[

jractional Calculus
& /r\,pplied C nalysis

An Iriternational Journal for Theory and Applications

VOLUME 24, NUMBER 4 (2021) (Print) ISSN 1311-0454
(Electronic) ISSN 1314-2224

RESEARCH PAPER

FRACTIONAL DIFFUSION-WAVE EQUATIONS:
HIDDEN REGULARITY FOR WEAK SOLUTIONS

Paola Loreti ', Daniela Sforza 2

Abstract

We prove a “hidden” regularity result for weak solutions of time frac-
tional diffusion-wave equations where the Caputo fractional derivative is of
order o € (1,2). To establish such result we analyse the regularity proper-
ties of the weak solutions in suitable interpolation spaces.
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1. Introduction

Let @ ¢ RN, N > 1, be a bounded open set with sufficiently smooth
boundary 9€2. Our target is to show some regularity properties for the
weak solutions of the time fractional diffusion-wave equation

o u(t,x) = Au(t,x), t>0, xe€, (1.1)

where the symbol 0f'u denotes the Caputo fractional derivative of order
€ (1,2), defined by
1 1_ad?u

oput) = L o[-0 ) e

(T is the Euler Gamma function), see e.g. [4, 8, 20, 21, 23|.
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It is well known that (1.1) interpolates the heat equation and the wave
equation, because the weak solutions of (1.1) exhibit some typical pro-
perties of the heat equation and, at the same time, others which are cha-
racteristic of the wave equation (see e.g. [3, 16]). From a mathematical
point of view one can obtain (1.1) from the heat equation or from the
wave equation by replacing the first order time-derivative d; or the second
order time-derivative 07 with the fractional derivative 0. For a general
discussion about the type of regularity required for solutions to fractional
differential equations, see [24].

In this paper we concentrate our study into establishing direct inequa-
lities and hidden regularity for weak solutions of (1.1), that are peculiar
results for the wave equations as shown by the existing literature. In-
deed, hidden regularity results have been proved for wave equations, for
direct PDEs methods see e.g. [10], while, as regards the Hilbert Unique-
ness Method, see e.g. [11, 12].

Hidden regularities do not follow from classical trace theorems. As
well known, by the trace theory in Sobolev spaces one can define for any
function v € H?(2) the normal derivative d,u. On the other hand, in
general, the weak solution u of a Cauchy problem for the wave equation
with Dirichlet boundary conditions does not satisfy such regularity: this is
why the condition

dyu € L (R; L*(00))

is known as a “hidden” regularity property of the weak solution.

In control theory the hidden regularity follows by the direct inequality,
that is a fundamental step to get exact controllability for distributed system
by means of the Hilbert Uniqueness Method of J.-L. Lions. Indeed, one has
to prove that for all 7" > 0 there exists a positive constant C' = C(T) such
that

T
2
//|ayu| dadtgc(uvuouig(m+Hu1H%2(n)>-
0 oN

For further results concerning the hidden regularity for wave equations and
wave equations with memory the interested reader can see e.g. [1, 13, 14, 18]
and references therein.

As regards the time-fractional diffusion-wave equation (1.1), first the
analysis requires a detailed study of the existence and regularity of weak
solutions in suitable spaces. To this end, we borrow from [22] the existing
theory, that we have to integrate in order to state and prove the result
about the hidden regularity for weak solutions of (1.1).
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In detail we establish the following regularity results for a time-fractio-
nal diffusion-wave Cauchy problem with Dirichlet boundary conditions. Re-
call that A denotes the operator in L?(£2) defined by

D(A) = H*(Q) N Hy(Q)
(Au)(z) = —Au(x), uwe D(A), z €.

The fractional powers AY of the operator A are defined for § > 0, see e.g.
[19]. Moreover, D(A™?) := (D(A%))".

