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Abstract

We prove a “hidden” regularity result for weak solutions of time frac-
tional diffusion-wave equations where the Caputo fractional derivative is of
order α ∈ (1, 2). To establish such result we analyse the regularity proper-
ties of the weak solutions in suitable interpolation spaces.
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1. Introduction

Let Ω ⊂ RN , N ≥ 1, be a bounded open set with sufficiently smooth
boundary ∂Ω. Our target is to show some regularity properties for the
weak solutions of the time fractional diffusion-wave equation

∂α
t u(t, x) = �u(t, x), t ≥ 0, x ∈ Ω, (1.1)

where the symbol ∂α
t u denotes the Caputo fractional derivative of order

α ∈ (1, 2), defined by

∂α
t u(t) =

1

Γ(2− α)

∫ t

0
(t− τ)1−α

d2u

dτ2
(τ) dτ ,

(Γ is the Euler Gamma function), see e.g. [4, 8, 20, 21, 23].

c© 2021 Diogenes Co., Sofia
pp. 1015–1034 , DOI: 10.1515/fca-2021-0044



1016 P. Loreti, D. Sforza

It is well known that (1.1) interpolates the heat equation and the wave
equation, because the weak solutions of (1.1) exhibit some typical pro-
perties of the heat equation and, at the same time, others which are cha-
racteristic of the wave equation (see e.g. [3, 16]). From a mathematical
point of view one can obtain (1.1) from the heat equation or from the
wave equation by replacing the first order time-derivative ∂t or the second
order time-derivative ∂2

t with the fractional derivative ∂α
t . For a general

discussion about the type of regularity required for solutions to fractional
differential equations, see [24].

In this paper we concentrate our study into establishing direct inequa-
lities and hidden regularity for weak solutions of (1.1), that are peculiar
results for the wave equations as shown by the existing literature. In-
deed, hidden regularity results have been proved for wave equations, for
direct PDEs methods see e.g. [10], while, as regards the Hilbert Unique-
ness Method, see e.g. [11, 12].

Hidden regularities do not follow from classical trace theorems. As
well known, by the trace theory in Sobolev spaces one can define for any
function u ∈ H2(Ω) the normal derivative ∂νu. On the other hand, in
general, the weak solution u of a Cauchy problem for the wave equation
with Dirichlet boundary conditions does not satisfy such regularity: this is
why the condition

∂νu ∈ L2
loc(R;L

2(∂Ω))

is known as a “hidden” regularity property of the weak solution.
In control theory the hidden regularity follows by the direct inequality,

that is a fundamental step to get exact controllability for distributed system
by means of the Hilbert Uniqueness Method of J.-L. Lions. Indeed, one has
to prove that for all T > 0 there exists a positive constant C = C(T ) such
that ∫ T

0

∫
∂Ω

∣∣∂νu∣∣2dσdt ≤ C
(
‖∇u0‖2L2(Ω) + ‖u1‖2L2(Ω)

)
.

For further results concerning the hidden regularity for wave equations and
wave equations with memory the interested reader can see e.g. [1, 13, 14, 18]
and references therein.

As regards the time-fractional diffusion-wave equation (1.1), first the
analysis requires a detailed study of the existence and regularity of weak
solutions in suitable spaces. To this end, we borrow from [22] the existing
theory, that we have to integrate in order to state and prove the result
about the hidden regularity for weak solutions of (1.1).
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In detail we establish the following regularity results for a time-fractio-
nal diffusion-wave Cauchy problem with Dirichlet boundary conditions. Re-
call that A denotes the operator in L2(Ω) defined by

D(A) = H2(Ω) ∩H1
0 (Ω)

(Au)(x) = −�u(x), u ∈ D(A), x ∈ Ω.

The fractional powers Aθ of the operator A are defined for θ > 0, see e.g.
[19]. Moreover, D(A−θ) := (D(Aθ))′.

Theorem 1.1. Let α ∈ (1, 2) and T > 0. If u0 ∈ H1
0 (Ω) and u1 ∈

L2(Ω), then the unique weak solution u of problem⎧⎪⎨⎪⎩
∂α
t u(t, x) = �u(t, x) , t ≥ 0, x ∈ Ω,

u(t, x) = 0 t ≥ 0, x ∈ ∂Ω,

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ Ω,

(1.2)

belongs to C([0, T ];H1
0 (Ω)) ∩ C1([0, T ];D(A−θ)), with θ ∈ (2−α2α , 1

2

]
,

lim
t→0

‖∇u(t, ·) −∇u0‖L2(Ω) = lim
t→0

‖∂tu(t, ·)− u1‖D(A−θ) = 0 ,

and for some constant C > 0

‖∇u‖C([0,T ];L2(Ω)) + ‖∂tu‖C([0,T ];D(A−θ)) ≤ C
(‖∇u0‖L2(Ω) + ‖u1‖L2(Ω)

)
.

In addition, for any θ1 ∈
(
0, 1

2α

)
, θ2 ∈

(
α−1
2α , 1

2

)
and some C > 0 we have

‖∇u‖L2(0,T ;D(Aθ1 )) + ‖∂α
t u‖L2(0,T ;D(A−θ2 ))

≤ C
(‖∇u0‖L2(Ω) + ‖u1‖L2(Ω)

)
. (1.3)

It is noteworthy to observe that the assumption 1 < α < 2 on the order
α of the fractional derivative is essential in Theorem 1.1. Indeed, in the
estimate (1.3) the available intervals

(
0, 1

2α

)
and

(
α−1
2α , 1

2

)
of the exponents

θ1 and θ2 make sense just thanks to the condition α ∈ (1, 2).
Moreover, if we assume ∇u0 ∈ D(Aθ) with θ ∈ (2−α2α , 1

2

)
, then

lim
t→0

‖∂tu(t, ·) − u1‖L2(Ω) = 0 ,

‖∂tu‖C([0,T ];L2(Ω)) ≤ C(‖∇u0‖D(Aθ) + ‖u1‖L2(Ω)).

