1 and

p� = 1 +
2r(γ + 1)

αN
. (1.12)
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(i) Existence. Assume p� > (1 + γ)/α, r > 1 and

lim supτ→∞ τ−p�f(τ) <∞, if Ω is bounded
or

lim supτ→∞ τ−p�f(τ) <∞ and lim supτ→0 f(τ)/τ <∞, if Ω = RN .

Then, for every non-negative u0 ∈ Lr(Ω), problem (1.1) has a non-
negative local Lr-solution. For r = 1, existence holds with N = 1.

(ii) Non-existence. Let r ≥ 1. Suppose that

lim supτ→∞ τ−p�f(τ) =∞, if Ω is bounded
or

lim supτ→∞ τ−p�f(τ) =∞ or lim supτ→0 f(τ)/τ =∞, if Ω = RN .

Then there exists u0 ∈ Lr(Ω), u0 ≥ 0 such that problem (1.1) has
no non-negative local Lr-solution.

Remark 1.1. Here are some comments on Theorem 1.1.

(i) When γ = 0 and α = 1, we recover Laister et al. [14] character-
ization in Lr. Indeed, our proofs work well for α = 1, with fewer
constraints.

(ii) When f(τ) = τp, τ ≥ 0 and γ = 0, the condition p� > (1 + γ)/α =
1/α in the existence part coincides with the one required in [9,
Theorem 1] to show the global existence.

(iii) As usual in local existence results, we do not require the smallness
of ‖u0‖Lr as it was in [9, Theorem 1], where global solutions are

sought. We rather use that limτ→0+ t
Nα
2

( 1
r
− 1

η
)‖Sα(t)u0‖Lη = 0, see

Lemma 3.1 for details.

In our second result, we consider a weakened assumption for the non-
existence result given in Theorem 1.1 for r = 1. Precisely, we have the
following.

Theorem 1.2. Let f : [0,∞) → [0,∞) be a non-decreasing function,

F (s) = sup1≤τ≤s f(τ)/τ , and F̃ (s) = sup0<τ≤s f(τ)/τ . Assume that either∫ ∞

1
s−p

∗
F (s)ds =∞, if Ω is a bounded domain,

or ∫ ∞

0
s−p

∗
F̃ (s)ds =∞, if Ω = RN ,

where p∗ is given by (1.12) with r = 1. Then there exists u0 ∈ L1(Ω), u0 ≥ 0
such that problem (1.1) has no non-negative local Lr-solution.
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Concerning our results, we observe that the case r = 1 offers some extra
difficulties in the application of the technique given in [14], mostly because
the Mittag-Leffler family Sα(t)φ does not enjoy the semigroup property
T (t + s) = T (t)T (s), see e.g. [20]. Moreover, L1 → L∞ bounds for Sα(t),
with N ≥ 2, are not available in the literature, and it is a sensitive subject
indeed. We overcame the earlier barrier but not the latter one. Therefore,
our existence results in L1 holds for N = 1. The precise results are in
Subsection 4.2. On the other hand, this work extends Laister et al. [14]
in by considering a nonlinearity with temporal weight and the fractional
diffusion. Our results are of the same nature as those in [14], recover and
extend them (except for N = 1). We follow the methodology used in [14],
but difficulties inherent to nonlocal-in-time problems had to be overcome as
well as the analysis with the time-dependent nonlinearity demanded more
effort.

This work is organized as follows. In Section 2, we prove some lower
bounds and Lq − Lr bounds for the Mittag-Leffler family (Sα(t))t≥0. The
proofs of existence and non-existence results are split into two cases: r > 1
and r = 1, which are subjects of Sections 3 and 4, respectively. In Section 5,
we gather some results on Gaussian bounds for the heat kernels associated
with some more general elliptic operators in order to exhibit existence and
non-existence results on fractional reaction–diffusion equations involving
such general elliptic operators.

2. Auxiliary results

2.1. The parabolic equation. We denote by Bρ(x) ⊂ RN the ball cen-
tered at x with radius ρ, by χρ the characteristic function on Bρ(0), and
by ωN the volume of the unit ball in RN .

In view of our assumptions (H.1)–(H.3) on the operator (A,B), we can
obtain an estimate from below of the solution of the linear problem (1.3).

Lemma 2.1. Assume that Ω is bounded and let ρ > 0, δ ∈ (0, 1) such
that Bρ+2δ ⊂ Ω. There exist positive constants c∗ and c0, which depend
only on N,C1, γ1, q, r, and N,C2, γ2, respectively, such that

‖e−Atϕ‖Lr(Ω) ≤ c�t
−N

2

(
1
q
− 1

r

)
‖ϕ‖Lq(Ω), (2.1)

for 1 ≤ q ≤ r ≤ ∞, and

e−tAχρ ≥ c0

(
ρ

max
{
ρ,
√

t
})N

χρ+
√
t, (2.2)

for all 0 < t ≤ δ2/8.
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P r o o f. We first note that the identity (1.2) holds, for u0 ∈ Lr(Ω), 1 ≤
r ≤ ∞. Indeed, it follows either from (1.4) and the density of C∞0 in Lr(Ω),
with 1 ≤ r < ∞ or from [2], in general. To show (2.1), we use (1.2),
(1.4), and the Young inequality in the following standard way: define p by
1
p = 1 + 1

r − 1
q , then

‖e−Atϕ‖Lr(Ω) =

∥∥∥∥∫
Ω

K(x, y; t)ϕ(y)dy

∥∥∥∥
Lr(Ω)

≤ C1

∥∥∥∥t−N
2 exp

(
−γ1

| · |2
t

)∥∥∥∥
Lp(RN )

‖χΩϕ‖Lq(RN )

≤ c∗t
−N

2
+ N

2p ‖ϕ‖Lq(Ω)

= c�t
−N

2

(
1
q
− 1

r

)
‖ϕ‖Lq(Ω).