THEOREM 1.1. Let a € (1,2) and T > 0. If ug € H}(Q) and uy €
L?(9), then the unique weak solution u of problem

ofu(t,x) = Au(t,x), t>0, z€Q,
u(t,z) =0 t>0, ze€0f, (1.2)
u(0,2) = up(z), w(0,2) =uy(z), x €,

belongs to C([0,T]; H}(Q)) N C'([0,T); D(A™%)), with 6 € (%2, 3],

lim [[Vu(t, ) = Vuol| 120y = lim [|8ru(t, ) — ui] pia-s) = 0,
and for some constant C > 0
IVullego,ryz2@) + 105wl e o pia-oy < C(IIVuoll L2y + lurllz2 (o))

In addition, for any 6, € (O, 210[), 0, € (0‘2;1, %) and some C' > 0 we have

IVull 20,75 p(a01)) + 1108 Ul 20,7, p(a-02))
< C([IVuoll 2 + lluall2)). (1.3)

It is noteworthy to observe that the assumption 1 < a < 2 on the order
« of the fractional derivative is essential in Theorem 1.1. Indeed, in the
estimate (1.3) the available intervals (O, 2104) and (a2;1, %) of the exponents
01 and 02 make sense just thanks to the condition « € (1,2).

Moreover, if we assume Vug € D(A?) with 6 € (22;0‘, %), then

lim [|Opu(t, -) — u1l|z20) =0,
t—0
0cullco,m;z2)) < CUIVuollpeasy + llutll2(q))-

We observe that to assure a regularity of d;u in L?(£2), we have to assume
the datum wug belonging to a proper subset of HZ(Q) = D(Aé), that is
Vug € D(A?%) with 6 € (%,%, ).

The properties of the weak solutions proved in Theorem 1.1 are funda-
mental to obtain the following hidden regularity result. Precisely, in the

proof of Theorem 1.2 the crucial point will be to have, at the same time,
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Vu € L?(0,T; D(A?)) and 08u € L2(0,T; D(A™?)), for 6 € (0,1). Indeed,
thanks to (1.3) it will be possible to choose such exponent 6, since the in-
tersection of the available intervals (0, 2104) and ( O‘;al, %) is non empty for
a € (1,2).

THEOREM 1.2. Let ug € H}(Q), uy € L3(Q) and T > 0. If u is the
weak solution of (1.2), then we define the normal derivative 0,u of u such
that we have

T
2
|| 1oaldodt < c(IVula + ulee). @1
0 oN

for some constant C' = C(T) independent of the initial data uy and u;.

The paper consists of four sections. In Section 2 we list some notations,
definitions and known results that we use to prove Theorems 1.1 and 1.2.
Section 3 is devoted to show the regularity of the weak solution for initial
data ug € H}(Q) and u; € L%*(Q), that is the proof of Theorem 1.1 is
given. In Section 4 first we state and prove some technical results. Finally,
we demonstrate Theorem 1.2, that establish the hidden regularity for weak
solutions.

2. Preliminaries

In this section we get together some notations, definitions and known
results that we need to introduce and prove Theorems 1.1 and 1.2.

Let Q ¢ RN, N > 1, be a bounded open set with C? boundary 9f2. As
usual, we consider L?(£2) endowed with the inner product and norm defined
by

(1.0) = [ ate)oto) de, ullo) = ([ u)? dw)m, uv e I2(9).

DEFINITION 2.1. For any f € L'(0,7), T > 0, we denote the Riemann—
Liouville fractional integral operator I? of order 8, 8 > 0, by

1

PO = s, /0 (=Pl (F) dr, aete(0,T).  (21)

We define the operator 4 in L?(f2) by

D(A) = H*(Q) N H}(Q)
(Au)(z) = —Au(x), uwe D(A), z €.
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The fractional powers A’ are defined for > 0, see e.g. [19] and [15,
Example 4.34]. We recall that the spectrum of A consists of a sequence of
positive eigenvalues tending to +oo and there exists an orthonormal basis
of L%(Q) consisting of eigenvectors of A. Moreover, we assume that the
eigenvalues are distinct numbers. We denote such a basis by {e, }nen and
by A, the eigenvalue with eigenvector e,, that is Ae, = A,e,. Then, for
6 > 0 the domain D(A%) of A? consists of those functions u € L?(Q) such
that

oo
Z 220 (u, en)|? < 400
n=1

and -
Al = Z Mou,en)en, ue D(A?Y).
n=1

Moreover, D(A%) is a Hilbert space with the norm given by

00 1/2
[ull pasy = 1A%ull L2() = (Z A |, en>|2> , uweDA). (22
n=1

We have D(A%) C H?(Q). In particular, D(A2) = H}(Q).
If we identify the dual (L?(Q2))" with L?(Q) itself, then we have

