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Abstract

Based on the popular Caputo fractional derivative of order β in (0, 1),
we define the censored fractional derivative on the positive half-line R+.
This derivative proves to be the Feller generator of the censored (or resur-
rected) decreasing β-stable process in R+. We provide a series representa-
tion for the inverse of this censored fractional derivative. We are then able
to prove that this censored process hits the boundary in a finite time τ∞,
whose expectation is proportional to that of the first passage time of the
β-stable subordinator. We also show that the censored relaxation equation
is solved by the Laplace transform of τ∞. This relaxation solution proves
to be a completely monotone series, with algebraic decay one order faster
than its Caputo counterpart, leading, surprisingly, to a new regime of frac-
tional relaxation models. Lastly, we discuss how this work identifies a new
sub-diffusion model.
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1. Introduction

Fractional derivatives, a special class of nonlocal integral and pseudo-
differential operators [15, 22, 47, 28], have been successfully employed to
model heterogeneities and nonlocal interactions in many applications (see,
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e.g., [39, 42, 44, 11]). They also enjoy an interesting mathematical the-
ory with deep connections to Lévy processes (see, e.g., [41, 7, 33, 34, 35]).
For example, the Caputo derivative [14] of order β ∈ (0, 1) on the posi-
tive half-line R+, plays important roles in modelling non-exponential relax-
ation [14, 42] and non-Markovian sub-diffusive dynamics [40, 1, 23]. For a
smooth function u vanishing outside R+, the Caputo derivative equals the

Riemann–Liouville (R–L) derivative Dβ
0 [14] given by

Dβ
0u(x) =

∫ x

0

(
u(x)− u(x− r)

) r−1−β∣∣Γ(−β)
∣∣ dr + u(x)

x−β

Γ(1− β)
, x > 0.

(1.1)

Probabilistically, −Dβ
0 generates a killed Lévy process, which is the de-

creasing β-stable process S1 = {S1
s}s≥0 killed at time τ1, the first exit

time from R+ [3, 29]. Intuitively, the first summand in (1.1) describes
the decreasing β-stable jumps landing inside R+, while x−β/Γ(1 − β) =∫∞
x r−1−β

/∣∣Γ(−β)
∣∣ dr is the killing coefficient for the jumps landing out-

side R+. In this work, we introduce what we call the censored fractional

derivative ∂β
0 , allowing the representation

∂β
0 u(x) =

∫ x

0

(
u(x)− u(x− r)

) r−1−β∣∣Γ(−β)
∣∣ dr, x > 0. (1.2)

It is intuitively clear that −∂β
0 only allows the decreasing β-stable jumps to

land inside R+, and suppresses those landing outside R+. Indeed we prove
that it is the (Feller) generator of Sc = {Sc

s}s≥0, the censored decreasing
β-stable process in R+. We will construct Sc by repeatedly resurrecting in
situ the killed decreasing β-stable process, following the canonical Ikeda–
Nagasawa–Watanabe (INW) piecing together procedure [26]. (Cf. [37,
Remark 3.3] for two other notions of “censoring” a process.)

We initiate the study of the censored fractional derivative, and then
apply its theory to derive several new and non-trivial results about the
censored stable subordinator, as we now explain. We first prove the well-
posedness of the basic initial value problem (IVP){

∂β
0 u(x) = g(x), x ∈ (0, T ],

u(x) = u0, x = 0,
(1.3)

for any T > 0, u0 ∈ R and certain g ∈ C(0, T ]. Our proof is based on

constructing the candidate solution u = u0 + Iβ0 g, where Iβ0 allows a prob-
abilistic series representation and the expected potential representation:

Iβ0 g(x) = Jβ
0 g(x) +

∞∑
j=1

Ex

[
Jβ
0 g(Xj)

]
(1.4)
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= Ex

[ ∫ τ∞

0
g(Sc

s) ds

]
. (1.5)

Here, Jβ
0 is the R–L integral, i.e. the inverse of Dβ

0 , given by

Jβ
0 g(x) =

∫ x

0
g(y)

(x− y)β−1

Γ(β)
dy = Ex

[ ∫ τ1

0
g(S1

s ) ds

]
, (1.6)

where the second identity is the known potential representation for Jβ
0 ;

the discrete-time process X |X0 = x is defined as Xj := x
∏j

i=1 Bi, where
{Bi}i∈N is an i.i.d. collection of beta-distributed random variables with
parameters 1 − β and β; and τ∞ is the lifetime of Sc. The equivalence of
(1.4) and (1.5) is due to the equality in law between Xj and Sc at its j-th
resurrection time, combined with the second identity in (1.6) (see Remark
4.3 for more details). The way we solve (1.3) is to regard it as a linear R–L

IVP Dβ
0u = ku + g, u(0) = 0 with the coefficient k(x) = x−β/Γ(1− β).

It turns out that the formula given in [14, Theorem 7.10] for bounded
k still converges for this specific unbounded k, allowing us to construct
the solution. (As for more general k that may diverge as O(x−β), [38,
Example 3.4] gave a non-constructive proof of the existence result.) As
we show in [16, Section 3.2], this explicit solution allows us to establish

the (global) well-posedness of general IVPs ∂β
0 u = f(x, u), u(0) = u0, for

certain Lipschitz data f .

Using the results above, we are able to solve the linear IVP ∂β
0 u = λu,

u(0) = u0, for any λ ∈ R. We obtain the Mittag-Leffler-type representation
for its solution

u(x) = u0

∞∑
N=0

λNxβN
N∏

n=1

(
Γ(1 + nβ)

Γ(nβ+1−β)
− 1

Γ(1−β)

)−1
, (1.7)

where an empty product equals 1 by convention (also, u(x) = u0 if λ = 0)
and each factor of the indexed product is positive by (2.1). Surprisingly, for
λ < 0, this solution decays at the fast algebraic rate x−1−β (Theorem 3.2),
which we believe is a new regime for fractional relaxation models. Indeed
the Caputo fractional relaxation solution u0Eβ(λxβ) decays at the rate x−β
[14, Theorem 7.3], where Eβ(x) =

∑∞
n=0 xn/Γ(nβ+1) is the Mittag-Leffler

function. Moreover, the lagging and leading coupled fractional relaxation
equations in [2, 50] model the decay rate x−γ for some γ ∈ (0, 1). Our
proof (inspired by [18, Theorem 3.2]) is based on maximum principle and
turns out to be versatile, albeit elementary. Indeed the same argument

proves the decay rate x−1−α of the solution to ∂β
0 u = λxα−βu (λ < 0, α >

0) (see Proposition 3.2), which is again one order faster than its Caputo
counterpart (expressed by the Kilbas–Saigo function [43]). Moreover, we
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will show how to adapt this argument to the Caputo setting to give new and
simple proofs of the two-sided uniform bounds of Eβ and more generally, a
class of Kilbas–Saigo functions, which are the recent results in [46, Theorem
4] and [10, Proposition 4.12], respectively. This very argument may have
even broader applications, e.g., in general Caputo-type relaxation problems
(corresponding to general killed subordinators), see Remark 3.4-(iii).

As a special case of (1.5), we have the identity

Ex[τ∞] = Ex[τ1]
βπ

βπ− sin(βπ)
, where Ex[τ1] =

xβ

Γ(β+1)
, (1.8)

which implies that Sc hits 0 in finite time, a fact that we believe has not
been shown before. This is fundamental and not obvious, especially in view
of [6, Theorem 1.1-(1)], which proves that the censored symmetric β-stable
Lévy process never hits the boundary, whether censored in an interval or
R+. (Also, censored decreasing compound Poisson processes do not hit
the barrier in finite time, and our numerical simulations suggest neither do
censored gamma subordinators.) We are then able to show several more

connections between the analytic and probabilistic aspects of ∂β
0 . That is,

we will prove that Sc is indeed a Feller process generated by −∂β
0 , and that

the exit problem for τ∞ is solved by (1.7), i.e.

u0Ex

[
exp{λτ∞}

]
equals the series (1.7), for all x > 0 and λ ∈ R. (1.9)

As a consequence of (1.9), we can obtain all the moments of τ∞ and confirm
the complete monotonicity of (1.7). We emphasise that (1.9) is significantly
harder to prove than Caputo’s counterpart Ex

[
exp{λτ1}

]
= Eβ(λxβ). This

is mainly due to the inapplicability of Laplace transforms to Sc and the
complexity of the coefficients in (1.7) (see [16, Remark 4.14] for more detail).
Nonetheless, we obtain a proof by combining our series solution to the

resolvent equation ∂β
0 u = λu+g with a simple semigroup theory argument,

following [24, Corollary 5.1]. We could alternatively try combining our IVP
theory with standard potential theory (see, e.g., [13, Chapter 3]) appplied

to the Feynman–Kac semigroup of −Dβ
0 + (λ+ k), but it would be more

involved. (We also remark that (1.9) serves as an efficient alternative to
numerically compute (1.7) for λ < 0.)

Lastly, we discuss how this work sets the foundations for the study of a

new time-fractional diffusion equation ∂β
0 u = Δu/2, solved by the process

{Bτ∞(t)}t≥0. (Here ∂β
0 acts on the time variable, B is a Brownian motion

independent of τ∞(t) := τ∞ |Sc
0= t.) This is the censored analogue of the

Caputo time-fractional diffusion equation Dβ
0

[
u− u(0)

]
= Δu/2, which is

solved by the fractional kinetic process {Bτ1(t)}t≥0 (with B independent of

the inverse stable subordinator τ1(t) := inf{s : t<−S1
s}), a non-Markovian
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sub-diffusion process arising from several central limit theorems [40, 1, 23].
As we discuss in Remark 4.5-(i), although both Bτ1 and Bτ∞ are sub-
diffusion processes (due to (1.8)), their respective characteristic functions,
Eβ(λtβ) and (1.7) (for some λ < 0), display strikingly different decay rates
(due to our results on relaxation solutions).