Next, we argue as in the proof of [14, Lemma 2.1]. From (1.2) and
(1.6), for Ω′ = Bρ+δ(0), we have that d(Ω′, ∂Ω) > δ. Thus, for 0 < t <

min{1, δ2/8} = δ2/8 and |x| < ρ +
√

t we have

e−tAχρ(x) =

∫
Ω

K(x, y; t)χρdy

≥ C2t
−N/2

∫
|y|≤ρ

exp(−γ2|x− y|2
t

)dy

≥ C2

∫
Bρ/

√
t((1+

ρ√
t
)u)

exp(−γ2|z|2)dz.

Since |z − (1 + ρ√
t
)u| ≤ |z − 2u| + |(1 − ρ√

t
)u| we conclude that B1(2u) ⊂

Bρ/
√
t((1 +

ρ√
t
)u) if

√
t ≤ ρ. Then,

S(t)χρ ≥ C2

∫
B1(2u)

exp(−γ2|z|2)dz.

On the other hand, if
√

t ≥ ρ, we have S(t)χρ ≥ C2ωN exp(−9γ2)(ρ/
√

t)N .
These lead to (2.2). �

Remark 2.1. Since the proof of Lemma 2.1 is based on the lower
bound of the Green function K, it is possible to conclude, using (1.5), that
estimate (2.2) also holds for Ω = RN and for all t > 0. The same proof for
(2.1) works when Ω = RN .

2.2. The fractional problem. We recall some facts on the resolvent fam-
ily associated to the equation
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⎧⎪⎪⎨⎪⎪⎩
ut + ∂t

∫ t

0
gα(s)Au(t− s)ds = 0, in Ω× (0, T ),

Bu = 0, on ∂Ω× (0, T ),
u(0) = u0 ≥ 0, in Ω,

(2.3)

Indeed, after integrating (2.3), we rewrite it as the following abstract Volterra
integral equation

u(t) = u0 +

∫ t

0
gα(s)Au(t− s)ds. (2.4)

Recalling that A is the generator of a C0-semigroup in L2(Ω), the subordi-
nation principle in [5] gives that A also generates the resolvent family

Sα(t) =
1

2πi

∫
Ha

eλtλα−1(λα + A)−1dλ, t ≥ 0, (2.5)

for an arbitrary Hankel path Ha, and that satisfies

Sα(t)ϕ =

∫ ∞

0
Mα(σ)e

−σtαAϕdσ, (2.6)

for every distribution ϕ, where Mα is the Wright function

Mα(z) =

∞∑
n=0

(−z)n

n!Γ(−αn− α + 1)
. (2.7)

This family (Sα)t≥0 of bounded operators in L2(Ω), with Sα(0) = I, is
called the Mittag-Leffler family associated to the operator (A,B), and is
the same given by the formal application of the Laplace transform in (2.3).

Clearly, the above reasoning works well with a Banach space X in place
of L2(Ω), provided that A generates a C0-semigroup in X.

The case of Ω = RN can also be approached by means of the Duhamel
principle applied to (2.3), and by recalling that the Mittag-Leffler function

Eα(−z) is an analytic Laplace transformable function obeying ̂Eα(−ztα)(λ) =
λα−1

λα+z and

Eα(−z) =

∫ ∞

0
Mα(t)e

−ztdt, z ∈ C.

We will use the following properties of the Wright function: Mα(t) ≥ 0
for all t ≥ 0, ∫ ∞

0
Mα(σ)dσ = 1, (2.8)

and ∫ ∞

0
Mα(σ)σ

δdσ =
Γ(δ + 1)

Γ(αδ + 1)
, if δ > −1. (2.9)
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Lemma 2.2. Let 1 ≤ q ≤ r ≤ ∞ be such that 1/q − 1/r < 2/N, then

‖Sα(t)ϕ‖Lr(Ω) ≤ C�(N,α, q, r)t
−αN

2

(
1
q
− 1

r

)
‖ϕ‖Lq(Ω),

where C� > 0 depends only on N,α, q, and r.

P r o o f. Combining (2.6), (2.1), and (2.9), we have

‖Sα(t)ϕ‖Lr ≤
∫ ∞

0
Mα(σ)‖e−σtαA‖Lrdσ

≤ c∗t
−αN

2

(
1
q
− 1

r

) ∫ ∞

0
Mα(σ)σ

−N
2

(
1
q
− 1

r

)
dσ‖ϕ‖Lq

=: C∗t
−αN

2

(
1
q
− 1

r

)
‖ϕ‖Lq .

�

Lemma 2.3. Let ρ > 0, δ ∈ (0, 1) such that Bρ+2δ ⊂ Ω. There exists
a constant c̃0 > 0, which depend only on N,C2 and γ2 and such that

Sα(t)χρ ≥ c̃0

(
ρ

max
{
ρ,
√

tα
})N

χρ+
√
tα , (2.10)

for all 0 < tα ≤ δ2/16.

P r o o f. From (2.6) and Lemma 2.1

Sα(t)χρ =
∫∞
0 Mα(σ)e

−σtαA χρdσ

≥ c0
∫ t−αδ2/8
0 Mα(σ)

(
ρ

max{ρ,√σtα}
)N

χρ+
√
σtα dσ

≥ c0

(
ρ

max{ρ,√tα}
)N

χρ+
√
tα
∫ t−αδ2/8
1 Mα(σ)σ

−N
2 dσ

≥ 2−N/2c0
∫ 2
1 Mα(σ)dσ

(
ρ

max{ρ,√tα}
)N

χρ+
√
tα

= c̃0

(
ρ

max{ρ,√tα}
)N

χρ+
√
tα ,

(2.11)

where c̃0 = 2−N/2c0
∫ 2
1 Mα(σ)dσ. �

Remark 2.2.

(i) When Ω = RN , from Remark 2.1, it is possible to observe that
estimate (2.10) holds for all t > 0.
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(ii) The smoothing effect in Lemma 2.2 holds for α = 1, without the
constraint 1/q − 1/r < 2/N , actually, it is Lemma 2.1. Such a con-
straint makes ranges tighter and restricts the dimension for distant
exponents. For instance, Lemma 2.2 holds for (q, r) = (1,∞), only
when N = 1.