We observe that to assure a regularity of ∂tu in L2(Ω), we have to assume

the datum u0 belonging to a proper subset of H1
0 (Ω) = D(A

1
2 ), that is

∇u0 ∈ D(Aθ) with θ ∈ (2−α2α , 1
2

)
.

The properties of the weak solutions proved in Theorem 1.1 are funda-
mental to obtain the following hidden regularity result. Precisely, in the
proof of Theorem 1.2 the crucial point will be to have, at the same time,
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∇u ∈ L2(0, T ;D(Aθ)) and ∂α
t u ∈ L2(0, T ;D(A−θ)), for θ ∈ (0, 1). Indeed,

thanks to (1.3) it will be possible to choose such exponent θ, since the in-
tersection of the available intervals

(
0, 1

2α

)
and

(
α−1
2α , 1

2

)
is non empty for

α ∈ (1, 2).

Theorem 1.2. Let u0 ∈ H1
0 (Ω), u1 ∈ L2(Ω) and T > 0. If u is the

weak solution of (1.2), then we define the normal derivative ∂νu of u such
that we have∫ T

0

∫
∂Ω

∣∣∂νu∣∣2dσdt ≤ C
(
‖∇u0‖2L2(Ω) + ‖u1‖2L2(Ω)

)
, (1.4)

for some constant C = C(T ) independent of the initial data u0 and u1.

The paper consists of four sections. In Section 2 we list some notations,
definitions and known results that we use to prove Theorems 1.1 and 1.2.
Section 3 is devoted to show the regularity of the weak solution for initial
data u0 ∈ H1

0 (Ω) and u1 ∈ L2(Ω), that is the proof of Theorem 1.1 is
given. In Section 4 first we state and prove some technical results. Finally,
we demonstrate Theorem 1.2, that establish the hidden regularity for weak
solutions.

2. Preliminaries

In this section we get together some notations, definitions and known
results that we need to introduce and prove Theorems 1.1 and 1.2.

Let Ω ⊂ RN , N ≥ 1, be a bounded open set with C2 boundary ∂Ω. As
usual, we consider L2(Ω) endowed with the inner product and norm defined
by

〈u, v〉 =
∫
Ω

u(x)v(x) dx, ‖u‖L2(Ω) =

(∫
Ω
|u(x)|2 dx

)1/2

, u, v ∈ L2(Ω).

Definition 2.1. For any f ∈ L1(0, T ), T > 0, we denote the Riemann–
Liouville fractional integral operator Iβ of order β, β > 0, by

Iβ(f)(t) =
1

Γ(β)

∫ t

0
(t− τ)β−1f(τ) dτ, a.e. t ∈ (0, T ). (2.1)

We define the operator A in L2(Ω) by

D(A) = H2(Ω) ∩H1
0 (Ω)

(Au)(x) = −�u(x), u ∈ D(A), x ∈ Ω.
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The fractional powers Aθ are defined for θ > 0, see e.g. [19] and [15,
Example 4.34]. We recall that the spectrum of A consists of a sequence of
positive eigenvalues tending to +∞ and there exists an orthonormal basis
of L2(Ω) consisting of eigenvectors of A. Moreover, we assume that the
eigenvalues are distinct numbers. We denote such a basis by {en}n∈N and
by λn the eigenvalue with eigenvector en, that is Aen = λnen. Then, for
θ > 0 the domain D(Aθ) of Aθ consists of those functions u ∈ L2(Ω) such
that ∞∑

n=1

λ2θ
n |〈u, en〉|2 < +∞

and

Aθu =
∞∑
n=1

λθ
n〈u, en〉en, u ∈ D(Aθ).

Moreover, D(Aθ) is a Hilbert space with the norm given by

‖u‖D(Aθ) = ‖Aθu‖L2(Ω) =

( ∞∑
n=1

λ2θ
n |〈u, en〉|2

)1/2

, u ∈ D(Aθ). (2.2)

We have D(Aθ) ⊂ H2θ(Ω). In particular, D(A
1
2 ) = H1

0 (Ω).
If we identify the dual (L2(Ω))′ with L2(Ω) itself, then we have

D(Aθ) ⊂ L2(Ω) ⊂ (D(Aθ))′. From now on we set

D(A−θ) := (D(Aθ))′, (2.3)

whose elements are bounded linear functionals on D(Aθ). If ϕ ∈ D(A−θ)
and u ∈ D(Aθ) the value ϕ(u) is denoted by

〈ϕ, u〉−θ,θ := ϕ(u) . (2.4)

In addition, D(A−θ) is a Hilbert space with the norm given by

‖ϕ‖D(A−θ) =

( ∞∑
n=1

λ−2θn |〈ϕ, en〉−θ,θ|2
)1/2

, ϕ ∈ D(A−θ) . (2.5)

We also recall that

〈ϕ, u〉−θ,θ = 〈ϕ, u〉 for ϕ ∈ L2(Ω) , u ∈ D(Aθ), (2.6)

see e.g. [2, Chapitre V].
For arbitrary α, β > 0, we denote the Mittag–Leffler function by

Eα,β(z) :=
∞∑
k=0

zk

Γ(αk + β)
, z ∈ C. (2.7)

The power series Eα,β(z) defines an entire function of z ∈ C. The Mittag–
Leffler function Eα,1(z) is usually denoted by Eα(z).