This work is organized as follows: Section 2 introduces notation, re-
calls basic results on fractional calculus, defines the censored fractional
derivative, and studies the solution kernels; Section 3 focuses on the well-
posedness and series representation of the solution to (1.3), then addresses
linear censored IVPs; in Section 4 we construct the censored decreasing
β-stable process and apply our IVP theory to its study.

2. Preliminary notation and definitions

Throughout this article, we denote by β (0 < β < 1) the order of
fractional derivatives, and by [0, T ] (0 < T < ∞) the interval of inter-
est. We denote by N, R and R+ the sets of positive integers, real numbers
and positive numbers, respectively. For any interval Ω ⊆ R we denote by
C(Ω), C1(Ω) and L1(Ω) the real functions on Ω that are continuous, contin-
uously differentiable and Lebesgue integrable, respectively. We abbreviate
C(Ω)∩L1(Ω) to C ∩L1(Ω). For compact Ω we denote by ‖ · ‖C(Ω) the sup
norm. We denote by Γ the gamma function and frequently use without
mention the standard identities Γ(2−α) = (1−α)Γ(1−α) for all α ∈ R\N,
Γ(β+1)Γ(1−β) = βπ/ sin(βπ) and∫ x

0
(x− r)γ−1rα−1 dr = xγ+α−1Γ(γ)Γ(α)

Γ(γ + α)
for all α, γ, x > 0.

We also rely crucially on the inequality (which we prove in Lemma 2.3)

Γ(α+1−β) < Γ(1+α)Γ(1−β) for all α > 0. (2.1)

2.1. R–L calculus and fractional function spaces. We present some
basic results about the R–L fractional derivative. We refer to [14] for a
general study of Caputo/R–L derivatives.

Definition 2.1. For β ∈ (0, 1), u ∈ C ∩ L1(0, T ], define R–L integral

Jβ
0 u(x) =

∫ x

0

(x− r)β−1

Γ(β)
u(r) dr, x ∈ (0, T ].

We define the function spaces

Cβ(0, T ] =
{
u ∈ C ∩ L1(0, T ] : J1−β

0 u ∈ C1(0, T ]
}
,

Cβ [0, T ] = C[0, T ] ∩ Cβ(0, T ],
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and for u ∈ Cβ(0, T ], x ∈ (0, T ], we define the R–L derivative

Dβ
0u(x) =

d

dx
J1−β
0 u(x) =

d

dx

∫ x

0

(x− r)−β

Γ(1−β)
u(r) dr.

Remark 2.1. Note that Cβ(0, T ] is chosen so that the image of Dβ
0 is

contained in C(0, T ]. Moreover, Cβ [0, T ] is chosen to be the solution space,
as we will explain in Remark 2.4.

Lemma 2.1. The following relations between Dβ
0 and Jβ

0 hold.

(i) If u ∈ C ∩ L1(0, T ], then Jβ
0 u ∈ C ∩ L1(0, T ].

(ii) If u ∈ C ∩ L1(0, T ], then Jβ
0 u ∈ Cβ(0, T ] and Dβ

0Jβ
0 u = u.

(iii) Assume g ∈ C ∩ L1(0, T ]. Then

u = Jβ
0 g if and only if

⎧⎪⎪⎨⎪⎪⎩
u ∈ Cβ(0, T ],

Dβ
0u = g,

lim
x→0

J1−β
0 u(x) = 0.

(iv) If u ∈ Cβ [0, T ] satisfies Dβ
0u = 0, then u = 0.

The proof is straightforward and given in [16, Appendix A.1].

Remark 2.2. Note that in Lemma 2.1-(iv), the condition u ∈ Cβ [0, T ]

cannot be weakened to u ∈ Cβ(0, T ], since Dβ
0xβ−1 is also 0.

2.2. Censored fractional derivative.

Definition 2.2. Given β ∈ (0, 1), we define the censored fractional
derivative of any u ∈ Cβ(0, T ] as

∂β
0 u(x) = Dβ

0u(x)− x−β

Γ(1−β)
u(x), for all x ∈ (0, T ].

Remark 2.3.

(i) Like the Caputo derivative, the censored fractional derivative maps
constants to 0, and satisfies the scaling property

∂β
0 v(x) = c−β∂β

0 u(x/c),

where u ∈ Cβ(0, T ], c is a positive constant and v(x) := u(x/c) ∈
Cβ(0, cT ].
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(ii) For functions of the form xα (α > 0), the censored fractional deriv-

ative equals the R–L derivative up to a constant multiple: ∂β
0 xα =

cα, βD
β
0xα, where

cα, β = 1− Γ(α + 1− β)

Γ(α+1)Γ(1−β)
, Dβ

0xα = xα−β Γ(α + 1)

Γ(α+1−β)
.

By (2.1), cα, β is in (0, 1). In particular, for α = β, we have ∂β
0 xα =

Γ(β+1)
(
βπ−sin(βπ)

)
/(βπ). While we can talk about the semigroup

property for Dβ
0 and the Caputo derivative [14, Theorem 2.13 and

Lemma 3.13], we cannot for ∂β
0 . For instance,

∂β
0 ∂γ

0xα = cα−γ, β cα, γ Dβ+γ
0 xα,

∂γ
0∂β

0 xα = cα−β, γ cα, β Dβ+γ
0 xα,

however cα−γ, β cα, γ �= cα−β, γ cα, β unless β = γ.

(iii) If u ∈ C1(0, T ] ∩ L1(0, T ], then on (0, T ], ∂β
0 u allows the represen-

tation (1.2), from which it is clear that −∂β
0 satisfies the positive

maximum principle [9], and hence it is dissipative in the sense that

‖λu + ∂β
0 u‖C[0,T ] ≥ λ‖u‖C[0,T ] for any λ > 0 and u ∈ C1[0, T ].

(iv) The Laplace transform of the censored fractional derivative is

L[∂β
0 u
]
(k) = kβ

(
L[u](k)− k−1L

[
u(x/k)x−β

Γ(1− β)

]
(1)

)
, k > 0,

which differs from kβ
(L[u](k) − k−1u(0)

)
, the Laplace transform of

the Caputo derivative [41, Chapter 2.4]. One can notice that even in
Laplace space, it is unclear if the initial conditions can be imposed on

the problem ∂β
0 u = g.

Remark 2.4. We will spend the next few pages establishing the well-

posedness of ∂β
0 u = g with u(0) = u0, for certain g. With the initial condi-

tion imposed, Cβ [0, T ], which equals
{
u ∈ C[0, T ] : J1−β

0 u ∈ C1(0, T ]
}
, now

becomes a natural function space for solutions. A large part of the Caputo

literature (e.g., [14]), however, chose Jβ
0

[
C ∩ L1(0, T ]

]
, i.e., the image of

Jβ
0 over C ∩ L1(0, T ], as the solution space. This difference seems not to

matter, at least to our studies. Indeed, the set U consisting of the solutions
to (1.3) (for those g of interest) is contained in the intersection of those
two spaces, as shown in the diagram below (see [16, Appendix A.3] for the
proof of the diagram)
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Cβ(0, T ]
Cβ [0, T ] Jβ

0

[
C ∩ L1(0, T ]

]
U

where we define U =
{
u ∈ Cβ [0, T ] : xβ−α∂β

0 u ∈ C[0, T ] for some α > 0
}
.

Lastly, let us mention that Jβ
0 C[0, T ] =

{
u ∈ C[0, T ] : J1−β

0 u ∈ C1[0, T ]
}

[48, Proposition 4.1].

2.3. An integral operator and related kernels. As we can see from
(1.4), the solution to the IVP (1.3) may be seen as a variation of the R–L
integral. In this subsection we introduce an integral operator and related
kernels for the convergence study of (1.4). This leads to Lemma 2.3, which
is a crucial bound in this work. The probabilistic interpretation of the
kernels under consideration will be presented in Section 4.

Definition 2.3. For 0 < r < x, recursively define the following kernels

kj(x, r) =

⎧⎪⎪⎨⎪⎪⎩
(x− r)β−1r−β

Γ(β)Γ(1−β)
, j = 1,∫ x

r
k1(x, s)kj−1(s, r) ds, j ≥ 2.

(2.2)

Remark 2.5. Note that for each x > 0, k1(x, · ) is a beta distribu-
tion on (0, x) with parameters (1 − β, β), and straightforward induction
arguments can be used to prove that∫ x

0
kj(x, r) dr = 1 (j ≥ 1, x > 0)

and

kj(x, r) =

∫ x

r
kj−1(x, s)k1(s, r) ds (j ≥ 2, x > r > 0).

Definition 2.4. For ψ ∈ C[0, T ], we define

Kψ(x) =

⎧⎨⎩
∫ x

0
k1(x, r)ψ(r) dr, x > 0,

ψ(0), x = 0,

where the explicit dependence of K on β is suppressed to ease notation.
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Remark 2.6. It is easy to see that Kψ(x) = Jβ
0

[
x−βψ(x)/Γ(1− β)

]
for ψ ∈ C[0, T ] and x ∈ (0, T ], and that K is a linear operator preserving
positivity (Kψ ≥ 0 if ψ ≥ 0).