The local Lr-mild solutions for the problem (1.1) are understood in the
following sense.

Definition 2.1. Given u0 ∈ Lr(Ω), r ≥ 1. We say that u ∈
L∞((0, T ), Lr(Ω)) is a local Lr-mild solution, or simply, a local solution
of problem (1.1) when there exists T > 0 such that

u(t) = Sα(t)u0 +

∫ t

0
Sα(t− σ)σγf(u(σ))dσ, (2.12)

for t ∈ (0, T ).

We also need a comparison principle for equation (2.12). So, it is con-
venient to define what we understand by a supersolution for (2.12).

Definition 2.2. Given u0 ∈ Lr(Ω), r ≥ 1, a non-negative function
ū ∈ L∞((0, T ), Lr(Ω)) is a local Lr-mild supersolution, or simply, a super-
solution of (2.12), if

ū(t) ≥ Sα(t)u0 +

∫ t

0
Sα(t− σ)σγf(ū(σ))dσ.

Subsolutions are defined analogously, with reversed inequality.

Lemma 2.4. Assume that r ≥ 1 and f : [0,∞)→ [0,∞) is a continuous
and non-decreasing function. Let u0 ∈ Lr(Ω) be a non-negative function.
Then, problem (2.12) admits a local solution in L∞((0, T ), Lr(Ω)) if and
only if it admits an supersolution in L∞((0, T ), Lr(Ω)).

P r o o f. It is clear that every solution is also a supersolution of the
problem (1.1). We must prove the converse. In fact, we follow the argument
used in [21]. Suppose that there exists a supersolution ū of the problem
(2.12) in (0, T ), and define the operator F by

F(v)(t) = Sα(t)u0 +

∫ t

0
Sα(t− σ)σγf(v(σ))dσ,

for t ∈ (0, T ). Note that ū ≥ F(ū) in (0, T ).

Using the monotonicity of f and the positivity preserving of Sα(t) (see
[9]), we obtain that F is a non-increasing operator in the set of the non-
negative and measurable functions. Now, consider the following sequence
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}
k≥0 , where Fk+1(ū) = F(Fk(ū)). By ū ≥ F(ū) and the mono-

tonicity of the operator F , we conclude that the sequence
{Fk(ū)

}
k≥0 is a

non-decreasing and non-negative sequence in (0, T ). Taking the pointwise
limit

u(x, t) = lim
k→∞

[
Fk(ū)

]
(x, t) whenever there exist,

we have that u verifies (2.12). Indeed, for continuity of f and by the mono-
tone convergence theorem, it is possible to conclude that limk→∞F(uk) =
F(u) a.e. in Ω × (0, T ) where Fk(ū) := uk for all k ∈ N. Thus, due to
the construction of the sequences we have u = F(u) a.e. in Ω × (0, T ).
Moreover, since ū(t), u0 ∈ Lr(Ω) and f is a non-decreasing function, we
have

0 ≤ F(ū(t)) ≤ Sα(t)u0 +

∫ t

0
Sα(t− σ)σγ ū(σ)dσ,

whence

‖F(ū(t))‖Lr ≤ C�‖u0‖Lr + C�
T γ+1

γ + 1
‖ū‖L∞(0,T ;Lr), (2.13)

by Lemma 2.2. Now, the monotonicity of the operator F implies that the
sequence

{Fk(ū)
}
k≥0 belongs to Lr(Ω), by induction, and so u(t) ∈ Lr(Ω),

a.e t > 0. �

3. Proof of Theorem 1.1

In this section, we give two preliminary lemmas, and we present the
proof of Theorem 1.1, divided into two parts: existence and non-existence
in Lr.

Lemma 3.1. Let α ∈ (0, 1), u0 ∈ Lr(Ω), and 1 ≤ r < η ≤ ∞. If
N
2

(
1
r − 1

η

)
< 1, then

lim
t→0+

t
Nα
2

( 1
r
− 1

η
)‖Sα(t)u0‖Lη = 0.

P r o o f. Given u0 ∈ Lr(Ω), there is a sequence (ϕn) test functions
converging to u0. Hence, Lemma 2.2 gives

t
αN
2

(
1
r
− 1

η

)
‖Sα(t)u0‖Lη ≤t

αN
2

(
1
r
− 1

η

)
‖Sα(t)(u0 − ϕn)‖Lη

+ t
αN
2

(
1
r
− 1

η

)
‖Sα(t)ϕn‖Lη

≤C‖u0 − ϕn‖Lr + t
αN
2

(
1
r
− 1

η

)
‖ϕn‖Lη .

The result follows now by passing the limit as t→ 0, and then n→ 0. �
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The next lemma ensures that the constants appearing in the proof of
Theorem 1.1 are finite and allows us to use the fixed point method to prove
the existence of solutions for the problems 3.2 and 3.6.

Lemma 3.2. Let r > 1, γ > −1, α > 0, N ≥ 1, p∗ = 1 + 2r(1+γ)
Nα

and β = αN
2 (1r − 1

η ). Assume that p∗ > (1 + γ)/α. Then, there exists

η > r, η > p∗ such that

(i) N
2

(
1
r − 1

η

)
< 1;

(ii) βp∗ < 1 + γ;
(iii) N

2η (p
∗ − 1) < 1;

(iv) 1 + β − αN
2η (p� − 1)− p�β + γ = 0.

3.1. Existence. We consider two situations.

Case 1. Ω is a bounded domain. Since lim sup
τ→∞

τ−p∗f(τ) < ∞, there

exists a positive constant C1 such that

f(τ) ≤ C1(1 + τp�) (3.1)

for τ ≥ 0, where p� = 1 + 2r(γ+1)
αN .

Next, we obtain a local Lr-mild solution for the following auxiliary
problem⎧⎪⎪⎨⎪⎪⎩

vt − ∂t

∫ t

0
gα(s)Av(t− s)ds = C1t

γ(1 + vp
�
), in Ω× (0, T ),

B = 0, on ∂Ω× (0, T ),
u(0) = u0 ≥ 0, in Ω

(3.2)
with u0 ∈ Lr(Ω). Note that from the existence of a solution for problem
(3.2), Lemma 2.4 and (3.1) we have the result.