The proof of the following result can be found in [20, p. 35], see also
[22, Lemma 3.1].
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Lemma 2.1. Let α ∈ (1, 2) and β > 0. Then for any μ ∈ R such that
πα/2 < μ < π there exists a constant C = C(α, β, μ) > 0 such that∣∣Eα,β(z)

∣∣ ≤ C

1 + |z| , z ∈ C, μ ≤ | arg(z)| ≤ π. (2.8)

We also exhibit an elementary result that will be useful in the estimates.

Lemma 2.2. For any 0 < β < 1 the function x → xβ

1+x gains its

maximum on [0,+∞[ at point β
1−β and the maximum value is given by

max
x≥0

xβ

1 + x
= ββ(1− β)1−β , β ∈ (0, 1) . (2.9)

Now we recall the definition of fractional vector-valued Sobolev spaces.
For β ∈ (0, 1), T > 0 and a Hilbert space H, endowed with the norm ‖ ·‖H ,
Hβ(0, T ;H) is the space of all u ∈ L2(0, T ;H) such that

[u]Hβ(0,T ;H) :=

(∫ T

0

∫ T

0

‖u(t) − u(τ)‖2H
|t− τ |1+2β

dtdτ

)1/2

< +∞ , (2.10)

i.e. [u]Hβ(0,T ;H) is the so-called Gagliardo semi-norm of u. Hβ(0, T ;H) is
endowed with the norm

‖u‖Hβ(0,T ;H) := ‖u‖L2(0,T ;H) + [u]Hβ(0,T ;H), u ∈ Hβ(0, T ;H). (2.11)

The following extension of a known result (see [6, Theorem 2.1]) to the case
of vector valued functions will be relevant in the proof of Theorem 1.2. We
will use the symbol ∼ between norms to indicate two equivalent norms.

Theorem 2.1. Let H be a separable Hilbert space.

(i) The Riemann–Liouville operator Iβ : L2(0, T ;H) → L2(0, T ;H),
0 < β ≤ 1, is injective and the range R(Iβ) of Iβ is given by

R(Iβ) =

⎧⎪⎨⎪⎩
Hβ(0, T ;H), 0 < β < 1

2 ,{
v ∈ H

1
2 (0, T ;H) :

∫ T
0 t−1|v(t)|2dt <∞

}
, β = 1

2 ,

0H
β(0, T ;H), 1

2 < β ≤ 1,

where 0H
β(0, T ) = {u ∈ Hβ(0, T ) : u(0) = 0}.

(ii) For the Riemann–Liouville operator Iβ and its inverse operator I−β
the norm equivalences

‖Iβ(u)‖Hβ (0,T ;H) ∼ ‖u‖L2(0,T ;H), u ∈ L2(0, T ;H),

‖I−β(v)‖L2(0,T ;H) ∼ ‖v‖Hβ (0,T ;H), v ∈ R(Iβ),
(2.12)

hold true.
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The Caputo fractional derivative of order α ∈ (1, 2) is defined by

∂α
t f(t) =

1

Γ(2− α)

∫ t

0
(t− τ)1−α

d2f

dτ2
(τ) dτ = I2−α

(d2f

dt2

)
(t) , (2.13)

involving the Riemann–Liouville fractional integral I2−α, see (2.1).
For the sake of completeness, we recall the notion of weak solutions for

fractional diffusion-wave equations, see [22, Definition 2.1].

Definition 2.2. Let α ∈ (1, 2) and T > 0. We define u as a weak
solution to the problem⎧⎪⎨⎪⎩

∂α
t u(t, x) = �u(t, x) t ∈ (0, T ), x ∈ Ω,

u(t, x) = 0 t ∈ (0, T ), x ∈ ∂Ω,

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ Ω,

(2.14)

if ∂α
t u(t, ·) = �u(t, ·) holds in L2(Ω), u(t, ·) ∈ H1

0 (Ω) for almost all t ∈
(0, T ) and for some θ > 0, depending on the initial data u0, u1, one has
u, ∂tu ∈ C([0, T ];D(A−θ)) and

lim
t→0

‖u(t, ·) − u0‖D(A−θ) = lim
t→0

‖∂tu(t, ·) − u1‖D(A−θ) = 0 .

We also need to recall some existence results given in [22, Theorem
2.3], that we have integrated with other essential regularity properties of
the solution, see (2.15) below.