D(A% c L2(Q) c (D(A?))’. From now on we set

D(A™%) = (D(4%)), (2.3)
whose elements are bounded linear functionals on D(A%). If ¢ € D(A™?)
and u € D(A?) the value ¢(u) is denoted by

(0, u) -0, == p(u). (2:4)

In addition, D(A~%) is a Hilbert space with the norm given by

oo 1/2
lellpa—oy = (Z A% (e, 6n>—0,6|2> , peDA?). (2.5)
n=1
We also recall that
<90’u>—9,0 = <§0au> for ¢ € L2(Q) U € D(AG)’ (26)

see e.g. [2, Chapitre V].
For arbitrary a, 8 > 0, we denote the Mittag—LefHler function by

oo Zk

Eo,p5(2) == k;) Mokt ) € C. (2.7)

The power series F, g(z) defines an entire function of z € C. The Mittag-
Leffler function E, ;(z) is usually denoted by E,(2).

The proof of the following result can be found in [20, p. 35|, see also
[22, Lemma 3.1].
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LeEMMA 2.1. Let o € (1,2) and 8 > 0. Then for any p € R such that
ma/2 < p < 7 there exists a constant C = C(«, 8, ) > 0 such that

E, < , < < 2.
s <[y F€C aslaml<T @9

We also exhibit an elementary result that will be useful in the estimates.

B

LEMMA 2.2.  For any 0 < 8 < 1 the function x — % gains its
maximum on [0, 4o00| at point 165 and the maximum value is given by
:/86(1 _6)1_67 /8 € (071) (29)

max
x>0 1+ x

Now we recall the definition of fractional vector-valued Sobolev spaces.
For g € (0,1), T > 0 and a Hilbert space H, endowed with the norm || - |z,
HP(0,T; H) is the space of all u € LQ(O,T; H) such that

Tuu M\
[ul s 0,101y = |t77|1+2ﬁ dtdr | < +oo,  (2.10)

ie. [u]gs o,y is the so-called Gagliardo semi-norm of u. HP(0,T; H) is
endowed with the norm

Nl g8 0,0y = lwllL2 0,10y + (W H8 0,7:8)5 we HP(0,T; H). (2.11)

The following extension of a known result (see [6, Theorem 2.1]) to the case
of vector valued functions will be relevant in the proof of Theorem 1.2. We
will use the symbol ~ between norms to indicate two equivalent norms.

THEOREM 2.1. Let H be a separable Hilbert space.
(i) The Riemann-Liouville operator I? : L*(0,T; H) — L*(0,T; H),
0 < B < 1, is injective and the range R(I”) of I? is given by

HP(0,T; H), 0<pB<3
R(I®) = {v € H2(0,T; H) : [+~ Yu(t)|dt < oo}, B=1,
oHP(0,T; H), y<B<I,

where o H?(0,T) = {u € H?(0,T) : u(0) = 0}.
(ii) For the Riemann—-Liouville operator I B and its inverse operator I—°
the norm equivalences

HIB(U)HH»B(O,T;H) ~ lull 20,78 we L*(0,T; H),

TP 2o ~ IWlasormm, v eRUIP),
hold true.

(2.12)
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The Caputo fractional derivative of order a € (1,2) is defined by

a2 f

¢ 2
o f(t) = ! )/O(t—T)l_O‘d f(T) dT:IQ_O‘(dt2

r2-a dr? >(t) » (213)

involving the Riemann-Liouville fractional integral I2~<, see (2.1).
For the sake of completeness, we recall the notion of weak solutions for
fractional diffusion-wave equations, see [22, Definition 2.1].

DEFINITION 2.2. Let o € (1,2) and T > 0. We define u as a weak
solution to the problem
O u(t, ) = Au(t, ) te (0,T7), z€Q,
u(t,z) =0 te (0,T), z €09, (2.14)
u(0,z) = up(z), w(0,2) =ui(z), z€qQ,
if Ofu(t,-) = Aul(t,-) holds in L*(Q), u(t,-) € HE(Q) for almost all ¢t €

(0,T) and for some 6 > 0, depending on the initial data wug,u;, one has
u, Opu € C([0,T]; D(A~?)) and

lim {|u(t, -) = uol|p(a-ey = lim [|Gpult, -) — url|pra-0y = 0.