We use a fixed point argument, as in [6, 9, 10]. We warn that the
constant C∗ may vary along the proof. Keeping in mind the definition of
mild solution given by (2.12) with f(u(σ)) replaced by C1(1 + vp

∗
(σ)), we

define the operator Ψ1 : K → E by

Ψ1(v)(t) = Sα(t)u0 + C1

∫ t

0
Sα(t− σ)σγ [1 + vp

�
(σ)]dσ,

where E = L∞loc((0, T ), Lη(Ω)), η is given by Lemma 3.2,

K =
{
v ∈ E : v ≥ 0 and tβ‖v(t)‖Lη ≤ δ

}
,
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β = αN
2

(
1
r − 1

η

)
, and δ > 0 will be chosen later. The set K is a complete

metric space endowed with the metric d(v,w) = supt∈(0,T ) t
β‖v(t)−w(t)‖Lη ,

for all v,w ∈ K.
It is easy to see that Ψ1(v) ≥ 0, for any v ∈ K. From Lemmas 2.2 and

3.2 ((i), (ii) and (iv)) we have

tβ‖Ψ1(v)(t)‖Lη

≤ tβ‖Sα(t)u0‖Lη + C1t
β

∫ t

0
σγ‖Sα(t− σ)1‖Lηdσ

+C1t
β

∫ t

0
σγ‖Sα(t− σ)vp

∗
(σ)‖Lηdσ

≤ tβ‖Sα(t)u0‖Lη +
C1C�

1 + γ
‖1‖Lη t1+γ+β

+C1C∗tβ
∫ t

0
σγ(t− σ)

−αN
2

(p
∗
η
− 1

η
)‖v(σ)‖p∗Lηdσ

≤ tβ‖Sα(t)u0‖Lη +
C1C∗
1 + γ

|Ω|1/ηt1+γ+β

+C1C∗δp
∗
∫ 1

0
(1− σ)−

αN
2

(p
∗
η
− 1

η
)σ−βp

∗+γdσ. (3.3)

Let δ > 0 be such that

C1C∗δp
∗
∫ 1

0
(1− σ)

−αN
2

(p
∗
η
− 1

η
)
σ−βp

∗+γdσ < δ/2. (3.4)

From Lemma 3.1, there exists T > 0 such that tβ‖Ψ1(v)(t)‖Lη ≤ δ. So,
Ψ1v ∈ K.

Arguing similarly, it is possible to show that

tβ‖Ψ1(v)(t) −Ψ1(ṽ)(t)‖Lη (3.5)

≤ C1C�δ
p∗−1

∫ 1

0
(1− σ)

−N
2
(p
∗
η
− 1

η
)
σ−βp

∗+γdσ sup
t∈(0,T )

tβ‖v(t) − ṽ(t)‖Lη .

Thus, by (3.4), we have that Ψ1 is a strict contraction. Therefore, there
exists a fixed point v for the map Ψ1 : K → K, that is, v = Ψ1v. Since,
v ∈ E, η > r, and Ω is bounded, we have that v ∈ L∞((0, T );Lr(Ω).

Thus, we obtained the existence of a local Lr-mild solution for (3.2)
when Ω is a bounded domain.

Case 2. Ω = RN . Since

lim sup
τ→0

f(τ)/τ <∞and lim sup
τ→∞

τ−p
∗
f(τ) <∞,
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we have that there exists a constant C2 > 0 such that f(τ) ≤ C2(τ + τp∗).
With small modifications in the arguments of the Case 1, it is possible to
prove the existence of a solution of the following problem⎧⎨⎩ wt − ∂t

∫ t

0
gα(s)Aw(t− s)ds = C2t

γ(w + wp�), in RN × (0, T ),

u(0) = u0, in RN ,
(3.6)

in the space E = L∞loc((0, T ), Lη(RN ) ∩ L∞((0, T ), Lr(RN )). Indeed, let
M ≥ ‖u0‖Lr , and δ0 < 1, which will be chosen later. The set

K0 :=
{
v ∈ E : v ≥ 0, ‖v(t)‖Lr ≤ C∗M + 1, tβ‖v(t)‖Lη ≤ δ0

}
,

is a non-empty complete metric space endowed with the metric

d0(v,w) := max

{
sup

t∈(0,T )
‖v(t) − w(t)‖Lr , sup

t∈(0,T )
tβ‖v(t)− w(t)‖Lη

}
.

The values of η and β are given as in the Case 1. Let Ψ2 : K0 → E be
given by

Ψ2(v)(t) = Sα(t)u0+C2

∫ t

0
Sα(t−σ)σγv(σ)dσ+C2

∫ t

0
Sα(t−σ)σγvp

�
(σ)dσ.

Using Lemma 3.2, and arguing as in the derivation of (3.3) and (3.5), we
have

‖Ψ2(v)(t)‖Lr

≤ C∗‖u0‖Lr + C2C∗
∫ t

0
σγ‖v(σ)‖Lrdσ

+C2C∗
∫ t

0
σγ(t− σ)

−αN
2

(
p�

η
− 1

r

)
‖v(σ)‖p∗Lηdσ

≤ C∗M +
C2C∗t1+γ

1 + γ
(C∗M + 1) + C2C∗δ

p∗
0

∫ 1

0
(1− σ)

αN
2

(p
∗
η
− 1

r
)σγ−βp∗dσ,

and

tβ‖Ψ2(v)(t)‖Lη

≤ tβ‖Sα(t)u0‖Lη + C2t
β

∫ t

0
σγ‖v(σ)‖Lηdσ

+C2C∗tβ
∫ t

0
σγ(t− σ)

−αN
2

(
p�

η
− 1

η

)
‖v(σ)‖p∗Lηdσ

≤ tβ‖Sα(t)u0‖Lη +
C2t

1+γ

1 + γ − β
δ + C2C∗δ

p∗
0

∫ 1

0
(1− σ)−

αN
2

(p
∗
η
− 1

r
)σγ−βp∗dσ.
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Similarly, it is possible to show that

‖Ψ2(v)(t)−Ψ2(w)(t)‖Lr

≤
(

C2C∗t1+γ

1 + γ
+ C2C∗δ

p−1
0

∫ 1

0
(1− σ)−

αN
2

(p
∗
η
− 1

r
)
)

d(v,w),

tβ‖Ψ2(v)(t)−Ψ2(w)(t)‖Lη

≤
(

C2t
1+γ

1 + γ − β
+ C2C∗δ

p−1
0

∫ 1

0
(1− σ)

−αN
2

(p
∗
η
− 1

η
)
)

d(v,w).