Theorem 2.2. (i) Let u0 ∈ L2(Ω) and u1 ∈ D(A−
1
α ). Then there exi-

sts a unique weak solution u ∈ C([0, T ];L2(Ω))∩C((0, T ];H2(Ω)∩H1
0 (Ω))

to (2.14) with ∂α
t u ∈ C((0, T ];L2(Ω)) and satisfying

lim
t→0

‖u(t, ·) − u0‖L2(Ω) = 0 ,

‖u‖C([0,T ];L2(Ω)) ≤ C
(‖u0‖L2(Ω) + ‖u1‖

D(A−
1
α )

)
,

lim
t→0

‖∂tu(t, ·)− u1‖D(A−θ) = 0 , θ ∈
( 1
α

, 1
)
,

‖∂tu‖C([0,T ];D(A−θ)) ≤ C
(‖u0‖L2(Ω) + ‖u1‖

D(A−
1
α )

)
,

(2.15)

for some constant C > 0.
Moreover, if u1 ∈ L2(Ω) we have

u(t, x) =

∞∑
n=1

[〈u0, en〉Eα(−λnt
α) + 〈u1, en〉tEα,2(−λnt

α)
]
en(x), (2.16)



1022 P. Loreti, D. Sforza

∂tu(t, x)

=

∞∑
n=1

[− λn〈u0, en〉tα−1Eα,α(−λnt
α) + 〈u1, en〉Eα(−λnt

α)
]
en(x),

(2.17)

∂α
t u(t, x)

=−
∞∑
n=1

λn

[〈u0, en〉Eα(−λnt
α) + 〈u1, en〉tEα,2(−λnt

α)
]
en(x) ,

(2.18)

‖∂tu(t, ·)‖L2(Ω) ≤ C
(
t−1‖u0‖L2(Ω) + ‖u1‖L2(Ω)

)
(C > 0) .

(ii) If u0 ∈ H2(Ω) ∩ H1
0 (Ω) and u1 ∈ H1

0 (Ω), then the unique weak so-
lution u to (2.14) given by (2.16) belongs to C([0, T ];H2(Ω) ∩ H1

0 (Ω)) ∩
C1([0, T ];L2(Ω)) and ∂α

t u ∈ C([0, T ];L2(Ω)).

P r o o f. We refer to [22, Theorem 2.3] for the proof of all statements,

except for the proof of (2.15). We first observe that, since u1 ∈ D(A−
1
α ),

thanks to the duality (2.4) the expression (2.17) for ∂tu has to be written
in the form

∂tu(t, x)

=

∞∑
n=1

[− λn〈u0, en〉tα−1Eα,α(−λnt
α) + 〈u1, en〉− 1

α
, 1
α
Eα(−λnt

α)
]
en(x) .

For θ ∈ (0, 1) to choose suitably later, taking into account (2.5) we have

‖∂tu(t, ·) − u1‖2D(A−θ)

=

∞∑
n=1

λ−2θn

∣∣−λn〈u0, en〉tα−1Eα,α(−λnt
α)+〈u1, en〉− 1

α
, 1
α

(
Eα(−λnt

α)−1
)∣∣2

≤ 2t2(α−1)
∞∑
n=1

λ2(1−θ)
n |〈u0, en〉Eα,α(−λnt

α)|2

+ 2

∞∑
n=1

λ−2θn

∣∣〈u1, en〉− 1
α
, 1
α

(
Eα(−λnt

α)− 1
)∣∣2 . (2.19)

To estimate the first sum we use (2.8) and (2.9) to get

t2(α−1)λ2(1−θ)
n |〈u0, en〉Eα,α(−λnt

α)|2

≤ Ct2(αθ−1)
((λnt

α)1−θ

1 + λntα

)2|〈u0, en〉|2 ≤ Ct2(αθ−1)|〈u0, en〉|2 ,
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while, regarding the second sum, we have

λ−2θn

∣∣〈u1, en〉− 1
α
, 1
α

(
Eα(−λnt

α)− 1
)∣∣2

= λ
−2(θ− 1

α
)

n λ
− 2

α
n |〈u1, en〉− 1

α
, 1
α
|2∣∣Eα(−λnt

α)− 1
∣∣2 .

Therefore, plugging the above two estimates into (2.19) we obtain

‖∂tu(t, ·) − u1‖2D(A−θ) ≤ Ct2(αθ−1)‖u0‖2L2(Ω)

+ 2
∞∑
n=1

λ
−2(θ− 1

α
)

n λ
− 2

α
n |〈u1, en〉− 1

α
, 1
α
|2∣∣Eα(−λnt

α)− 1
∣∣2 ,

whence it follows that for θ > 1
α (2.15) holds true. �

3. Regularity in the case u0 ∈ H1
0 (Ω) and u1 ∈ L2(Ω)

We establish a result about the regularity of the weak solutions assum-
ing on the data u0 and u1 a degree of regularity intermediate between those
assumed in (i) and (ii) of Theorem 2.2.

For further results about existence and regularity of solutions, see [7,
17].

Theorem 3.1. If u0 ∈ H1
0 (Ω) and u1 ∈ L2(Ω), then the unique weak

solution u to (2.14) given by (2.16)–(2.18) belongs to C([0, T ];H1
0 (Ω)) ∩

C1([0, T ];D(A−θ)), θ ∈ (2−α2α , 1
2

]
, and

lim
t→0

‖∇u(t, ·)−∇u0‖L2(Ω) = 0

lim
t→0

‖∂tu(t, ·)− u1‖D(A−θ) = 0 ,

‖∇u‖C([0,T ];L2(Ω)) + ‖∂tu‖C([0,T ];D(A−θ))

≤ C(‖∇u0‖L2(Ω) + ‖u1‖L2(Ω)),

(3.1)

for some constant C > 0. In addition, for any θ ∈ (0, 1
2α

)
we have

‖∇u‖L2(0,T ;D(Aθ)) ≤ C
(‖∇u0‖L2(Ω) + ‖u1‖L2(Ω)

)
, (3.2)

and for any θ ∈ (α−12α , 1
2

)
we have

‖∂α
t u‖L2(0,T ;D(A−θ)) ≤ C

(‖∇u0‖L2(Ω) + ‖u1‖L2(Ω)