Lemma 2.2. For any α ≥ 0, we have

Kxα = xαΓ(α+1−β)
/(

Γ(1+α)Γ(1−β)
)
.

If ψ ∈ C[0, T ] satisfies
∣∣ψ(x)∣∣ ≤ Mxα for some M > 0 and all x ∈ (0, T ],

then Kψ ∈ C[0, T ], and
∣∣Kψ(x)

∣∣ ≤MKxα for all x ∈ (0, T ].

P r o o f. The first claim is immediate from the definition of K, and by
the assumption on ψ, we have

∣∣Kψ(x)
∣∣ ≤ K|ψ|(x) ≤MKxα. We now prove

that Kψ is continuous on (0, T ]. For ε ∈ (0, x/2), define

Kεψ(x) =

∫ x−ε

ε
k1(x, r)ψ(r) dr.

Given T1 ∈ (0, T ], for every x ∈ [T1, T ] and ε ∈ (0, T1/2), we have∣∣Kεψ(x)−Kψ(x)
∣∣ ≤ ∫ ε

0
k1(x, r)

∣∣ψ(r)∣∣ dr + ∫ x

x−ε
k1(x, r)

∣∣ψ(r)∣∣ dr
≤ β(x/ε− 1)β−1 + (1−β)(x/ε− 1)−β

β(1− β)Γ(β)Γ(1− β)
‖ψ‖C[0,T ]

≤ β(T1/ε− 1)β−1 + (1−β)(T1/ε− 1)−β

β(1− β)Γ(β)Γ(1− β)
‖ψ‖C[0,T ],

therefore, as ε → 0, Kεψ → Kψ uniformly on [T1, T ]. Because Kεψ is
continuous on [T1, T ], Kψ must be continuous on [T1, T ], and thus on
(0, T ]. In addition, by the continuity of ψ at x = 0, Kψ(x) → ψ(0) as
x→ 0, and therefore Kψ ∈ C[0, T ]. �

We can now obtain a crucial bound that will help us adapt [14, Theorem
7.10] to the censored IVP (1.3) in order to express the solution as a series.

Lemma 2.3. For any α > 0, we have
∞∑
j=1

Kjxα = xα

(
Γ(1+α)Γ(1−β)

Γ(α + 1− β)
− 1

)−1
. (2.3)

If ψ ∈ C[0, T ] and
∣∣ψ(x)∣∣ ≤Mxα for some M > 0 and all x ∈ (0, T ], then

∞∑
j=1

Kjψ ∈ C[0, T ], and

∣∣∣∣∣
∞∑
j=1

Kjψ(x)

∣∣∣∣∣ ≤M

∞∑
j=1

Kjxα for all x ∈ (0, T ].

In addition, Kjψ(x) =
∫ x
0 kj(x, r)ψ(r) dr for all j ∈ N, x ∈ (0, T ].



1044 Q. Du, L. Toniazzi, Z. Xu

P r o o f. We first confirm (2.1) using the fact that tα and (1− t)−β
strictly increase, so that

1

α−β+1
=

∫ 1

0
(1−t)α(1−t)−β dt <

∫ 1

0
tα(1−t)−β dt =

Γ(1+α)Γ(1−β)

Γ(1+α+1−β)
.

Applying Lemma 2.2 for j times, we get Kjxα = xα
(
Γ(1+α)Γ(1−β)/Γ(α+

1−β)
)−j

. Then, by summing over j, we obtain (2.3) from (2.1). Meanwhile,

we have
∣∣Kjψ(x)

∣∣ ≤ MKjxα and Kjψ ∈ C[0, T ], so
∑∞

j=1Kjψ converges

uniformly to a limit in C[0, T ], whose absolute value is pointwise bounded
by M

∑∞
j=1Kjxα. Finally, by induction,

Kjψ(x) = KKj−1ψ(x) =
∫ x

0
k1(x, r)

∫ r

0
kj−1(r, s)ψ(s) ds dr

=

∫ x

0

∫ x

s
k1(x, r)kj−1(r, s)ψ(s) dr ds

=

∫ x

0
kj(x, s)ψ(s) ds.

�

Remark 2.7. In Lemma 2.3, we require α > 0 (though the last state-
ment there holds for all α ≥ 0), in fact, if α = 0, let ψ = 1, then

∞∑
j=1

Kjψ(x) =
∞∑
j=1

∫ x

0
kj(x, r) dr =∞.

3. Well-posedness of the censored IVPs

3.1. Inverse of ∂β
0 . We begin with the basic censored IVP (1.3) with g ∈

C(0, T ] and u0 ∈ R. Our strategy is to consider the equivalent Caputo/R–L
problem for ū = u−u0 with the unbounded coefficient x−β/Γ(1−β),

Dβ
0 ū(x) =

x−β

Γ(1−β)
ū(x) + g(x), x > 0, ū(0) = 0, (3.1)

and then show that for certain forcing terms g, the formula [14, Theorem
7.10] for bounded coefficients still yields a solution to (3.1), and thus to
(1.3). (Note that for (3.1) with g ∈ C[0, T ], the solution is already guar-
anteed by [38, Example 3.4] to exist but given no explicit expression. See
[16, Remark 3.1-(ii)] for more detail.)

Remark 3.1.

(i) We can solve (3.1) using Picard iteration, i.e.,

ūm+1(x) = Jβ
0

[
x−βūm(x)/Γ(1−β) + g(x)

]
(m = 1, 2, · · · ) with ū1 = 0.
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By Remark 2.6, the limit equals Iβ0 g defined in (3.2) if the iteration
converges.

(ii) If one replaces the coefficient in the R–L problem (3.1) by Cx−β/Γ(1−
β), then the series representation for the solution would be ū =∑∞

j=0 CjKjJβ
0 g, which does not converge for important data (like

g = 1) if |C| ≥ Γ(1+β)Γ(1−β).

We now present a key result concerning IVP (1.3), which serves as the

fundamental theorem of calculus for ∂β
0 . Or simply put, Iβ0 is to ∂β

0 as Jβ
0

is to Dβ
0 .

Theorem 3.1. Let u0 ∈ R and g ∈ C(0, T ] such that
∣∣g(x)∣∣ ≤Mxα−β

for some M,α > 0 and all x ∈ (0, T ]. Then there exists a unique function
u ∈ Cβ [0, T ] satisfying (1.3), and it has the series representation

u(x)− u0 = Iβ0 g(x) :=

∞∑
j=0

KjJβ
0 g(x), (3.2)

where K0 is the identity operator by convention. Moreover, u depends on
u0 and g continuously in the sense of Remark 3.3.

Theorem 3.1 is an immediate consequence of Lemmata 3.1 and 3.2.

Remark 3.2. For g satisfying the conditions in Theorem 3.1, Iβ0 g can
be equivalently represented as

Iβ0 g(x) = Jβ
0 g(x) +

∞∑
j=1

∫ x

0
kj(x, r)Jβ

0 g(r) dr, (3.3)

=
∞∑
j=1

Kj
[
Γ(1−β)xβg(x)

]
(3.4)

=
∞∑
j=0

Jβ
0

[Kj
[
xβg(x)

]
xβ

]
, (3.5)

where (3.3) is due to Lemma 2.3, while (3.4) and (3.5) are due to Remark

2.6. From any representation, we can see that Iβ0 is a linear operator

preserving positivity (Iβ0 g ≥ 0 if g ≥ 0).

Remark 3.3. For g ∈ C[0, T ], we can prove the continuous dependence
by showing that ‖u−u0‖C[0,T ] ≤ C‖g‖C[0,T ] for some C dependent only on β
and T . For a more general g which may diverge at x = 0, C will depend also
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on α, and ‖g‖C[0,T ] needs to be replaced by ‖g‖
Gα−β(0,T ]

, where we define

for any γ ∈ R a Banach space Gγ(0, T ] =
{
h ∈ C(0, T ] : ‖h‖Gγ(0,T ] < ∞},

with the norm ‖h‖Gγ(0,T ] := sup
{|x−γh(x)| : x ∈ (0, T ]

}
. In particular, if

g ∈ C[0, T ] and α = β, then ‖g‖
Gα−β(0,T ]

= ‖g‖C[0,T ]. (Note that Gγ is the

same as B̂ defined in [14, Proof of Lemma 5.3].)

Lemma 3.1. Solutions to problem (1.3) are unique in Cβ [0, T ].

P r o o f. Let u1, u2 ∈ Cβ [0, T ] be two solutions to problem (1.3). By

linearity of ∂β
0 , u := u1−u2 ∈ Cβ [0, T ] satisfies ∂β

0 u = 0 on (0, T ]. Therefore

for every x ∈ (0, T ], Dβ
0u(x) = Γ(1− β)−1x−βu(x), where the right-hand

side is in C ∩ L1(0, T ]. Using Lemma 2.1-(ii) as well as Remark 2.6, we
obtain

Dβ
0u(x) =

x−β

Γ(1−β)
u(x) = Dβ

0Jβ
0

[
x−β

Γ(1−β)
u(x)

]
= Dβ

0Ku(x),

where Ku ∈ Cβ(0, T ]. By Lemma 2.2, Ku is in C[0, T ], and so is u−Ku.

Consequently, u−Ku ∈ Cβ [0, T ]. By the linearity of Dβ
0 , we know Dβ

0

[
u−

Ku
]
=0. According to Lemma 2.1-(iv), we obtain u = Ku.