From these estimates and Lemma 3.1 we observe that Ψ2 is a strict con-
traction if δ0 > 0 and T > 0 are sufficiently small. Therefore, there exists
a fixed point of Ψ2, which is the desired solution. �

3.2. Non-existence. We show the non-existence part of Theorem 1.1. As-
sume first that lim supτ→∞ τ−p∗f(τ) = ∞. Then, there exists a sequence
{zk}k∈N such that

zk ≥ k and f(zk) ≥ zp
�

k ek/r. (3.7)

Let rk = (k−2z−1k )r/N . Since limk→∞ rk = 0, we can suppose that rk < 1

and B3rk ⊂ Ω, for all k ∈ N. Now, define uk = c̃−10 zkχrk and

u0 =

∞∑
k=1

uk, (3.8)

where c̃0 is the constant of Lemma 2.3. Then,

‖u0‖Lr ≤
∞∑
k=1

‖uk‖Lr = ω
1/r
N c̃−10

∞∑
k=1

k−2 <∞.

We argue now by contradiction and assume that problem (1.1) has a
solution, in the sense of (2.12), for every initial data in Lr(Ω). In particular,
for u0 there exists a function u ∈ L∞((0, T ), Lr(Ω)) verifying (2.12).

By the non-negativity of Sα(t), we have u(t) ≥ Sα(t)u0 ≥ Sα(t)uk for
t ∈ (0, T ). Thus, from (2.12) we obtain

u(t) ≥
∫ t

0
σγSα(t− σ)f(Sα(σ)uk)dσ, (3.9)

since f is non-decreasing. Lemma 2.3 implies that

Sα(σ)uk = c̃−10 Sα(σ)(zkχrk) ≥ zk χrk+
√
σα ≥ zk χrk ,

for all 0 < σα ≤ r2k/16. Hence,

f(Sα(σ)uk) ≥ f(zkχrk) ≥ f(zk)χrk , (3.10)

for 0 < σα ≤ r2k/16. From (3.10) and Lemma 2.3 we obtain

Sα(t− σ)f(Sα(σ)uk) ≥ c̃0f(zk)χrk (3.11)
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for 0 < σα ≤ tα ≤ r2k/16. Now, define tk =
(
r2k/16

)1/α
. For t ∈ [tk/2, tk],

we use (3.9) and (3.11) to obtain

u(t) ≥
∫ t

0
σγSα(t− σ)f(Sα(σ)uk)dσ

≥ c̃0f(zk)χrk

∫ tk/2

0
σγdσ

=
c̃02

−(γ+1)(1+4/α)

γ + 1
r
2(γ+1)/α
k f(zk)χrk .

This and (3.7) imply

‖u(t)‖Lr ≥ Cr
2(γ+1)/α
k f(zk)r

N/r
k

= Cr
Np∗/r
k f(zk)

≥ Ck−2p
∗
ek/r →∞,

as k →∞. This contradicts the fact that u ∈ L∞((0, T ), Lr(Ω)).
For the case Ω = RN , assume that lim supτ→0+ f(τ)/τ = ∞. Then,

there exists a sequence {λk}k≥1, with λk < k−2 such that f(λk) ≥ ekλk.

Let ρk = (λkk
2)−r/N > 1 and v0 =

∑∞
k=1 vk, with vk = c̃−10 λkχρk . Thus,

‖v0‖Lr ≤
∞∑
k=1

‖vk‖Lr = c̃−10 ω
1/r
N

∞∑
k=1

k−2 <∞.

As in the anterior case, we argue by contradiction and assume that problem
(1.1) has a solution, in the sense of (2.12), for every initial data in Lr(RN ).
In particular, for v0, there exists a function v ∈ L∞((0, T ), Lr(RN )) veri-
fying (2.12). Arguing as in the derivation of (3.9)-(3.11) it is possible to
obtain

Sα(t− σ)f(Sα(σ)vk) ≥ c̃0f(λk)χρk ,

for 0 < σα ≤ tα ≤ 1 < ρ2k. So, for t ∈ (0, 1) we have

v(t) ≥
∫ t

0
σγSα(t− σ)f(Sα(σ)vk)dσ

≥ c̃0t
γ+1

(γ + 1)
f(λk)χρk .

Therefore,

‖v(t)‖Lr ≥ Ctγ+1f(λk)ρ
N/r
k

≥ Cektγ+1k−2 →∞,

as k →∞. This contradicts the fact that v ∈ L∞((0, T ), Lr(RN )). �
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4. Initial data in L1(Ω)

In this section, we prove the non-existence result in L1. To do this, we
first give sufficient conditions for the non-existence and recall the Lemma
from [14] that identify the assumptions in Theorem 1.2 with such condi-
tions. We also discuss the existence in L1. The combination of the results
gives optimal conditions of existence in L1, only for N = 1.

4.1. Non-existence. Note that, in the statement of the following propo-
sition, we do not require f to be continuous.

Proposition 4.1. Assume f : [0,∞) → [0,∞) is non-decreasing and
that there exists a sequence {sk}k≥1 such that sk+1 ≥ θsk for some constant
θ > 1, and

∞∑
k=1

s
−[1+2(γ+1)/(αN)]
k f(sk) =∞. (4.1)

Then, there exists a non-negative initial condition u0 ∈ L1(Ω), u0 ≥ 0 such
that the problem (1.1) has no local L1 solution.