We also need to recall some existence results given in [22, Theorem
2.3], that we have integrated with other essential regularity properties of
the solution, see (2.15) below.

THEOREM 2.2. (i) Let ug € L*(Q) and u; € D(A_clv). Then there exi-
sts a unique weak solution u € C([0,T]; L*(Q)) N C((0,T); H*(Q) N H(Q))
to (2.14) with 0%u € C((0,T); L*(2)) and satisfying

lim lu(t, ) —uollr2@) =0,
lulle oz < C(HUOHL2(Q) + HuluD(Afé)) )

. 1
tim [opu(t. ) —wllpa =0, 0 (L),

(2.15)
10cullc o1, pa-0y) < C(lluoll L2y + ||U1\|D(A_g¥)) ;

for some constant C' > 0.
Moreover, if u; € L*(Q) we have

u(t,x) = Z [(uo, en)Ea(—Ant®) + (u1, €n)tEaa(—Mnt®)]en(z), (2.16)

n=1
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Oru(t, z)
_Z UQ,Gn tailEa,a(*)\nta) + <U1,€n>Ea(*)\nta)] Gn(SC), (2.17)
80‘ (t,7)
(2.18)

- Z An [(10, €0) Ea(=Ant®) + (u1, en)t Eq 2 (—Ant®)]en()

10t |2 ) < C(E ol 2 + lullz@) (€ >0).

(i) If up € H%(Q) N H(Q) and uy € H(Q), then the unique weak so-
lution u to (2.14) given by (2.16) belongs to C([0,T]; H?(2) N H} (L)) N
CH([0,T]; L3(%)) and O € C([0, T); LA(2)).

P r o o f. We refer to [22, Theorem 2.3| for the proof of all statements,
1

except for the proof of (2.15). We first observe that, since u; € D(A™ «),
thanks to the duality (2.4) the expression (2.17) for 0,u has to be written
in the form

Ou(t, x)

— i [ = A (g, € )t Ega(=Ant®) + (u1, €n>_;,;Ea(—)\ntQ)]en(x) _
For 6 € (0,1) to choose suitably later, taking into account (2.5) we have

|9uu(t, ) = wrlB oy

_Z,\29|— (o, €n)t* ™ Baya(~Aat®) + (u, ) 1 1 (Ba(~Ant®)—1)|”

< 9¢2(e=1) Z)\“ 0 (o, en) Bao(—Ant®)|?

n=1

o 2
(Ba(=Ant®) —1)|7. (2.19)
To estimate the first sum we use (2.8) and (2.9) to get

t2(a_1))‘31(1_6) (w0, €n) Eq,a(—Ant®) ’2

)\nta 1—9 2 _
<000 (W) g e0) 2 < 0P g, e
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while, regarding the second sum, we have

A2 (un, en) (Ba(~Ant®) = 1)[?

_ )\;2(97;)

11
An | (uq, en>_i7; | ‘Ea(—)\nta) — 1| .
Therefore, plugging the above two estimates into (2.19) we obtain

|Beu(t, ) = wrllBa-0y < OV ug |7
O g1y _2
+23 N ) Pl Ba (At — 1)
n_l [e e
whence it follows that for > ! (2.15) holds true. O

3. Regularity in the case ug € H}(Q) and u; € L?(2)

We establish a result about the regularity of the weak solutions assum-
ing on the data ug and uy a degree of regularity intermediate between those
assumed in (i) and (ii) of Theorem 2.2.

For further results about existence and regularity of solutions, see [7,
17].

THEOREM 3.1. Ifug € H}(Q) and u; € L*(RY), then the unique weak
solution u to (2.14) given by (2.16)—(2.18) belongs to C([0,T]; H}(Q)) N
CH[0,T); D(A7?)), 6 € (%%, 5], and

lim [[Vu(t, -) = Vuol| 12y = 0

lim 9pu(t, ) — il pga-n) =0,

(3.1)
IVulloo,ry; 2 + 19l eom;pa—ey
< C(IVuol| 2 () + llutllL2(e)),
for some constant C' > 0. In addition, for any 6 € (O, 210[) we have
IVull 207,040y < C(IIVuoll 2y + llullz2)), (3.2)
and for any 0 € (O‘ixl, %) we have
108 ull 20,7 p(a-0)) < C([[Vuoll L2y + lluallL2q)) » (3.3)

for some constants C > 0.