Let ξ ∈ argmax r∈[0,T ]

∣∣u(r)∣∣. If ξ = 0, then u = 0 on [0, T ] be-
cause u(0) = 0. If ξ > 0, using the fact that u(ξ) = Ku(ξ), we have∫ ξ
0 k1(ξ, r)

(
u(ξ)−u(r)

)
dr = 0, where u(ξ)−u(r) never changes sign for all

r ∈ [0, ξ], according to the definition of ξ. So u(ξ) = u(r) for all r ∈ [0, ξ],
therefore u(ξ) = u(0) = 0, and we still obtain u = 0 on [0, T ]. This proves
u1 = u2, and we are done. �

Lemma 3.2. For g satisfying the conditions in Theorem 3.1, Iβ0 g is in

Cβ [0, T ] with Iβ0 g(0) = 0 and ∂β
0 Iβ0 g = g. In addition, Iβ0 g depends on g

continuously in the sense of Remark 3.3.

P r o o f. Using representation (3.4), we can see Iβ0 g(0) = 0 from the

assumptions on g and Definition 2.4, then from Lemma 2.3 we obtain Iβ0 g ∈
C[0, T ] and that for all x ∈ (0, T ]

∣∣Iβ0 g(x)
∣∣ ≤ Iβ0 |g|(x) ≤Mxα

(
Γ(1 + α)

Γ(α+1−β)
− 1

Γ(1−β)

)−1
. (3.6)
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Note that in (3.5), the summation commutes with Jβ
0 , by Fubini’s The-

orem and the above bound. So,

Iβ0 g(x) = Jβ
0

∞∑
j=0

Kj
[
xβg(x)

]
xβ

= Jβ
0

[
g(x) + x−β

∞∑
j=1

Kj
[
xβg(x)

]]
= Jβ

0

[
g(x) +

x−βIβ0 g(x)

Γ(1− β)

]
,

(3.7)

with the last equality due to (3.4). Therefore, Iβ0 g = Jβ
0 ψ for a ψ ∈ C(0, T ]

satisfying∣∣ψ(x)∣∣ ≤Mxα−β
(
1− Γ(α + 1− β)

Γ(1+α)Γ(1−β)

)−1
, for all x ∈ (0, T ], (3.8)

so Lemma 2.1-(ii) proves that Iβ0 g is in Cβ(0, T ] and thus Cβ [0, T ]. Lemma
2.1-(ii) also proves that

Dβ
0 Iβ0 g(x) = ψ(x) = g(x) +

x−βIβ0 g(x)

Γ(1− β)
, for all x ∈ (0, T ],

which rewrites as ∂β
0 Iβ0 g = g by Definition 2.2.

To see the continuity of Iβ0 , let the M in (3.6) be ‖g‖
Gα−β(0,T ]

(Gγ(0, T ]

is defined in Remark 3.3), then we obtain

‖Iβ0 g‖Gα(0,T ] ≤
(

Γ(1 + α)

Γ(α+1−β)
− 1

Γ(1−β)

)−1
‖g‖

Gα−β(0,T ]
.

Since α > 0, we have ‖Iβ0 g‖C[0,T ] ≤ Tα‖Iβ0 g‖Gα(0,T ] ≤ C‖g‖
Gα−β(0,T ]

for

some C dependent only on α, β and T . �

Example 3.1. Recall that for the Caputo IVP Dβ
0

[
u−u(0)

]
= xα (α >

−1) with u(0) = u0, the solution is u0 + Jβ
0 xα [14]. By (3.4) and Lemma

2.3, the solution to (1.3) for g(x) = xα (α > −β) is

u(x)− u0 = Iβ0 xα =

(
Γ(α+β+1)

Γ(α + 1)
− 1

Γ(1−β)

)−1
xα+β = c−1α+β, β Jβ

0 xα,

(3.9)
where cα+β, β is defined in Remark 2.3-(ii). In particular, when α = 0,

c−1α+β, β = βπ
/(

βπ − sin(βπ)
)
. If α ∈ (−1,−β], we may not be able to

impose the initial condition in (1.3), since the solution may explode at 0.
For example, when α = −β, one can verify that a particular solution is
−Γ(1−β) ln(x)/H−β , where H−β is the Harmonic number.
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3.2. Inhomogeneous linear IVPs. We now consider the linear IVP{
∂β
0 u(x) = λxα−βu(x) + g(x), x ∈ (0, T ],

u(x) = u0, x = 0.
(3.10)

Like its counterpart in classical ODEs, such IVP can play important roles
in more general equations. (Using Picard iteration, we can also show the

global well-posedness for general IVPs ∂β
0 u = f(x, u), u(0) = u0. See [16,

Section 3.2] for more detail.) To solve (3.10), we need the following lemma.

Lemma 3.3. For x, α > 0 and N ∈ N, we have(
Iβ0 [x

α−β · ])N1(x) ≤ C
2NxNα

(N !αN )β
,

where 1(x) is the constant function 1, C is a positive constant dependent
only on α and β, and we denote(

Iβ0 [x
α−β · ])Ng(x) = Iβ0

[
xα−β · · · Iβ0

[
xα−β︸ ︷︷ ︸

N times

g(x)
] · · · ].

P r o o f. From Example 3.1 we know that

(
Iβ0 [x

α−β · ])N1(x) =
N∏

n=1

(
Γ(1 + nα)

Γ(nα+1−β)
− 1

Γ(1−β)

)−1
xNα, (3.11)

where each factor is positive. Using Stirling’s formula for Γ(z), i.e.

Γ(z) =

√
2π

z

(z

e

)z(
1 + O

(1
z

))
,

we have the following approximation

Γ(1 + nα)

Γ(nα+1−β)
= (nα)β

(
1 + O

( 1
n

))
,

which indicates that there exists ñ ∈ N such that for all n > ñ,

Γ(1 + nα)

Γ(nα+1−β)
− 1

Γ(1−β)
≥ (nα)β

2
,

so there exists C > 0 such that Lemma 3.3 holds for all N ∈ N. �

Proposition 3.1. Let λ, u0 ∈ R, α > 0 and g ∈ C(0, T ] such that∣∣g(x)∣∣ ≤ Mxγ−β for some M,γ > 0 and all x ∈ (0, T ]. Then (3.10) has a
unique solution in Cβ [0, T ] given by the following series

u(x) = u0

∞∑
N=0

λN
(
Iβ0 [x

α−β · ])N1(x)+
∞∑

N=0

λN
(
Iβ0 [x

α−β · ])NIβ0 g(x), (3.12)
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which depends on u0 and g continuously (analogous to Theorem 3.1).

P r o o f. From Lemma 3.2 we know Iβ0 g ∈ C[0, T ] and thus for N ∈ N,(
Iβ0 [x

α−β · ])NIβ0 g ∈ C[0, T ]. By the positivity preserving property of Iβ0 ,∣∣∣(Iβ0 [xα−β · ])NIβ0 g
∣∣∣ ≤ (

Iβ0 [x
α−β · ])N |Iβ0 g| ≤ (

Iβ0 [x
α−β · ])N1 · ‖Iβ0 g‖C[0,T ].

As by Lemma 3.3 the series
∑∞

N=0 λN
(
Iβ0 [x

α−β · ])N1 converges uniformly

on [0, T ], so does
∑∞

N=0 λN
(
Iβ0 [x

α−β · ])NIβ0 g. So the function u given by

(3.12) is in C[0, T ] and Iβ0 [x
α−βu] is well-defined. Therefore,

λ Iβ0 [x
α−βu] + Iβ0 g = λu0 Iβ0

[
xα−β

∞∑
N=0

λN
(
Iβ0 [x

α−β · ])N1
]

+ λ Iβ0

[
xα−β

∞∑
N=0

λN
(
Iβ0 [x

α−β · ])NIβ0 g
]
+ Iβ0 g

= λu0

∞∑
N=0

λN
(
Iβ0 [x

α−β · ])N+1
1

+ λ

∞∑
N=0

λN
(
Iβ0 [x

α−β · ])N+1
Iβ0 g + Iβ0 g

= u− u0,

where the second equality is due to the continuous dependence in Theorem
3.1. Using Theorem 3.1 again, we know that u solves (3.10). The continuous
dependence of u on u0 and g is clear from the above convergence.

To show the uniqueness, assume that u1, u2 ∈ Cβ [0, T ] solve (3.10),

then u := u1 − u2 ∈ Cβ [0, T ] satisfies ∂β
0 u = λxα−βu with u(0) = 0. By

Theorem 3.1, u = λIβ0 [x
α−βu] = · · · = λN

(
Iβ0 [x

α−β · ])Nu. Then, letting
N →∞ and using Lemma 3.3, we obtain u = 0. �

3.3. Homogeneous linear IVPs with constant coefficients.

Corollary 3.1. [of Proposition 3.1] For any λ, u0 ∈ R, the IVP{
∂β
0 u(x) = λu(x), x ∈ (0, T ],

u(x) = u0, x = 0,
(3.13)

has a unique solution in Cβ [0, T ] given by u(x) = u0
∑∞

N=0 λN (Iβ0 )
N1(x),

which is equivalent to (1.7) by letting α = β in (3.11).
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Although the series (1.7) looks cumbersome, it surprisingly decays at
the simple algebraic rate x−1−β for λ < 0.

Theorem 3.2. For λ < 0 and u0 > 0, the solution u to (3.13) is

completely monotone (i.e., (−1)nu(n) ≥ 0 on R+ for n = 0, 1, 2, ...) and
there exists a constant C > 1 such that

C−1

x1+β
≤ u(x) ≤ C

x1+β
, for all x ≥ 1.