P r o o f. Let ρk = c̃−10 sk, where c̃0 is given in Lemma 2.3. Set un =
1
n2 θ

N
n χ1/θn , where θn = (n2ρξn)

1/N , and ρξn to be chosen later. Set u0 =∑∞
n=n0

un, with n0 chosen such that 1/θn0 < δ0 := 1/3 infx∈∂Ω |x|. Remem-
ber that we are assuming that 0 ∈ Ω.

Note that, 1/θn ≤ δ0 and so B1/θn+2δ0 ⊂ Ω for all n ≥ n0. Also,

‖u0‖L1 ≤
∞∑

n=n0

‖un‖L1 ≤
∞∑
n=1

‖un‖L1 = ωN

∞∑
n=1

n−2 <∞.

First, we will see the action of Sα(σ) over every function un. Choose
ρ = 1/θn and δ = δ0 in Lemma 2.3, thus

Sα(σ)un ≥ c̃0
n2
· θNn(

1 + θ
2/α
n σ

)αN/2
· χ1/θn+

√
σα ≥ c̃0 ρk χ1/θn+

√
σα , (4.2)

for σ ≤ tk = min

{
δ20/16,

(
n−2

ρk

)2/αN − 1

θ
2/α
n

}
, ρk ≤ n−2θNn , and |x| ≤

1/θn +
√

σα.
Now, suppose by contradiction that there exist u ∈ L∞((0, T ), L1(Ω))

a local solution of problem (1.1) with initial condition u0. We can assume
that with T < δ20/16. Thus, by using the non-negativity, Lemma 2.3,
estimate (4.2), and that f is non-decreasing, we have
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∫
Ω

u(t)dx ≥
∫
Ω

∫ t

0
σγSα(t− σ)f(Sα(σ)u0)dσdx

≥
∑
k

∫
Ω

∫ tk

tk+1

σγSα(t− σ)f(Sα(σ)u0)dσdx

=
∑
k

∫ tk

tk+1

∫
Ω

σγSα(t− σ)f(Sα(σ)u0)dxdσ

≥ C
∑
k

f(c̃0ρk)

∫ tk

tk+1

∫
Ω

σγSα(t− σ)χ1/θn+
√
σα dxdσ

≥ C
∑
k

f(c̃0ρk)

∫ tk

tk+1

σγ

(
1

θn
+
√

σα

)N

dσ

≥ C
∑
k

f(c̃0ρk)

∫ tk

tk+1

σγ+αN/2dσ, (4.3)

for n ≥ n0, where the sum in k is taken over those values for which 1
θNn
≤

n−2

ρk
≤
(
t + 1

θ
2/α
n

)αN/2
.

Consider the following additional constraint
ρk+1

θNn n−2 ≤ 1
2 . Since sk+1 ≥

θsk, for each k we have∫ tk

tk+1

σγ+αN
2 dσ

=
1

1 + γ + αN/2

(
t
1+γ+αN

2
k − t

1+γ+αN
2

k+1

)

=
1

1 + γ + αN/2

⎛⎝[(n−2

ρk

)2/αN

− 1

θ
2/α
n

]1+γ+αN
2

−
[(

n−2

ρk+1

)2/αN

− 1

θ
2/α
n

]1+γ+αN
2

⎞⎠
=

1

1 + γ + αN/2

(
n−2

ρk

) 2
αN

(1+γ)+1

×
⎛⎝[1−( ρk

n−2θNn

) 2
αN

]1+γ+αN
2

−
(

ρk
ρk+1

) 2
αN

(1+γ)+1
[
1−

(
ρk+1

n−2θNn

) 2
αN

]1+γ+αN
2

⎞⎠
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≥ 1

1 + γ + αN/2

(
n−2

ρk

) 2
αN

(1+γ)+1
⎛⎝[1−( ρk+1

n−2θNn

) 2
αN

]1+γ+αN
2

−
(

ρk
ρk+1

) 2
αN

(1+γ)+1
[
1−

(
ρk+1

n−2θNn

) 2
αN

]1+γ+αN
2

⎞⎠
≥ 1

1 + γ + αN/2

(
n−2

ρk

) 2
αN

(1+γ)+1
[
1−

(
ρk+1

n−2θNn

) 2
αN

]1+γ+αN
2

×
[
1−

(
ρk

ρk+1

) 2
αN

(1+γ)+1
]

≥ C

(
n−2

ρk

) 2
αN

(1+γ)+1

. (4.4)

Thus, from (4.3) and (4.4) we have∫
Ω

u(t)dx ≥ C
∑
k

f(c̃0ρk)

∫ tk

tk+1

σγ+αN
2 dσ

≥ C
∑
k

f(c̃0ρk)

(
n−2

ρk

) 2
αN

(1+γ)+1

= Cn−2[
2

αN
(1+γ)+1]

∑
k

s
−[ 2

αN
(1+γ)+1]

k f(sk). (4.5)

Note that, by all the constraints above, the previous sum is taken over
the set ⎧⎨⎩k :

2

θNn
≤ n−2

ρk+1
<

n−2

ρk
≤
(

t +
1

θ
2/α
n

)αN/2
⎫⎬⎭ ,

also, for any fixed 0 < t < δ20 and n sufficiently large that tn4/αN ≥ 1,
previous set contain the following set{

k : 1 ≤ ρk and ρk+1 ≤ 1

2
ρξn

}
= {k : k0 ≤ k ≤ kn}

where k0 is the smallest value of k for which ρk ≥ 1, and kn is the maximum
value. By choosing ξn such that ρkn+1 ≤ 1

2ρξn we can achieve any desired

sequence kn, and since that
∑∞

k=1 s
−[ 2

αN
(1+γ)+1]

k f(sk) =∞, it is possible to
obtain
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n−2[
2

αN
(1+γ)+1]

kn∑
k=k0

s
−[ 2

αN
(1+γ)+1]

k f(sk)→∞,

as n→∞. This and (4.5) imply a contradiction. �

Recall the following characterization by Laister et al. [14, Lemma 4.2].