)
, (3.3)

for some constants C > 0.
If we assume, in addition, that ∇u0 ∈ D(Aθ) with θ ∈ (2−α2α , 1

2

)
, then

lim
t→0

‖∂tu(t, ·) − u1‖L2(Ω) = 0 ,

‖∂tu‖C([0,T ];L2(Ω)) ≤ C(‖∇u0‖D(Aθ) + ‖u1‖L2(Ω)).
(3.4)
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P r o o f. In virtue of the expression (2.16) for the solution u and (2.8)
we have

‖∇u(t, ·)−∇u0‖2L2(Ω)

=

∞∑
n=1

λn

∣∣〈u0, en〉
(
Eα(−λnt

α)− 1
)
+ 〈u1, en〉tEα,2(−λnt

α)
∣∣2

≤ 2
∞∑
n=1

λn

∣∣〈u0, en〉
∣∣2∣∣Eα(−λnt

α)− 1
∣∣2

+ t2−α2C2
∞∑
n=1

∣∣〈u1, en〉
∣∣2( (λnt

α)
1
2

1 + λntα

)2
. (3.5)

We observe that for any n ∈ N limt→0

(
Eα(−λnt

α) − 1
)
= 0. Moreover,

again by (2.8), we get for n ∈ N and 0 ≤ t ≤ T :

λn

∣∣〈u0, en〉
∣∣2∣∣Eα(−λnt

α)− 1
∣∣2

≤ 2λn

∣∣〈u0, en〉
∣∣2( C

(1 + λntα)2
+ 1

)
≤ Cλn

∣∣〈u0, en〉
∣∣2,

hence by (3.5) we deduce limt→0 ‖∇u(t, ·) − ∇u0‖L2(Ω) = 0 and for any
t ∈ [0, T ]

‖∇u(t, ·)‖2L2(Ω) ≤ C(‖∇u0‖2L2(Ω) + ‖u1‖2L2(Ω)).

To complete the proof of (3.1), we fix θ ∈ (2−α2α , 1
2

]
and use formula (2.17)

to note that

‖∂tu(t, ·) − u1‖2D(A−θ)

=

∞∑
n=1

λ−2θn

∣∣− λn〈u0, en〉tα−1Eα,α(−λnt
α) + 〈u1, en〉

(
Eα(−λnt

α)− 1
)∣∣2

≤ Ctα−2+2αθ
∞∑
n=1

λn

∣∣〈u0, en〉
∣∣2((λnt

α)
1−2θ

2

1 + λntα

)2

+ 2

∞∑
n=1

λ−2θn

∣∣〈u1, en〉
∣∣2∣∣Eα(−λnt

α)− 1
∣∣2, (3.6)

thanks also to (2.8). Since 0 < 1−2θ
2 < 1 we can apply (2.9) to have

‖∂tu(t, ·) − u1‖2D(A−θ)

≤ Ctα−2+2αθ‖∇u0‖2L2(Ω) + 2
∞∑
n=1

∣∣〈u1, en〉
∣∣2∣∣Eα(−λnt

α)− 1
∣∣2.
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Since α − 2 + 2αθ > 0, by analogous argumentations to those done before
we deduce limt→0 ‖∂tu(t, ·)− u1‖D(A−θ) = 0 and for any t ∈ [0, T ]

‖∂tu(t, ·)‖2D(A−θ) ≤ C(‖∇u0‖2L2(Ω) + ‖u1‖2L2(Ω)),

that ends the proof of (3.1).

Now, we fix θ ∈ (0, 1
2α

)
. Thanks to (2.16) we get

‖∇u(t, ·)‖2D(Aθ) =
∞∑
n=1

λ1+2θ
n

∣∣〈u0, en〉Eα(−λnt
α) + 〈u1, en〉tEα,2(−λnt

α)
∣∣2

≤ C

∞∑
n=1

λn|〈u0, en〉|2 λ2θ
n

(1 + λntα)2
+ C

∞∑
n=1

|〈u1, en〉|2 λ1+2θ
n t2

(1 + λntα)2
.

Since

λ2θ
n

(1 + λntα)2
=
( (λnt

α)θ

1 + λntα

)2
t−2αθ,

λ1+2θ
n t2

(1 + λntα)2
=
((λnt

α)
1+2θ

2

1 + λntα

)2
t2−α(1+2θ),

and 0 < θ < 1
2 , we can apply (2.9) to have

‖∇u(t, ·)‖2D(Aθ) ≤ Ct−2αθ‖∇u0‖2L2(Ω) + Ct2−α(1+2θ)‖u1‖2L2(Ω).

Taking into account that θ ∈ (
0, 1

2α

)
we have ∇u ∈ L2(0, T ;D(Aθ)) and

(3.2) follows.

To prove (3.3) we have to fix θ ∈ (α−12α , 1
2

)
. Thanks to (2.18), (2.5) and

(2.8) we obtain

‖∂α
t u(t, ·)‖2D(A−θ)

=

∞∑
n=1

λ−2θn

∣∣λn〈u0, en〉Eα(−λnt
α) + λn〈u1, en〉tEα,2(−λnt

α)
∣∣2

≤ C
∞∑
n=1

λn|〈u0, en〉|2 λ1−2θ
n

(1 + λntα)2
+ C

∞∑
n=1

|〈u1, en〉|2 λ
2(1−θ)
n t2

(1 + λntα)2
. (3.7)

Observing that

λ1−2θ
n

(1 + λntα)2
=
((λnt

α)
1−2θ

2

1 + λntα

)2
tα(2θ−1),

λ
2(1−θ)
n t2

(1 + λntα)2
=
((λnt

α)1−θ

1 + λntα

)2
t2+2α(θ−1),
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and being 0 < θ < 1
2 , from (2.9) and (3.7) we deduce

‖∂α
t u(·, t)‖2D(A−θ) ≤ Ctα(2θ−1) ‖∇u0‖2L2(Ω) + Ct2+2α(θ−1)‖u1‖2L2(Ω) .