P r o o f. The complete monotonicity will be proved in Corollary 4.1,
using a probabilistic argument. The upper and lower bounds are proved in
Lemmata 3.5 and 3.6 below, using a maximum principle argument. �

Remark 3.4.

(i) For Caputo’s counterpart of IVP (3.13), i.e., Dβ
0

[
u−u(0)

]
=λu, u(0) =

u0, the solution is expressed in terms of the Mittag-Leffler function

u(x) = u0

∞∑
N=0

(λxβ)N

Γ(Nβ+1)
. (3.14)

For λ < 0 and u0 > 0, it is completely monotone and decays at
the rate x−β [14, Theorem 7.3]. By contrast, the censored relaxation
equation (3.13) models a new decay regime x−1−β . (See also [50, page
1623] for related fractional relaxation equations, where the decay rate
is x−γ for some γ ∈ (0, 1).)

As a side note, for λ, u0 > 0, obviously both (1.7) and (3.14) in-
crease in x faster than any polynomial. Indeed, for λ = 1, the latter
grows at the rate ex [21, Proposition 3.5], and our numerical results
suggest exp{x+cx1−β} for the former, where c is positive and depends
only on β.

(ii) For (3.14) with λ = −1, u0 = 1, [46, Theorem 4] gave the uniform

estimates with optimal constants:
(
1 + Γ(1−β)xβ

)−1 ≤ u(x) ≤ (
1 +

Γ(1+β)−1xβ
)−1

. In [16, Proposition B.1] we give what we believe to
be a new and simple proof of those bounds, using the same strategy
used for the uniform bounds of (1.7). Recently [10, Proposition 4.12]
gave another new proof by showing the generalized results for a class of
Kilbas–Saigo functions. Our simple proof can also be applied with few
modifications to prove those generalized results (see [16, Proposition
B.4]). In Section 3.4 we will use it again, to prove the uniform bounds

of (3.19), the solution to ∂β
0 u = λxα−βu.
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(iii) The reason why our proof is both simple and versatile is that it in-
volves only maximum principle (mentioned in Remark 2.3-(iii)) and
some suitable candidate bounds (e.g. (1 + cx)−1−β), but no specific
representation of the solution (e.g. (1.7) or (1.9)). In fact, we ex-
pect this strategy to have broader applications. As an example, con-

sider a general Caputo-type derivative Dψ
∗0 (so −Dψ

∗0 generates a non-
increasing pure jump Lévy process killed upon leaving R+ [34]) for a
Lévy measure ψ with

∫∞
0 min{r, 1}ψ(dr) <∞,

Dψ
∗0u(x) =

∫ x

0

(
u(x)− u(x− r)

)
ψ(dr) +

(
u(x)− u(0)

)
ψ
(
(x,∞)

)
,

and its relaxation equation Dψ
∗0u = λu (λ < 0). The solution is given

as an expectation or a series under mild assumptions [31, Lemma 3.4].
It is possible for our strategy to prove two-sided bounds of this solution
without those representations of it. Indeed, this has already been
done for certain absolutely continuous ψ (so ψ(dr) = ψ(r) dr). For
instance, for compactly supported ψ, the solution is given an upper
bound of the decay rate x−1 [18, Remark 3.5]. A special case is the
truncated fractional kernel ψ(r) = 1{r∈(0, δ]}r−1−β with δ > 0 (see [18,
Theorem 3.2], which inspired our proof). Even if ψ is not compactly
supported, as long as

∫∞
0 rψ(r) dr < ∞, the same argument applies.

Another instance is when r1+βψ(r) is continuous on R+ and bounded
within [C−1, C] for some C > 1, our strategy (in [16, Proposition
B.1]) can still prove the two-sided bounds, both of x−β decay.

Lemma 3.4. If λ < 0 and v ∈ C1(0, T ] ∩ C[0, T ] satisfies ∂β
0 v ≥ λv,

then v is nonnegative if v(0) ≥ 0, and positive if v(0) > 0.

P r o o f. If v(0) ≥ 0 but v is not nonnegative, let x0 be a minimum
point of v on [0, T ], then x0 > 0 and v(x0) < 0. So we have 0 < λv(x0) ≤
∂β
0 v(x0). However, since v ∈ C1(0, T ], by Remark 2.3-(iii) we know that

∂β
0 v(x0) =

∫ x0

0

(
v(x0)− v(x0− r)

) r−1−β∣∣Γ(−β)
∣∣ dr ≤ 0,

which is a contradiction. Similarly, we can prove v > 0 if v(0) > 0. �

Lemma 3.5. For λ < 0 and u0 = 1, the solution u to (3.13) is positive

and can be bounded from above by v(x) = (1 + c|λ|1/βx)−1−β , where

c =

∣∣Γ(−β)
∣∣1/β

2

(21+β − 1

1− β
+

2

β

)−1/β
. (3.15)
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P r o o f. We know from Corollary 3.1 that u ∈ C[0, T ]. We also know
that u ∈ C1(0, T ] from the uniform convergence of the series representation
of its derivative on any closed interval not containing 0. Thus u remains
positive by Lemma 3.4.

Let v(x) = (1+x/c)−1−β and first assume that there is a constant c > 0
such that v satisfies the condition in Lemma 3.4. Under this assumption,

we get ∂β
0 (v− u) − λ(v− u) ≥ 0 with v(0)− u(0) = 0. By Lemma 3.4, we

have v ≥ u on [0, T ].
Now, given β ∈ (0, 1) and λ < 0, up to a constant multiple, it remains

to find a constant c > 0 such that v(x) = (x + c)−1−β satisfies ∂β
0 v ≥ λv,

i.e., for all x > 0,∫ x

0

(
v(x)− v(x− r)

) r−1−β∣∣Γ(−β)
∣∣ dr ≥ λv(x),

or equivalently, for all x > 0,∣∣λΓ(−β)
∣∣ ≥ ∫ x

0

(
(x + c)1+β

(x+ c− r)1+β
− 1

)
dr

r1+β
. (3.16)

Let y = x + c, then the right-hand side of (3.16) equals∫ y−c

0

(
y1+β

(y− r)1+β
−1

)
dr

r1+β
= y−β

∫ 1−c/y

0

(
1

(1− s)1+β
−1

)
ds

s1+β
. (3.17)

If y ≤ 2c, then the right-hand side of (3.17) can be bounded from above by

y−β
∫ 1/2

0

(
1

(1− s)1+β
−1
)

ds

s1+β
≤ y−β

∫ 1/2

0
2s(21+β−1) ds

s1+β
=

2β

yβ
21+β − 1

1− β
.

If y > 2c, we split the interval [0, 1−c/y] into two parts [0, 1/2] and [1/2, 1−
c/y]. For the second subinterval,∫ 1−c/y

1/2

(
1

(1− s)1+β
− 1

)
ds

s1+β
≤ 21+β

∫ 1−c/y

1/2

ds

(1− s)1+β
≤ 21+β

β

(y

c

)β
.

Therefore the right-hand side of (3.16) can be bounded from above by

2β

yβ
21+β − 1

1− β
+

21+β

yββ

(y

c

)β ≤ 2β

cβ
21+β − 1

1− β
+

21+β

cββ
.

Let

c ≥ 2∣∣λΓ(−β)
∣∣1/β

(21+β − 1

1− β
+

2

β

)1/β
,

then (3.16) will be satisfied and we are done. �
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Lemma 3.6. If λ < 0 and u0 = 1, then the solution to (3.13) is

bounded from below by w(x) = (1 + d|λ|1/βx)−1(1 + dβ |λ|xβ)−1, where

d =
∣∣Γ(−β)

∣∣1/β max
{
4, (1−β)(1+2β)/β

}1/β
.

The proof is similar to that of Lemma 3.5 and given in [16, Appendix
B.2].

3.4. Homogeneous linear IVPs with nonconstant coefficients.

Corollary 3.2. [of Proposition 3.1] For λ, u0 ∈ R and α > 0, the
IVP {

∂β
0 u(x) = λxα−βu(x), x ∈ (0, T ],

u(x) = u0, x = 0.
(3.18)

has a unique solution in Cβ [0, T ] given by the following series

u(x) = u0

∞∑
N=0

λN
(
Iβ0 [x

α−β · ])N1(x)

= u0

∞∑
N=0

(λxα)N
N∏

n=1

(
Γ(1 + nα)

Γ(nα+1−β)
− 1

Γ(1−β)

)−1
.

(3.19)

Surprisingly, the solution (3.19) has a decay property analogous to what
we see in Section 3.3.

Proposition 3.2. For λ < 0 and u0 > 0, there exists a constant
C > 1 such that the solution u to (3.18) satisfies

C−1

x1+α
≤ u(x) ≤ C

x1+α
, for all x ≥ 1.

The proof is similar to that of Theorem 3.2 and given in [16, Proposition
3.24].

Remark 3.5.

(i) For Caputo’s counterpart of IVP (3.18), the solution can be expressed
in terms of the Kilbas–Saigo function

u(x) = u0

∞∑
N=0

(λxα)N
N∏

n=1

(
Γ(1 + nα)

Γ(nα+1−β)

)−1
. (3.20)

For λ < 0 and u0 > 0, the solution (3.20) decays at the rate x−α
[10, Remark 4.6 (c)] (and is completely monotone [10, Remark 3.1
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(d)] if α ≤ 1). On the other hand, the censored IVP (3.18) once again
models a new decay regime x−1−α.