If we assume, in addition, that Vuy € D(A?) with 6 € (22_ao‘, %), then

lim Hatu(t, ) — U1HL2 Q) = 0,
0:ulleom;L2@) < CUIVuollpeaey + lluallzz(e))-
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P r o o f. In virtue of the expression (2.16) for the solution v and (2.8)
we have

IVult, ) = Vuol 72

_ Z)\ (10, €n) (Ba(~Ant®) = 1) + (u1, )t Eqo(—Ant®)|”

<2 Z Ao (w0, ) [* | Ba(=Ant®) — 1]

n=1

2 0‘2022] U1, en) (113)75&) . (3.5)

We observe that for any n € N lims_,q ( Ey(—Apt®) — 1) = 0. Moreover,
again by (2.8), we get forn € Nand 0 <t < T:

A (0, €n) || Ea(—Ant®) — 1|
C
(14 A\pt)?

hence by (3.5) we deduce lim; o [[Vu(t,-) — Vugllr2(o) = 0 and for any
t€[0,7]

< 2An\<uo,en>|2( + 1) < O\ (g, en) [,

IVu(t, )12 (@) < CUIVuol 2y + lurllzz(q))-

To complete the proof of (3.1), we fix 6 € (%%, ;] and use formula (2.17)
to note that

[Opu(t, ) — UlH%(A_e)

—ZAQ"M (w0, en)t" ™ Eaa(=Ant®) + {11, n) (Ea(~Aat®) = 1) |°

1-26 \ 2
a— le% 2 )‘nta 2
< g GZ/\nWOa@M <(1+>? o >

n=1

+2 i A2, )| *| Ba(=2nt®) — 17, (3.6)

n=1

thanks also to (2.8). Since 0 < 17 29

< 1 we can apply (2.9) to have
0vu(t, ) = w1l 4-o0)

< Ot Vg |20 + 23 [(ur, en) | Bal-Ant®) — 1]
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Since a — 2 4 2a60 > 0, by analogous argumentations to those done before
we deduce lim;q [|O¢u(t, ) — u1 p(a-ey = 0 and for any ¢ € [0, 7]

10ut, M Ha-ay < CUIVuUolIZ2(q) + lutlFay),

that ends the proof of (3.1).
Now, we fix 6 € (0, ,. ). Thanks to (2.16) we get

- (6% (67 2
HVu(t, ')H%)(AG) = Z)‘}L+29|<u07en>Eoz(_)‘nt ) + <ulven>tEa,2(_)‘nt )‘
n=1
o0 , 220 o0 , ALF2042
< C )\TL =N " C =N " .
- nzl (o, en) ™ g 4 xoeee F nZle )l (1 4 A2
Since
A ( (Ant®)’ )Qt_gae
(14 Mpt®)2 N1+ A\t ’
o 1420
)\%L+29t2 _ (()\nt ) 2 >2t2_o‘(1+29)
(1 + A\pt@)? 14 A\t ’

and 0 < 6 < ;, we can apply (2.9) to have
IVult, Masy < CE 2 VuolF2q) + O~ lun |72

Taking into account that 6 € (0, . ) we have Vu € L*(0,T; D(A?)) and
(3.2) follows.

To prove (3.3) we have to fix 6 € (%.!, ). Thanks to (2.18), (2.5) and
(2.8) we obtain

108 u(t, )| a-o)
20 a oy |2
—Z)\ A (10, €n) Ba(—=Ant®) + An(u1, en)t Ea a(—Ant®)]

) )\1—29 ) )\2(1 0) 42
< . .
_C;)\n\(uo,enﬂ (1 A2 +cZyu1,eny (1 A 1)? (3.7)

Observing that

A2 (Ant®) E Zta(2971)

(14 Apt)2 ( 1+ Apte ) ’
A2 _ (()\nfo‘)l_a)QtzHa(el)
(14 Apte)2 14+ A\, t ’
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and being 0 < § < }, from (2.9) and (3.7) we deduce
”8?“(”75)”2D(A—6) < Ccte26-1) ||VUOH%2(Q) + Ct2+2a(9’1)\|u1||%z(g).