Therefore, since θ > α−1
2α we have ∂α

t u ∈ L2(0, T ;D(A−θ)) and (3.3) holds.

To prove the last point, we assume ∇u0 ∈ D(Aθ) with θ ∈ (
2−α
2α , 1

2

)
.

Thanks to formula (2.17) we have

‖∂tu(t, ·) − u1‖2L2(Ω)

=

∞∑
n=1

∣∣− λn〈u0, en〉tα−1Eα,α(−λnt
α) + 〈u1, en〉

(
Eα(−λnt

α)− 1
)∣∣2

≤ Ctα−2+2αθ
∞∑
n=1

λ1+2θ
n

∣∣〈u0, en〉
∣∣2((λnt

α)
1−2θ

2

1 + λntα

)2

+ 2
∞∑
n=1

∣∣〈u1, en〉
∣∣2∣∣Eα(−λnt

α)− 1
∣∣2. (3.8)

By using (2.9) with β = 1−2θ
2 we obtain

‖∂tu(t, ·) − u1‖2L2(Ω)

≤ Ctα−2+2αθ‖∇u0‖D(Aθ) + 2

∞∑
n=1

∣∣〈u1, en〉
∣∣2∣∣Eα(−λnt

α)− 1
∣∣2,

and hence, since α− 2 + 2αθ > 0, we deduce (3.4). �

Remark 3.1. If we compare the regularity results concerning ∂tu
given in Theorem 3.1 with the analogous ones in Theorem 2.2, then we
have to observe that if θ ∈ (

2−α
2α , 1

2

]
, then D(A−θ) ⊂ D(A−η) for any

η ∈ (
1
α , 1

]
. Therefore Theorem 3.1 effectively improves the regularity of

the weak solution.
Moreover, we note that to secure a regularity of ∂tu in L2(Ω), taking into

account the argumentations used to get (3.6), we have to assume the datum

u0 belonging to a proper subset of H1
0 (Ω) = D(A

1
2 ), that is ∇u0 ∈ D(Aθ)

with θ ∈ (2−α2α , 1
2

)
, see (3.4).

4. Hidden regularity results

Our approach follows the argumentations developed in [9] for wave
equations. To begin with, we single out some technical results that we
will use later in the main theorem.
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Lemma 4.1. For w ∈ H2(Ω) and a vector field h : Ω → RN of class
C1 one has∫

Ω
�w h · ∇w dx =

∫
∂Ω

[
∂νw h · ∇w − 1

2
h · ν|∇w|2

]
dσ

−
N∑

i,j=1

∫
Ω

∂ihj∂iw∂jw dx +
1

2

∫
Ω

N∑
j=1

∂jhj |∇w|2 dx . (4.1)

P r o o f. We integrate by parts to get∫
Ω
�w h · ∇w dx =

∫
∂Ω

∂νw h · ∇w dσ −
∫
Ω
∇w · ∇(h · ∇w

)
dx . (4.2)

Since∫
Ω
∇w · ∇(h · ∇w

)
dx =

N∑
i,j=1

∫
Ω

∂iw ∂i(hj∂jw) dx

=
N∑

i,j=1

∫
Ω

∂iw ∂ihj∂jw dx +
N∑

i,j=1

∫
Ω

hj ∂iw∂j(∂iw) dx,

we evaluate the last term on the right-hand side again by an integration by
parts, so we obtain

N∑
i,j=1

∫
Ω

hj ∂iw∂j(∂iw) dx =
1

2

N∑
j=1

∫
Ω

hj ∂j

( N∑
i=1

(∂iw)2
)

dx

=
1

2

∫
∂Ω

h · ν|∇w|2 dσ − 1

2

∫
Ω

N∑
j=1

∂jhj |∇w|2 dx .

Therefore, if we merge the two previous identities with (4.2), then we have
(4.1). �

In the next lemma we need a strong regularity for the weak solution
that is guaranteed by Theorem 2.2–(ii). Moreover, we recall the following
notations: Iβ is the Riemann–Liouville operator of order β > 0, see (2.1),
and for θ ∈ (0, 1) 〈·, ·〉−θ,θ is the duality brought in (2.4).

Lemma 4.2. Assume α ∈ (1, 2) and the weak solution u of

∂α
t u(t, x) = �u(t, x) in (0,∞) × Ω (4.3)

belonging to C([0,+∞);H2(Ω)∩H1
0 (Ω))∩C1([0,+∞);L2(Ω)) with ∂α

t u ∈
C([0,+∞);L2(Ω)). Then, for a vector field h : Ω → RN of class C1 and
β, θ ∈ (0, 1) the following identities hold true:
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∫
∂Ω

[
Iβ(∂νu)(t) h · Iβ(∇u)(t) − 1

2
h · ν∣∣Iβ(∇u)(t)

∣∣2] dσ

= 〈Iβ(∂α
t u)(t), h · Iβ(∇u)(t)〉−θ,θ +

N∑
i,j=1

∫
Ω

∂ihjI
β(∂iu)(t)I

β(∂ju)(t) dx

− 1

2

∫
Ω

N∑
j=1

∂jhj |Iβ(∇u)(t)|2 dx , t > 0, (4.4)