As a side note, for λ, u0 > 0, both (3.19) and (3.20) increase in
x faster than any polynomial. Indeed, for λ = 1, the latter can be
bounded by exp

{
(βα + ε)xα/β

}
for any ε positive and x large enough

[21, Theorem 5.9], and our numerical results suggest the same for the
former.

(ii) For (3.20) with λ = −1, u0 = 1, [10, Proposition 4.12] proved the
uniform bounds(
1 + Γ(1−β)xα

)−1 ≤ u(x) ≤ (
1 + Γ(1+α−β)Γ(1+α)−1xα

)−1
.

As mentioned in Remark 3.4-(ii), our maximum principle argument
can give a new and simple proof of those bounds.

(iii) For α = 1, (3.18) can be seen as a linear equation σ∂β
0 u = λu, where

we let σ(x) = xβ−1 so that the rescaled fractional derivative σ∂β
0 acts

like the classical first order derivative on linear functions. This kind of
rescaling naturally extends to more general nonlocal derivatives, and
we refer to [15] for a discusison of nonlocal calculus and rescaling.

4. Censored decreasing β-stable process

In this section we first prove that the hitting time of 0 (or lifetime) for

the censored decreasing β-stable process is finite and that Iβ0 has proba-
bilistic representations (1.4) and (1.5). We then use these results to prove

that our censored process is Feller with generator −∂β
0 , which in turn leads

us to show that the Laplace transform of the lifetime equals the series (1.7),
and thus they are completely monotone. We denote by 1A the indicator
function of a set A. All our stochastic processes are real-valued right-
continuous with left limits (càdlàg), hence we always assume the canonical
underlying filtered probability space as in [4, Chapter O]. For a stochas-
tic process Y = {Ys}s≥0 and a real-valued integrable function f on the
probability space of Y , we use the notation Ey

[
f(Y )

]
= E

[
f(Y )

∣∣Y0 = y
]
,

E
[
f(Y )

]
= E0

[
f(Y )

]
, and correspondingly Py[A], P[A] when f = 1A. We

write Yt− = lims↑t Ys. By a β-stable subordinator (β ∈ (0, 1)) we mean
the Lévy process −S1 = {−S1

s}s≥0 characterised by the Laplace transform
E
[
exp{kS1

s}
]
= exp{−skβ}, k, s > 0 [4, Chapter III]. We denote by B[0, T ]

the set of real-valued bounded Borel measurable functions on [0, T ] and
define C∞(0, T ] =

{
u ∈ C[0, T ] : u(0) = 0

}
, both understood as Banach

spaces with the sup norm. We extend the domain of any f ∈ B[0, T ] to a
cemetery state ∂ imposing f(∂) = 0. As discussed in Section 1, we treat the

censored decreasing stable process in R+ because it is generated by −∂β
0 ,
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where ∂β
0 is the “left” censored derivative (at 0). However, it should be

clear that all the results in this section translate immediately to the cen-
sored stable subordinator in (−∞, b) when paired with the “right” censored
derivative at b ∈ R.

4.1. Construction and finite lifetime. The starting point of the cen-
sored process is always assumed to be fixed to some x > 0. We define
the censored decreasing β-stable process Sc by the INW piecing together
construction, then [26, Theorem 1.1 and Section 5.i] guarantees us a càdlàg
strong (sub-)Markov process. The construction is: run x+S1

t until τ1, the
time when it first exits (0, T ], where −S1 is a β-stable subordinator (started
at 0); then kill the process if x+S1

τ1− ≤ 0; otherwise piece together an in-

dependent copy of S1 started at x+ S1
τ1− and repeat the same procedure

for at most countably many times.
With Lemma 4.1 we prove that we can directly define the censored

decreasing β-stable process Sc |Sc
0=x as

Sc
t :=

{
S̃j
t , τj−1 ≤ t < τj , j ∈ N,

∂, t ≥ τ∞,
(4.1)

with

S̃j
t :=

{
x + Sj

t , j = 1,

S̃j−1
τj−1−+Sj

t−τj−1 , j ≥ 2,
τj :=

⎧⎪⎪⎨⎪⎪⎩
0, j = 0,

inf
{
s>τj−1 : S̃j

s ≤ 0
}
, j ∈ N,

lim
j→∞

τj , j =∞,

where {−Sj}j∈N is an i.i.d. collection of β-stable subordinators. Recall [4,
Chapter III] the expectation of the inverse stable subordinator

E
[
E1(y)

]
= yβ/Γ(β+1), (4.2)

where we define Ej(y) = inf
{
s > 0 : y < −Sj

s

}
for j ∈ N and y > 0.

Lemma 4.1. For any x > 0 and j ∈ N, assuming Sc
0 = x, we have

(i) Ex[τj ] < ∞, Px

[
Sc
τj ∈ (0, x)

]
= 1 and Sc

τj has the density kj(x, · ), as
defined in (2.2);

(ii) Sc
τj > 0, and (4.1) equals the INW construction of the censored de-

creasing β-stable process;
(iii)

Ex[τj+1− τj ] = Ex

[
Ej+1(S

c
τj )
]
=

∫ x

0

yβ

Γ(β+1)
kj(x, y) dy; (4.3)

(iv) Px[τ∞ <∞] = 1 and Px

[
Sc
τ∞− = 0

]
= 1.
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P r o o f. The statement (ii) follows immediately from (i). We now
prove (i) by induction. For j = 1, Ex[τ1] = E

[
E1(x)

]
= xβ/Γ(β +1) < ∞,

and it is known that Sc
τ1 = x+S1

τ1− is beta-distributed on (0, x) with density
k1(x, · ) [4, Chapter III, Proposition 2]. Then we perform induction for each
j ≥ 1: since τj <∞, Sc

τj > 0 and Sj+1 is independent of (Sc
τj , τj), we have

τj+1 − τj = inf
{
s > τj : S

c
τj < −Sj+1

s−τj
}− τj

= inf
{
r > 0 : Sc

τj < −Sj+1
r

}
= Ej+1(S

c
τj ). (4.4)

Combining (4.4) with Sc
τj < x and (4.2), we obtain

Ex[τj+1] = Ex

[
Ej+1(S

c
τj )
]
+ Ex[τj ] ≤ E

[
Ej+1(x)

]
+ Ex[τj ] <∞.

By definition and (4.4), we have

Sc
τj+1

= Sc
τj + Sj+1

(τj+1−τj)− = Sc
τj + Sj+1

Ej+1(Sc
τj
)− ∈ (0, Sc

τj ) ⊆ (0, x).

Therefore for any bounded measurable f , we have

Ex

[
f
(
Sc
τj+1

)]
= Ex

[
f
(
Sc
τj + Sj+1

Ej+1(Sc
τj
)−
)]

=

∫ x

0

(∫ y

0
f(z)k1(y, z) dz

)
kj(x, y) dy

=

∫ x

0
f(z)

(∫ x

z
kj(x, y) k1(y, z) dy

)
dz,

where the second equality holds because Sc
τj is independent of Sj+1 and

has the density kj(x, · ); the last equality is due to Fubini’s theorem. By
Remark 2.5 we know that Sc

τj+1
has the density kj+1(x, · ). The induction

step is now complete.
For part (iii), by (4.4) we have Ex[τj+1 − τj ] = Ex

[
Ej+1(S

c
τj )
]
, mean-

while, since Sj+1 is independent of Sc
τj , by (4.2) we have

Ex

[
Ej+1

(
Sc
τj

)]
=

∫ x

0
E
[
Ej+1(y)

]
kj(x, y) dy =

∫ x

0

yβ

Γ(β + 1)
kj(x, y) dy.

We now prove part (iv). The results obtained so far are enough to derive
Theorem 4.1 below, which immediately implies that Px[τ∞ < ∞] = 1. To
prove Px[S

c
τ∞− > 0] = 0, first, observe that

Px

[
Sc
τ∞− > 0

] ≤ ∞∑
n=1

Px

[
Sc
τ∞− ≥ n−1

]
,

and for each n ∈ N
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Px

[
Sc
τ∞− ≥ n−1

]
= Px

[ ∞⋂
j=1

{
Sc
τj ≥ n−1

}]
= lim

j→∞
Px

[
Sc
τj ≥ n−1

]
,

where we used {Sc
τj ≥ n−1} ⊇ {Sc

τj+1
≥ n−1} for each j ∈ N and conver-

gence from above of finite measures. Then, Chebyshev’s inequality and the
above results guarantee that

1

n
Px

[
Sc
τj ≥ n−1

] ≤ Ex

[
Sc
τj

]
=

∫ x

0
kj(x, y)y dy,

and the right-hand side goes to 0 as j →∞ by Lemma 2.3. �

We can now prove our main result of this subsection, which gives (1.8).

Theorem 4.1. The hitting time of 0 of the censored β-stable Lévy pro-

cess (4.1) is finite in expectation, with Ex[τ∞] = Ex[τ1]
(
1−sin(βπ)/(βπ)

)−1
.

Remark 4.1. Our key ingredient for proving Theorem 4.1 is the fol-
lowing closed formula for (4.3) (obtained in the proof of Lemma 2.3)∫ x

0
yβkj(x, y) dy = xβ

(
Γ(β+1)Γ(1−β)

)−j
, for all j ∈ N and x > 0.

P r o o f. [o f T h e o r em 4.1] On the one hand, by Monotone Conver-
gence Theorem, Ex[τ∞] =limj→∞Ex[τj+1]. On the other hand, by (4.2),
(4.3) and Remark 4.1, for each j ∈ N,

Ex[τj+1] = Ex[τ1] +

j∑
i=1

Ex[τi+1− τi] =
xβ

Γ(β+1)

j∑
i=0

(
Γ(β+1)Γ(1−β)

)−i
.