Therefore, since § > %! we have 9fu € L?(0,T; D(A~%)) and (3.3) holds.
To prove the last point, we assume Vug € D(A?) with 6 € (%, 1).

200 7 2
Thanks to formula (2.17) we have
|1su(t, ) — wil| 72

=" = Anfuo, en)t T Ega(—Aat®) + (u1, e) (Ea(~2at®) — 1) |
n=1

0o 1-20 \ 2
Aty
<Cta—2+2a9 )\1-}—26’ " 2 ( n
< om0 3 e (00

n=1
- 2 2
+2) " [ur, en)| | Ba(=Ant®) — 1|7, (3.8)
n=1
By using (2.9) with g = 1329 we obtain

1Bru(t, ) — w720

2

)

< Ot 200 g paoy + 23 [(ur, ) |*| Ba(=Aat®) — 1

n=1

and hence, since a — 2 + 206 > 0, we deduce (3.4). ]

REMARK 3.1. If we compare the regularity results concerning Jyu
given in Theorem 3.1 with the analogous ones in Theorem 2.2, then we
have to observe that if § € (%%, 3], then D(A™%) C D(A™) for any
n € ( ;, 1}. Therefore Theorem 3.1 effectively improves the regularity of
the weak solution.

Moreover, we note that to secure a regularity of d;u in L%(Q), taking into
account the argumentations used to get (3.6), we have to assume the datum
up belonging to a proper subset of Hi(Q2) = D(Aé), that is Vug € D(A%)
with 6 € (3,2, ), see (3.4).

4. Hidden regularity results

Our approach follows the argumentations developed in [9] for wave
equations. To begin with, we single out some technical results that we
will use later in the main theorem.
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LEMMA 4.1. For w € H%(Q) and a vector field h : Q — RY of class
C* one has

1
/Awh-dex:/ [6,,wh-Vw— h-uyvuﬂ do
Q [2)9]

—Z/ahawawdx—l— /Zah \Vw|? dz. (4.1)

1,j=1

P r o o f. We integrate by parts to get

/Awh-dex: Gywh-dea—/Vw-V(h-Vw) dr. (4.2)
Q Q

o0
Since

/Vw-V(h-Vw)d:c— /awa (hjojw) dx
Q

i,7=1

_Z/awahawdx+2/h O;w0d;(Ow) d,

5,j=1 1,5=1

we evaluate the last term on the right-hand side again by an integration by
parts, so we obtain

Z/hawaaw Z/haZN: )Z)dx

i,7=1
1 1
= h-qu2da—/ :h; |Vwl|? dx .
[ neivu 2 Jy 200 19

Therefore, if we merge the two previous identities with (4.2), then we have
(4.1). O

In the next lemma we need a strong regularity for the weak solution
that is guaranteed by Theorem 2.2—(ii). Moreover, we recall the following
notations: I? is the Riemann-Liouville operator of order 8 > 0, see (2.1),
and for 6 € (0,1) (-,-)_p,¢ is the duality brought in (2.4).

LEMMA 4.2. Assume o € (1,2) and the weak solution u of
Ofu(t,x) = Au(t,z) in (0,00) x Q (4.3)
belonging to C([0, +o00); H2(Q) N HE(Q)) N CL([0, +00); L2(Q)) with dfu €
C(]0,4+00); L2(Q)). Then, for a vector field h : Q — RN of class C' and
B,6 € (0,1) the following identities hold true:
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/ [P @,u)t) b 1°(Vu) (1) - 1h P (Vu)(0)?] do
oN

— (IP(Fu)(t), b - TP (Vu) (1)) .0 + Z/ah 12 (D) (1) TP (Dju) (1) dac

i,7=1

N
1
3 [ PERER a0 @y
j:

/a . (I°(,u)(t) — I°(Dyu)(1)) - (IP(Vu)(t) — I°(Vu)(r))do
— 1 -V B u B u g
Q/BQh |17 (V) (t) — I°(Vu)(r)|*d