∫
∂Ω

(
Iβ(∂νu)(t)− Iβ(∂νu)(τ)

)
h · (Iβ(∇u)(t)− Iβ(∇u)(τ)

)
dσ

− 1

2

∫
∂Ω

h · ν∣∣Iβ(∇u)(t)− Iβ(∇u)(τ)
∣∣2dσ

= 〈Iβ(∂α
t u)(t)− Iβ(∂α

t u)(τ), h · (Iβ(∇u)(t)− Iβ(∇u)(τ)
)〉−θ,θ

+
N∑

i,j=1

∫
Ω

∂ihj

(
Iβ(∂iu)(t) − Iβ(∂iu)(τ)

)(
Iβ(∂ju)(t) − Iβ(∂ju)(τ)

)
dx

− 1

2

N∑
j=1

∫
Ω

∂jhj |Iβ(∇u)(t)− Iβ(∇u)(τ)|2 dx , t, τ > 0 . (4.5)

P r o o f. First, we apply the operator Iβ, β ∈ (0, 1), to equation (4.3):

Iβ(∂α
t u)(t) = Iβ(�u)(t) t > 0. (4.6)

Fix θ ∈ (0, 1), by means of the duality 〈·, ·〉−θ,θ brought in (2.4) we multiply
the terms of the previous equation by

h · ∇Iβ(u)(t),

that is,

〈Iβ(∂α
t u)(t), h · ∇Iβ(u)(t)〉−θ,θ = 〈�Iβ(u)(t), h · ∇Iβ(u)(t)〉−θ,θ.

Thanks to the regularity of data and (2.6) the term on the right-hand side
of the previuos equation can be written as a scalar product in L2(Ω), so we
have

〈Iβ(∂α
t u)(t), h · ∇Iβ(u)(t)〉−θ,θ =

∫
Ω
�Iβ(u)(t)h · ∇Iβ(u)(t) dx. (4.7)

To evaluate the term ∫
Ω
�Iβ(u)(t)h · ∇Iβ(u)(t) dx ,
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we apply Lemma 4.1 to the function w(t, x) = Iβ(u)(t), so from (4.1) we
deduce∫

Ω
�Iβ(u)(t)h · ∇Iβ(u)(t) dx

=

∫
∂Ω

[
Iβ(∂νu)(t) h · Iβ(∇u)(t)− 1

2
h · ν∣∣Iβ(∇u)(t)

∣∣2]dσ
−

N∑
i,j=1

∫
Ω

∂ihjI
β(∂iu)(t)I

β(∂ju)(t) dx +
1

2

∫
Ω

N∑
j=1

∂jhj |Iβ(∇u)(t)|2 dx .

In conclusion, plugging the above formula into (4.7), we obtain (4.4).

The proof of (4.5) is similar to that of (4.4). Indeed, starting from

Iβ(∂α
t u)(t)− Iβ(∂α

t u)(τ) = Iβ(�u)(t) − Iβ(�u)(τ), t, τ > 0,

by means of the duality 〈·, ·〉−θ,θ one multiplies both terms by

h · ∇(Iβ(u)(t) − Iβ(u)(τ)
)
.

Then, applying Lemma 4.1 to the function w(t, τ, x) = Iβ(u)(t)− Iβ(u)(τ)
one can get the identity (4.5). We omit the details. �

Remark 4.1. We observe that the proof of the identities (4.4) and
(4.5) cannot be done for a general function w and then applied to w = Iβ(u),
since

∂α
t Iβ(u) �= Iβ(∂α

t u),

as one easily deduces from (2.13).

Theorem 4.1. Let u0 ∈ H2(Ω) ∩H1
0 (Ω), u1 ∈ H1

0 (Ω) and u the weak
solution of ⎧⎪⎨⎪⎩

∂α
t u(t, x) = �u(t, x) , t ≥ 0, x ∈ Ω,

u(t, x) = 0 t ≥ 0, x ∈ ∂Ω,

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ Ω.

(4.8)

Then, for any T > 0 there exists a constant C = C(T ) such that u satisfies
the inequality∫ T

0

∫
∂Ω

∣∣∂νu∣∣2dσdt ≤ C
(‖∇u0‖2L2(Ω) + ‖u1‖2L2(Ω)

)
. (4.9)

P r o o f. First, we note that by Theorem 2.2–(ii) the unique weak so-
lution u to (2.14) given by (2.16) belongs to C([0, T ];H2(Ω) ∩ H1

0 (Ω)) ∩
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C1([0, T ];L2(Ω)) and ∂α
t u ∈ C([0, T ];L2(Ω)), so the normal derivative ∂νu

is well defined.
To prove the statement we use Theorem 2.1. Indeed, for H = L2(∂Ω)

and β ∈ (0, 1) we can apply (2.12) to get

‖∂νu‖L2(0,T ;L2(∂Ω)) ∼ ‖Iβ(∂νu)‖Hβ(0,T ;L2(∂Ω)) ,

whence the inequality (4.9) is equivalent to

‖Iβ(∂νu)‖Hβ(0,T ;L2(∂Ω)) ≤ C
(‖∇u0‖L2(Ω) + ‖u1‖L2(Ω)

)
. (4.10)

Therefore, our goal is to prove (4.10). Thanks to (2.11), we have to evaluate∥∥Iβ(∂νu)∥∥L2(0,T ;L2(∂Ω))
and

[
Iβ(∂νu)

]
Hβ(0,T ;L2(∂Ω))

. To this end we employ

the two identities in Lemma 4.2 with a suitable choice of the vector field h.
Indeed, we take a vector field h ∈ C1(Ω;RN ) satisfying the condition

h = ν on ∂Ω (4.11)

(see e.g. [9] for the existence of such vector field h). First we consider the
identity (4.4). Since

∇u = (∂νu)ν on (0, T )× ∂Ω , (4.12)

(see e.g. [18, Lemma 2.1] for a detailed proof) the left-hand side of (4.4)
becomes

1

2

∫
∂Ω

∣∣Iβ(∂νu)∣∣2dσ .