As Γ(β+1)Γ(1−β) = βπ/ sin(βπ) > 1, the claim follows letting j →∞. �

Remark 4.2.

(i) Theorem 4.1 is not obvious. For instance, the censored symmetric
β-stable process for β ∈ (0, 1) never hits the boundary, whether the
censoring is performed in an interval or R+ [6, Theorem 1.1-(1)].

(ii) Any compound Poisson process in Rd censored upon exiting an open
set must have infinite lifetime, and so does a non-increasing compound
Poisson process censored in (0, T ]. This is because the lifetime can be
bounded from below by

∑∞
n=1 en = ∞, where {en}n∈N is an infinite

subset of the i.i.d. exponential waiting times of the process.
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(iii) The censored gamma subordinator with Lévy measure ψ(r) = e−r/r
[7, Example 5.10] seems to have infinite lifetime, because our nu-

merical simulations indicate pathwise that τj ≈ 2
√

j/3 and Sc
τj ≈

exp
{−√3j

}
for x = 1 and j � 1. We do not know whether other

censored (driftless) subordinators hit the barrier in finite time. If they
do, it is not clear if our proof strategy can be extended to such cases,
as it relies on the closed formula for the potential kernel, which is only
available for the stable case.

4.2. Probabilistic representations of Iβ0 . Firstly, we prove that Iβ0 is
equal to the potential of the semigroup of the censored process Sc. Secondly,

we give a representation of Iβ0 in terms of products of i.i.d. beta-distributed
random variables.

Proposition 4.1. If g satisfies the assumption in Theorem 3.1 or if

g ∈ B[0, T ], it holds that Iβ0 g ∈ C∞(0, T ], and for all x ∈ (0, T ] we have

Iβ0 g(x) = Ex

[ ∫ τ∞

0
g(Sc

s) ds

]
. (4.5)

P r o o f. For g ≥ 0 we justify the following equalities

Ex

[ ∫ τ∞

0
g(Sc

s) ds

]
=

∞∑
j=0

Ex

[ ∫ τj+1−τj

0
g(Sc

τj+s) ds

]

=
∞∑
j=0

Ex

[ ∫ Ej+1(S
c
τj
)

0
g(Sc

τj + Sj+1
s ) ds

]

=
∞∑
j=0

Ex

[
E

[ ∫ Ej+1(S
c
τj
)

0
g(Sc

τj +Sj+1
s ) ds

∣∣∣Sc
τj

]]

=
∞∑
j=0

Ex

[
Jβ
0 g(Sc

τj )

]
=

∞∑
j=0

KjJβ
0 g(x) = Iβ0 g(x). (4.6)

The first equality is an application of Tonelli’s Theorem and a simple
change of variables; the second follows from (4.4); the third is due to the
law of total expectation; the fourth is due to the independence of Sj+1

and Sc
τj along with the known identity (1.6) (which is a straightforward

consequence of [7, Eq. (1.38)]); the fifth follows from Lemmata 4.1-(i) and

2.3; the last follows the definition of Iβ0 . If g ∈ B[0, T ], recalling that

Jβ
0 |g|(x) ≤ sup

{|g(y)| : y ∈ [0, x]
}
xβ/Γ(β + 1) and Jβ

0 g ∈ C[0, T ], by

Lemma 2.3 we know that
∑∞

j=0KjJβ
0 g ∈ C∞(0, T ], and that we can apply
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Fubini’s Theorem to the above equalities. If g satisfies the condition in

Theorem 3.1, then Theorem 3.1 proves Iβ0 g ∈ C∞(0, T ] and justifies the
application of Fubini’s Theorem. �

Remark 4.3.

(i) The above proof provides the following intuition for how ∂β
0 extends

the memory effect of Dβ
0 . Rewrite the right-hand side of (4.5) as

E

[ ∫ E1(x)

0
g(x+S1

s ) ds

]
+ Ex

[ ∫ τ∞

τ1

g(Sc
s) ds

]
. (4.7)

Then the first term in (4.7) weights the past values of g on the interval
(x+S1

E1(x)−, x], just like (1.6) in the Caputo case (note that (1.6) takes

a slightly different form, just because there we assume S1 starts from
x instead of 0). Meanwhile, the second term proceeds on the interval
(0, x + S1

E1(x)−] according to the censored process. This second term

can be simplified further using the the distribution of Sc
τj and written

in terms of products of i.i.d. beta-distributed random variables, as
we will see in Proposition 4.2.

(ii) Proposition 4.1 proves that Ex

[ ∫ τ∞
0 (Sc

s)
α ds

]
equals the right-hand

side of (3.9). If α > −β, it is finite and yields Theorem 4.1 (by letting
α = 0). If α ≤ −β, then it is infinite by Remark 2.7. In contrast,

E
[ ∫ E1(x)

0 (x+S1
s )

α ds
]
<∞ for all α > −1.

Proposition 4.2. For x > 0, Sc
τj |Sc

0 = x equals Xj := x
∏j

i=1 Bi in

law for each j ∈ N, where {Bi}i∈N is an i.i.d. collection of beta-distributed
random variables on (0, 1) with parameters (1−β, β). Moreover, under the

assumption of Proposition 4.1, Iβ0 allows the probabilistic series represen-
tation

Iβ0 g(x) =
∞∑
j=0

Ex

[
Jβ
0 g(Xj)

]
, x ∈ (0, T ]. (4.8)

The proof is straightforward and given in [16, Proposition 4.8].

4.3. Laplace transform of τ∞. We recall some definitions adapted to
our setting that relate to Feller semigroups [9]. A collection of operators
P = {Ps}s≥0 is said to be a semigroup on a Banach space X if Ps : X → X
is bounded and linear for any s > 0, PsPt = Ps+t for all t, s > 0, and P0 is
the identity operator. We say that P is strongly continuous on L ⊆ X if for
any f ∈ L, Psf → f in X as s→ 0, and that P is strongly continuous if P
is strongly continuous on X. We define the generator of P to be the pair
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(G,D), where D := {f ∈ X : Gf converges in X} with Gf := lims→0(Psf−
f)/s, and we call D the domain of the generator of P . Moreover, P is said
to be a positivity preserving contraction on X ⊆ B[0, T ] if 0 ≤ Psf ≤ 1 for
any s > 0 and f ∈ X such that 0 ≤ f ≤ 1. Finally, a semigroup P on
X = C∞(0, T ] is said to be a Feller semigroup if it is a strongly continuous
positivity preserving contraction on X. We recall [9, Page 15] that there
exists a one-to-one correspondence between Feller semigroups and Markov
processes {Ys}s≥0 such that f( · ) �→ Psf( · ) := E

[
f(Ys) |Y0= · ], s ≥ 0, is

a Feller semigroup [9, Page 15].

Proposition 4.3. For any T > 0, the censored decreasing β-stable
process Sc induces a Feller semigroup on C∞(0, T ], whose generator is(

−∂β
0 , Iβ0 C∞(0, T ]

)
.

P r o o f. Let P c
t f(x) = Ex

[
f(Sc

t )
]
for t ≥ 0 and f ∈ B[0, T ] (defining

Sc
t = ∂ for all t > 0 if Sc

0 = 0). Then P c = {P c
t }t≥0 is a positivity

preserving contraction semigroup on B[0, T ], due to Sc being a Markov
process. We denote by Lc the largest subset of B[0, T ] on which P c is
strongly continuous and by Dc the domain of the generator of P c. First we
prove Lc ⊇ C∞(0, T ]. For f ∈ C∞(0, T ], let f̃(x) := f

(
max{x, 0}) for any

x ∈ (−∞, T ], and compute∣∣P c
t f(x)−f(x)

∣∣ ≤ ∣∣∣Ex

[
1{t<τ1}(f(S

c
t )−f(x))

]∣∣∣+ Ex

[
1{t≥τ1}|f(Sc

t )−f(x)|]
≤
∣∣∣E[1{t<E1(x)}(f̃(x+S1

t )−f̃(x))
]∣∣∣+2‖f‖C[0,x]P

[
t≥E1(x)

]
≤
∣∣∣E[f̃(x+S1

t )− f̃(x)
]∣∣∣+ 3‖f‖C[0,x]P

[
t ≥ E1(x)

]
,

where the first summand vanishes uniformly in x as t → 0 because S1 is
a Feller process on

{
g ∈ C(−∞, T ] : limx→−∞ g(x) = 0

}
[9]. Meanwhile

for the second summand, for any ε > 0 we can choose δ > 0 so that
‖f‖C[0,x] ≤ ε for all x ∈ (0, δ] and then we choose t̃ small so that

P
[
t ≥ E1(x)

]
= P[x + S1

t ≤ 0] ≤ P[δ ≤ −S1
t ] ≤ ε, for all x ≥ δ and t ≤ t̃,

so for all t ≤ t̃

3‖f‖C[0,x]P
[
t ≥ E1(x)

] ≤ {
3ε, 0 ≤ x ≤ δ,

3ε‖f‖C[0,T ], δ < x ≤ T.
(4.9)

Therefore we have proved the strong continuity of P c on C∞(0, T ] and thus
C∞(0, T ] ⊆ Lc. We now prove that C∞(0, T ] is invariant under P c. The

key ingredients are Theorem 4.1 and Proposition 4.1, which prove that Iβ0
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equals the potential
∫∞
0 P c

s ds and is a bounded operator from B[0, T ] to

C∞(0, T ]. Then [19, Theorem 1.1’] implies Dc = Iβ0 Lc, and we have

Iβ0 C∞(0, T ] ⊆ Iβ0 Lc ⊆ Iβ0 B[0, T ] ⊆ C∞(0, T ].