= ([P (3fu)(t) — I°(0Fu)(r), b - (I°(Vu)(t) — I°(Vu)(7)))-g.0

+ Z/é?h )(t) — I°(05u) (T ))(Iﬁ(aju)(t)—Iﬁ(aju)(f)) dx

i,7=1

1 N
- z/ O,y |1 (Vu)(t) = (V) () de, 6,7 >0. (45)

P r o o f. First, we apply the operator I?, 8 € (0,1), to equation (4.3):
I°(00u)(t) = IP(Au)(t)  t>0. (4.6)

Fix § € (0,1), by means of the duality (-, -)_g ¢ brought in (2.4) we multiply
the terms of the previous equation by

h-VIP(u)(t),
that is,
(PO u) (), h - VIP(u)(£) g0 = (AT (u)(t), h - VIP(u)())g,0-

Thanks to the regularity of data and (2.6) the term on the right-hand side
of the previuos equation can be written as a scalar product in L2(Q2), so we
have

(IP(0%u)(t), h - VIP (u 99_/A15 th-VIP(u)(t) de.  (4.7)

To evaluate the term

ATP(w)(t)h - VIP(u)(t) dz
Q
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we apply Lemma 4.1 to the function w(t,z) = I°(u)(t), so from (4.1) we
deduce

/ ATP(u)(t)h - VIP(u)(t) dx
Q

= [ [P@uw b P - b | P[] do
o0

-y /Q8ihjlﬁ(6iu)(t)lﬁ(8ju)(t) dx—i-;/ﬂjglajhj 119 (V) (t)]? da.

ij=1
In conclusion, plugging the above formula into (4.7), we obtain (4.4).
The proof of (4.5) is similar to that of (4.4). Indeed, starting from

IP(0fu)(t) = I°(90w) (1) = I°(Lu)(t) — IP(Du)(T), &7 >0,
by means of the duality (-,-)_g ¢ one multiplies both terms by
h-V(IP(u)(t) — I°(u)(7)) -

Then, applying Lemma 4.1 to the function w(t, 7,z) = I?(u)(t) — I°(u)(7)
one can get the identity (4.5). We omit the details. O

REMARK 4.1.  We observe that the proof of the identities (4.4) and
(4.5) cannot be done for a general function w and then applied to w = I°(u),
since

0717 () # 17(07w),

as one easily deduces from (2.13).

THEOREM 4.1. Let ug € H2(Q) N HY(Q), uy € H(Q) and u the weak
solution of

ofu(t,x) = Au(t,x), t>0, z€Q,
u(t,z) =0 t>0, z €0, (4.8)
u(0,z) = up(z), ut(0,2) =ui(x), x € Q.

Then, for any T' > 0 there exists a constant C' = C(T') such that u satisfies
the inequality

T
2
[ [ oaliod < 9wl +lnlte) . @9)

P r o o f. First, we note that by Theorem 2.2—(ii) the unique weak so-
lution u to (2.14) given by (2.16) belongs to C([0,77]; H2(2) N H () N



1030 P. Loreti, D. Sforza

C([0,T]; L?(2)) and 08u € C([0,T); L*(R)), so the normal derivative 9,u
is well defined.

To prove the statement we use Theorem 2.1. Indeed, for H = L?(99)
and € (0,1) we can apply (2.12) to get

10uull 2022 (00)) ~ 117 (Ovw)l| s (0.7 12(00)) »

whence the inequality (4.9) is equivalent to

118 @)l s o.7:22(00)) < C(IIVuollz2() + luall2)) - (4.10)
Therefore, our goal is to prove (4.10). Thanks to (2.11), we have to evaluate
HIB (Oyu)| L2(0.TL2(69) and [1°(9,u)] HE(OT,L2(09)" To this end we employ
the two identities in Lemma 4.2 with a suitable choice of the vector field h.
Indeed, we take a vector field h € C1(Q;RY) satisfying the condition

h=v on 0N (4.11)

(see e.g. [9] for the existence of such vector field h). First we consider the
identity (4.4). Since

Vu= (0,u)yr on (0,T)x 00, (4.12)

(see e.g. [18, Lemma 2.1] for a detailed proof) the left-hand side of (4.4)
becomes