Lemma 4.1. Suppose that f : [0,∞) → [0,∞) is non-decreasing and
q > 1. Then the following two conditions are equivalent:

(i) There exists a sequence {sk}k∈N such that sk+1 ≥ θsk, θ > 1 and
∞∑
k=1

s−qk f(sk) =∞.

(ii)
∫∞
1 s−qF (s)ds =∞, where F (s) = sup1≤τ≤s f(τ)/τ.

Now, we use Proposition 4.1 and Lemma 4.1 to conclude Theorem 1.1.

P r o o f o f T h e o r em 1.2. In fact, assume that
∫∞
1 s−p∗F (s)ds =∞.

Using Lemma 4.1 and Proposition 4.1 the result follows. The same argu-
ment can be used in the case

∫∞
0 s−p∗F̃ (s)ds =∞, with small modifications

in the proof of Proposition 4.1.

4.2. Existence. Here, we will discuss the existence of solutions for u0 ∈
L1(Ω). We start by mentioning that L1 → L∞ bounds for Sα(t), with
N ≥ 2, are not available in the literature, and it is a sensitive subject
indeed. For instance, if N ≥ 2, we cannot take (q, r) = (1,∞) in Lemma
2.2, nor in previous results such that those in [9, 13]. Thus, we study the
existence in the case N = 1.

Theorem 4.1. Assume that N = 1, and∫ ∞

1
τ
−
(
1+

2(γ+1)
α

)
sup

1≤t≤τ
f(t)

t
dτ <∞. (4.6)

Then, for every u0 ∈ L1(Ω), there exists a local L1-solution for (1.1).

P r o o f. The proof follows the idea from [14], except for the extra
effort we have to circumvent the use of the semigroup property there. If
u0 ≡ 0, we have that v(t) = χΩ is a supersolution. If u0 �= 0, we assume
that τ �→ f(τ)/τ is a non-decreasing function, for τ ≥ 1. Otherwise we

define f̃(τ) = f(τ) for τ ∈ [0, 1] and f̃(τ) = τF (τ) for τ ≥ 1, where F is
defined in Lemma 4.1 (ii), and look for a supersolution of
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ut + ∂t

∫ t

0
gα(t− s)Au(s)ds = f̃(u).

Let v(t) = bS1 (t
α)u0 + χΩ, where b > 0 will be chosen later. Recall

the assumption (4.6). Then,

F(v)(t)

= Sα(t)u0 +

∫ t

0
Sα(t− σ)σγf(v(σ))dσ

= Sα(t)u0 +

∫ t

0
Sα(t− σ)σγ f(bS1(σ

α)u0 + χΩ)

bS1(σα)u0 + χΩ
· (bS1(σ

α)u0 + χΩ) dσ

≤ Sα(t)u0 +

∫ t

0

∥∥∥∥f (bS1(σ
α)u0 + χΩ)

bS1(σα)u0 + χΩ

∥∥∥∥
L∞

σγSα(t− σ) (bS1(σ
α)u0 + χΩ) dσ.

We notice that

Sα(t− σ)S1 (σ
α)u0 =

∫ ∞

0
Mα(η)S1

(
η(t− σ)2 + σα

)
u0dη

≤
∫ ∞

0
Mα(η) [η(t− σ)α + σα]−

N
2 ‖u0‖L1dη

≤ σ−
α
2 ‖u0‖1 . (4.7)

Then,

F(v)(t) ≤ Sα(t)u0+

∫ t

0

∥∥∥∥f (bS1(σ
α)u0 + χΩ)

bS1(σα)u0 + χΩ

∥∥∥∥
L∞

σγ
[
bσ−

α
2 ‖u0‖L1 + χΩ

]
dσ.

From bS1 (σ
α) u0 + χΩ ≤ bσ−

α
2 ‖u0‖L1 + 1, we have∥∥∥∥f (bS1(σ

α)u0 + χΩ)

bS1(σα)u0 + χΩ

∥∥∥∥
L∞

≤ f(bσ−
α
2 ‖u0‖L1 + 1)

bσ−
α
2 ‖u0‖L1 + 1

, (4.8)

since τ �→ f(τ)
τ is non-decreasing. Hence

F(v)(t) (4.9)

≤Sα(t)u0 +

∫ t

0

f(bσ−
α
2 ‖u0‖L1 + 1)

bσ−
α
2 ‖u0‖L1 + 1

σγ
[
bσ−

α
2 ‖u0‖L1 + 1

]
=Sα(t)u0 + (2b‖u0‖L1)

2(γ+1)
α · 2

α

∫ ∞

2b‖u0‖L1 t
−α

2

τ
−
(
1+

2(γ+1)
α

)
f(τ)dτ, (4.10)

where we took t > 0 so small that bσ−
α
2 ‖u0‖L1 ≥ 1, for all σ ∈ (0, t), and

that the second portion in (4.10) is less than 1. From Lemma 2.2, we have

Sα(t)u0 ≤ t−
α
2 ‖u0‖L1 . (4.11)
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Moreover, from (4.11) and (1.5), we have

S1 (t
α) ≥ C2t

−α
2

∫
Ω′

e−
λ2|x−y|2

tα u0(y)dy

≥ C2

‖u0‖L1

∫
Ω′

e−
λ2|x−y|2

tα u0(y) dy Sα(t)u0, (4.12)

for 0 < t < d2(Ω′, ∂Ω)/8, where x ∈ Ω′. For T > 0 sufficiently small, we
can take b > 0 such that

bC2

‖u0‖L1

∫
Ω′

e−
λ2|x−y|2

tα u0(y)dy ≥ 1,

and Sα(t) ≤ bS1(t
α), for all t ∈ (0, T ). Accordingly,

F(v)(t) ≤ v(t), t ∈ (0, T ).