Since Stone–Weierstrass Theorem and Example 3.1 prove that Iβ0 C∞(0, T ]
is dense in C∞(0, T ], by [19, Property 1.3.B] and the above inclusions we
obtain Lc = C∞(0, T ]. Because P cLc ⊆ Lc [19, Property 1.3.A], we have
proved that P c is a Feller semigroup on C∞(0, T ]. Since its potential is

Iβ0 and a bounded potential determines the generator [19, Theorem 1.1’],

Theorem 3.1 implies that the generator of P c is
(−∂β

0 , Iβ0 C∞(0, T ]
)
. �

We are now ready to prove a Mittag-Leffler-type representation for
Ex

[
eλτ∞

]
, whose analogue in the Caputo setting is the probabilistic identity

Ex

[
eλτ1

]
=

∞∑
j=0

λjxβj

Γ(jβ + 1)
, (4.10)

first proved in [5]. Our proof follows the approach of [24, Corollary 5.1]
to (4.10). This approach allows one to solve exit problems by computing
the Laplace transform of the lifetime of a killed Markov process when one
knows the analytical solution to the resolvent equation −Gu = λu + g (G
being the generator of the process). In our case, the analytical solution is
given by Proposition 3.1.

Theorem 4.2. For every λ < 0, T > 0 and g ∈ C[0, T ],

Ex

[ ∫ τ∞

0
eλsg(Sc

s) ds

]
=

∞∑
j=0

λj(Iβ0 )
j+1g(x), x ∈ (0, T ]. (4.11)

Moreover, the Mittag-Leffler-type series (1.7) (u0 = 1) equals Ex

[
eλτ∞

]
for

all λ ∈ R and x > 0.

P r o o f. For the first claim, if g ∈ C∞(0, T ], recalling [19, Theorem
1.1], the equality (4.11) holds by Propositions 4.3 and 3.1, as both sides of
it are the unique solution in Cβ [0, T ] to the resolvent equation

∂β
0 u = λu + g, u(0) = 0, g ∈ C∞(0, T ],

where we used Iβ0 C∞(0, T ] ⊆ Cβ [0, T ] given by Lemma 3.2. Now, for any
g ∈ C[0, T ], take gn ∈ C∞(0, T ] so that gn → g uniformly on every compact
subset of (0, T ] and sup

n
‖gn‖C[0,T ] <∞. Fix x ∈ (0, T ], then for any s > 0,

Ex

[
gn(S

c
s)
]→ Ex

[
g(Sc

s)
]
, as n→∞,
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by Dominated Convergence Theorem. Applying Dominated Convergence
Theorem again, with the dominating function sup

n
‖gn‖C[0,T ]e

λs, we obtain∫ ∞

0
eλsEx

[
gn(S

c
s)
]
ds→

∫ ∞

0
eλsEx

[
g(Sc

s)
]
ds, as n→∞.

On the other hand, by the continuous dependence in Proposition 3.1 (let
the (α, γ) there be (β, β/2), for example),

∞∑
j=0

λj(Iβ0 )
j+1gn(x)→

∞∑
j=0

λj(Iβ0 )
j+1g(x), as n→∞.

Therefore we have proved (4.11) for all g ∈ C[0, T ].
To prove the second claim for λ < 0, in (4.11) let g = λ, so that on the

left-hand side

Ex

[ ∫ τ∞

0
eλsλ ds

]
= λ

Ex[e
λτ∞ ]− 1

λ
= Ex

[
eλτ∞

]− 1,

and on the right-hand side
∞∑
j=0

λj+1(Iβ0 )
j+11(x) =

∞∑
j=0

λj(Iβ0 )
j1(x)− 1.

Hence by (3.11) (with α = β) we have proved the second claim for λ ≤ 0
(with λ = 0 being a trivial case), which combined with Lemma 3.3 allows
us to compute the moments by differentiating Ex

[
eλτ∞

]
in λ (λ ≤ 0) for

n ∈ N times, i.e.

Ex

[
(τ∞)n

]
= xβnn!

n∏
j=1

(
Γ(1 + jβ)

Γ(jβ+1−β)
− 1

Γ(1−β)

)−1
.

Those moments in turn allow us to prove the second claim also for λ > 0,
since we have

Ex

[
eλτ∞

]
=

∞∑
j=0

λj

j!
Ex

[
(τ∞)j

]
, λ, x > 0,

where the series in the right-hand side converges to (1.7) by Lemma 3.3. �

Corollary 4.1. For any λ < 0, the Mittag-Leffler-type series (1.7)
is completely monotone. More generally, for any Bernstein function f the
series (1.7) composed with f1/β is completely monotone.

P r o o f. Denote by μ1 the law of τ∞ for Sc
0 = 1 and by Mλ(x) the

series (1.7) (u0 = 1). Then

Mλ(x) = Mλxβ (1) = E1

[
e(λx

β)τ∞
]
=

∫
[0,∞)

eλx
βyμ1(dy),
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where the second equality is due to Theorem 4.2. The second claim now
follows from [45, Theorem 3.7] because Mλ composed with f1/β equals

x �→
∫
[0,∞)

eλf(x)yμ1(dy),

the composition of x �→ ∫
[0,∞) e

λxyμ1(dy) (which is completely monotone

[45, Theorem 1.4]) with the Bernstein function f . The first claim corre-
sponds to the Bernstein function f(x) = xβ . �

Remark 4.4. The proof of (1.9) in Theorem 4.2 suits well our IVP
theory, but is rather indirect, especially when compared to the standard
proofs of (4.10). However, we cannot adapt those standard proofs from the
Caputo setting to our censored setting (see [16, Remark 4.14] for details).

Remark 4.5.

(i) Let τ1(t), τ∞(t) and B denote E1(t) (i.e. the inverse stable subordi-
nator), τ∞ |Sc

0= t and an independent Brownian motion, respectively.
It is known (e.g. [40]) that the Caputo time-fractional diffusion equa-

tion Dβ
0

[
u− u(0)

]
= Δu/2 is solved by the fractional kinetic process

{Bτ1(t)}t≥0. This process is well-known as sub-diffusion since (4.2) im-

plies E
[|Bτ1(t)|2

]
= E

[
τ1(t)

]
= tβ/Γ(β+1), which is slower than normal

diffusion E
[|Bt|2

]
= t. Our work suggests that the censored counter-

part ∂β
0 u = Δu/2 is solved by a new sub-diffusion process {Bτ∞(t)}t≥0.

Indeed, Theorem 4.1 shows that E
[|Bτ∞(t)|2

]
= ctβ (c > 0), and we

expect the time-fractional evolution equation ∂β
0 u = Gu+ g, u(0) = φ

to have a unique (generalised) solution

u(t, x) = E

[
φ(Xτ∞) +

∫ τ∞

0
g(Sc

s, Xs) ds

∣∣∣∣ (Sc
0, X0)=(t, x)

]
,

where (t, x) ∈ (0, T ]×Rd, φ ∈ Dom(G), g ∈ C
(
[0, T ]×Rd

)
, and

(G,

Dom(G)) is the generator of any Feller process X on Rd independent
of Sc. (We think the last claim can be proved using the techniques
from [17, 25], in the light of Proposition 4.3.) Let us also mention

that to find strong solutions to ∂β
0 u = Δu/2, Theorem 4.2 opens up

the possibility of applying the spectral decomposition method of [12].
(ii) Although both Bτ1 and Bτ∞ spread like tβ , their respective Fourier

modes model entirely different relaxation regimes. Namely, we have

E
[
exp

{
iλ ·Bτ1(t)

}]
= E

[
exp

{−|λ|2τ1(t)/2}] � t−β ,

E
[
exp

{
iλ ·Bτ∞(t)

}]
= E

[
exp

{−|λ|2τ∞(t)/2
}] � t−1−β ,
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for any λ ∈ Rd, by (4.10), Theorem 4.2 and Remark 3.4-(i). Here
f � g means C−1g ≤ f ≤ Cg for some constant C > 1.

(iii) There are several interesting questions revolving around Bτ∞ , a new
example of anomalous diffusion. For instance, it is natural to ask if
there is a continuous-time-random-walk-type framework which scales
to Bτ∞ , as is the case for Bτ1 [1, 40] and several other anomalous
diffusion processes [2, 50] related to Caputo derivatives. Moreover,
it is challenging and interesting to study the difference in path regu-
larity between Bτ∞ and Bτ1 , in particular because the latter can be
“trapped” [40].

(iv) We mention that sub-diffusion and fractional relaxation equations are
widely used to model anomalous (non-Debye) relaxation in dielectrics,
see [30, 49, 32, 50] and references therein. Their role is to pro-
vide a probabilistic theoretic explanation of the empirical (Havriliak–

Negami) formula χ(ω) =
(
1 + (iω)α

)−γ
. (Here ω is the electric field’s

frequency and χ is the electric susceptibility. This formula fits well
a majority of experimental data.) A typical example (Cole–Cole) is
α = β ∈ (0, 1) and γ = 1, which is modelled by the sub-diffusion
Bτ1 [49, page 3]. On the other hand, we expect Bτ∞ to model a new
regime with α = 1 + β ∈ (1, 2) and γ = β/(1 + β) (by [49, Eq. (1)
and (5)]), although in the literature (e.g. [32, 49]) we have not seen
the parameter range α > 1.
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