! / 1% (@,u)|do
2 Joa

If we integrate (4.4) over [0,T7], then we obtain
T ) T
/ / |1°(0,u)|” dodt =2 / (IP(82u)(t), h - IP(Vu)(t)) g dt
0o Joo 0

b I () (18 (8 (£ da
42 Z/O /Q@Zhjl (D) ()P (Dyu) (1) dardt

i,j=1

T N
_/ /Zaf’%‘ |19 (Vu)(8)]? dwdt .
o Joim

Since h € C*(Q;RY) from the above inequality we get

HIﬁ (Oyu) HL?(O,T;L?(@Q))

< C(Hlﬁ(a?u)HLQ(O,T;D(A—@)) + HIB(VU)HLQ(O,T;D(A@))> ’
for some constant C' > 0.
We have to estimate the Gagliardo semi-norm [Iﬁ(ayu)]Hﬂ(O T.12(00)

see (2.10). Thanks again to the condition (4.12) the left-hand side of (4.5)
becomes

(4.13)
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1 p u *ﬁ U'T2O'
y [ 1P @) = @) o

Therefore, if we multiply both terms of (4.5) by | th‘ll 125 and integrate over
[0,T] x [0, 7], then we have

[15(8 u)]HB(OTLQ(aﬂ))
/ [ R b (R0 T,
|t — 7|1+26
Ty ey (Dshy (19 (05w) (8) = 1P (Dyu) (7)), 1P (0u) (£) = T (Du) (7))
+// I |t7|1+2ﬁ) dtdr
—10h; I%(Vu IB(Vu)(r)|*dx
LRSI 00 IO

We estimate the first term on the right-hand side of the above identity as
follows

// (L2 u)(t) = I°(0fu)(r), b (1P (Vu)(t) = IP(Vu)(7))) o

it —7']1+25 dtdr

sc(w(aa W] s rspea—y - V0] s 0 rippasy )

and hence from (4.14) we deduce

[Iﬁ (6,,u)} HB(0,T;L2(09))

< C(IP@F 0] oo oy + [T o) - (19)
Putting together (4.13) and (4.15) we obtain

HIﬁ (Ovu) HHﬂ(o T;L2(09))

< C(‘uﬁ 9;'w) HH/’(OTD(A oy HI “)HHﬂ(OT-D(Ae))>' (4.16)

Since 1 < a < 2, we can choose 0 € ( 2a , 2a) to apply Theorem 1.1. So
we get Of'u € LQ(O,T7D(A %)) and Vu € L*(0,T; D(A%)). Thanks again
to Theorem 2.1 we have

Hjﬁ(a?u)HHB((),T;D(A%))) ~ HatauHLQ(O,T;D(A*G)) )
HIB(V“)HHﬂ(o,T;D(Ae)) ~ [IVull201:0(49)) »

and hence from (1.3) and (4.16) we deduce (4.10). The proof is complete.
g
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THEOREM 4.2. Let ug € H}(Q) and uy € L*(Q). If u is the weak
solution of
ofu(t,z) = Au(t,z), t>0, z€Q,
u(t,z) =0 t>0, z €09, (4.17)
w(0,2) = up(z), wu(0,2) =uq(x), x € Q,
then we define the normal derivative O,u of u such that for any T' > 0 we
have

T
2
| [ 10l dod < (19wl + e (4.18)
0 o0

for some constant C' = C(T') independent of the initial data.

Proof. For ug € H3(Q) N H} () and u; € H}(R), if we denote by
u the weak solution of problem (4.17), then, thanks to Theorem 4.1, the
inequality (4.18) holds for any 7" > 0. By density there exists a unique
continuous linear map

L: Hy(Q) x L*(Q) = Li,.((0,00); L*(92))
such that

L(up,u1) = Oyu V(ug,u1) € (H*(Q) N H(Q)) x HH(Q)

and

T
2
| 1t ) Paode < (Ve + lulf)
0 0N

for any (ug,u1) € HE(Q) x L2().

Finally, given ug € H{(Q) and uy; € L?() for the weak solution u of
(4.17) we use the notation d,u instead of L(ug,u1), and in addition (4.18)
holds. O

REMARK 4.2. Theorem 4.2 does not follow from the classical trace
theorems of the Sobolev spaces. For this reason it can be called a hidden
regularity result. The corresponding inequality (4.18) is often called a direct
inequality.
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