We proved that v is a supersolution of (1.1). Then, Lemma 2.4 concludes
the proof. �

5. Examples

In this section, we gather some results on Gaussian bounds for the
heat kernels associated with a general elliptic operator, and then we apply
Theorem 1.1 yielding new results of existence and non-existence of solutions
in Lebesgue spaces.

5.1. Fractional diffusion with general elliptic operators in RN . As
commented in the introduction, we consider the operator A given by

Au = −
N∑

i,j=1

aij(x)uxixj −
N∑
j=1

bj(x)uxj − c(x)u.

Assume that:

(i) for all ξ ∈ RN and for almost all x ∈ RN , aij(x, t)ξjξj ≥ v|ξ|2;
(ii) the coefficients of A are bounded measurable functions.

From [3], we have that the fundamental solution K of

ut +Au = 0

satisfies (1.4)-(1.5), and from [2], A generates a semigroup written in terms
of the fundamental solution K through (1.2). Therefore, Theorem 1.1 can
be applied to obtain the following result.

Theorem 5.1. LetA fulfill the above assumptions (i)–(ii), f : [0,∞)→
[0,∞) be a continuous non-decreasing function, γ > −1 and p∗ be as in
(1.12). Then, for p� > (1 + γ)/α, r > 1, we have

lim sup
τ→∞

τ−p
�
f(τ) <∞ and lim sup

τ→0
f(τ)/τ <∞
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if, and only if,⎧⎨⎩ ut + ∂t

∫ t

0
gα(s)Au(t− s)ds = tγf(u), in RN × (0, T ),

u(0) = u0 ≥ 0, in RN ,
(5.1)

has a local solution for every u0 ∈ Lr(RN ) . For the non-existence part,
the condition p� > (1 + γ)/α is dropped and r = 1 is included. For r = 1,
existence holds with N = 1.

5.2. Fractional diffusion with general elliptic operators with Robin
boundary conditions. Now, we consider the operator A given by

Au = −
N∑

i,j=1

aij(x)uxixj −
N∑
j=1

bj(x)uxj − c(x)u

with Robin boundary conditions:

Bu(x, t) = β(x)
∂u

∂ν
(x, t) + [1− β(x)]u(x, t),

where 0 ≤ β(x) ≤ 1 and ∂u/∂ν is given by

∂u

∂ν
(x) = −

N∑
i,j=1

uxiai,j(x)nj(x)

with n(x) = (n1(x), ..., nN (x)) being the unit outer normal at x ∈ Ω. Here,
= aij is symmetric and satisfies the uniform ellipticity condition

k|y|2 ≤
N∑

i,j=1

aij(x)yiyj ≤ |y|2/k, ∀x ∈ Ω,∀y ∈ RN ,

for some k > 0. Moreover, the coefficients have the following regularity:
aij ∈ C2+α(Ω̄), bj ∈ C1+α(Ω̄), c ∈ Cα(Ω̄), an.d β ∈ C2+α(∂Ω).

From [2], the realization A of (A,B) generates a semigroup (S(t))t≥0
in L2(Ω) with kernel K satisfying (1.4). For the lower estimates, we recall
that Laister et al [15] noted that a combination of [12, Lemma 2.4] and [4,
Theorems 8,9] implies (1.6).

Alternatively, we could consider the following assumptions:

(i) the matrix (aij(x, t)) is symmetric for any (x, t) ∈ Ω;
(ii) aij ∈W 1,∞(Ω), bk, c ∈ C1(Ω̄);
(iii) aij(x)ξiξj ≥ λ|ξ|2, (x, t) ∈ Ω̄, ξ ∈ Rn;
(iv) ‖aij‖W 1,∞(Ω) + ‖bk‖L∞(Ω) + ‖c‖L∞(Ω) ≤ A;

(v) β ∈ C(∂Ω);

where λ > 0 and A > 0 are two given constants. In particular aij ∈ L∞(Ω),
β, c ∈ L∞(Ω), and bi ∈ W 1,∞(Ω). We still have that the realization A of
(A,B) generates a semigroup (S(t))t≥0 in L2(Ω) with kernel K satisfying
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(1.4). If further β ∈ C(∂Ω), c ∈ C1(Ω̄), and Ω is bounded, smooth and
convex (or, more generally, satisfies the chain condition in [8]), then (1.5)
holds, by [8]. These latter assumptions on A are weaker than the earlier,
but have a stronger assumption on the domain.

In both cases, Theorem 1.1 applies, and we have the following result.

Theorem 5.2. Let (A,B) and Ω be as above, f : [0,∞) → [0,∞) be
a continuous non-decreasing function, γ > −1 and p∗ be given by (1.12).
For r > 1 and p� > (1 + γ)/α,

lim sup
τ→∞

τ−p
�
f(τ) <∞

if, and only if,⎧⎪⎪⎨⎪⎪⎩
ut + ∂t

∫ t

0
gα(s)Au(t− s)ds = tγf(u), in Ω× (0, T ),

β(x)∂u∂ν (x, t) + [1− β(x)]u(x, t) = 0, on ∂Ω× (0, T ),
u(0) = u0 ≥ 0, in Ω,

(5.2)

has a local solution for every u0 ∈ Lr(Ω). For the non-existence part, the
condition p� > (1 + γ)/α is dropped and r = 1 is included. For r = 1,
existence holds with N = 1.

5.3. Nonlinearities. Besides f(t, τ) = tγτp, the same f(t, τ) = tγτp
∗

[log(e+τ)]β
,

similar to that in Laister et al in [14, Sec. 4.4], can be considered as an
interesting example here.

On the other hand, consider f(t, τ) = tγekτ . It is seen that, for any r ≥
1 and k > 0, there exists an initial condition u0 ∈ Lr that does not admit
the existence of a local Lr-mild solution of (1.1), no matter what value γ
takes. Nevertheless, solutions of (1.1) with exponential nonlinearities can
be considered in Orlicz spaces or uniformly local Lebesgue spaces, see e.g.
[11]. In contrast, if k < 0, (1.1) always admits a local Lr-mild solution, for
a initial datum u0 ∈ Lr.
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