If we integrate (4.4) over [0, T ], then we obtain∫ T

0

∫
∂Ω

∣∣Iβ(∂νu)∣∣2 dσdt = 2

∫ T

0
〈Iβ(∂α

t u)(t), h · Iβ(∇u)(t)〉−θ,θ dt

+ 2

N∑
i,j=1

∫ T

0

∫
Ω

∂ihjI
β(∂iu)(t)I

β(∂ju)(t) dxdt

−
∫ T

0

∫
Ω

N∑
j=1

∂jhj |Iβ(∇u)(t)|2 dxdt .

Since h ∈ C1(Ω;RN ) from the above inequality we get∥∥Iβ(∂νu)∥∥L2(0,T ;L2(∂Ω))

≤ C
(∥∥Iβ(∂α

t u)
∥∥
L2(0,T ;D(A−θ))

+
∥∥Iβ(∇u)

∥∥
L2(0,T ;D(Aθ))

)
, (4.13)

for some constant C > 0.
We have to estimate the Gagliardo semi-norm

[
Iβ(∂νu)

]
Hβ(0,T ;L2(∂Ω))

,

see (2.10). Thanks again to the condition (4.12) the left-hand side of (4.5)
becomes
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1

2

∫
∂Ω

∣∣Iβ(∂νu)(t)− Iβ(∂νu)(τ)
∣∣2dσ .

Therefore, if we multiply both terms of (4.5) by 1
|t−τ |1+2β and integrate over

[0, T ]× [0, T ], then we have

1

2

[
Iβ(∂νu)

]2
Hβ(0,T ;L2(∂Ω))

=

∫ T

0

∫ T

0

〈Iβ(∂α
t u)(t)− Iβ(∂α

t u)(τ), h · (Iβ(∇u)(t)− Iβ(∇u)(τ)
)〉−θ,θ

|t− τ |1+2β
dtdτ

+

∫ T

0

∫ T

0

∑N
i,j=1〈∂ihj

(
Iβ(∂iu)(t)−Iβ(∂iu)(τ)

)
, Iβ(∂ju)(t)−Iβ(∂ju)(τ)〉

|t− τ |1+2β
dtdτ

− 1

2

∫ T

0

∫ T

0

∫
Ω

∑N
j=1 ∂jhj |Iβ(∇u)(t)− Iβ(∇u)(τ)|2dx

|t− τ |1+2β
dtdτ . (4.14)

We estimate the first term on the right-hand side of the above identity as
follows∫ T

0

∫ T

0

〈Iβ(∂α
t u)(t) − Iβ(∂α

t u)(τ), h · (Iβ(∇u)(t) − Iβ(∇u)(τ)
)〉−θ,θ

|t− τ |1+2β
dtdτ

≤ C
([

Iβ(∂α
t u)

]2
Hβ(0,T ;D(A−θ))

+
[
Iβ(∇u)

]2
Hβ(0,T ;D(Aθ))

)
,

and hence from (4.14) we deduce[
Iβ(∂νu)

]
Hβ(0,T ;L2(∂Ω))

≤ C
([

Iβ(∂α
t u)

]
Hβ(0,T ;D(A−θ))

+
[
Iβ(∇u)

]
Hβ(0,T ;D(Aθ))

)
. (4.15)

Putting together (4.13) and (4.15) we obtain∥∥Iβ(∂νu)∥∥Hβ(0,T ;L2(∂Ω))

≤ C
(
‖Iβ(∂α

t u)
∥∥
Hβ(0,T ;D(A−θ))

+
∥∥Iβ(∇u)

∥∥
Hβ(0,T ;D(Aθ))

)
. (4.16)

Since 1 < α < 2, we can choose θ ∈ (α−12α , 1
2α

)
to apply Theorem 1.1. So

we get ∂α
t u ∈ L2(0, T ;D(A−θ)) and ∇u ∈ L2(0, T ;D(Aθ)). Thanks again

to Theorem 2.1 we have∥∥Iβ(∂α
t u)

∥∥
Hβ(0,T ;D(A−θ))

∼ ‖∂α
t u‖L2(0,T ;D(A−θ)) ,∥∥Iβ(∇u)

∥∥
Hβ(0,T ;D(Aθ))

∼ ‖∇u‖L2(0,T ;D(Aθ)) ,

and hence from (1.3) and (4.16) we deduce (4.10). The proof is complete.
�
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Theorem 4.2. Let u0 ∈ H1
0 (Ω) and u1 ∈ L2(Ω). If u is the weak

solution of⎧⎪⎨⎪⎩
∂α
t u(t, x) = �u(t, x) , t ≥ 0, x ∈ Ω,

u(t, x) = 0 t ≥ 0, x ∈ ∂Ω,

u(0, x) = u0(x), ut(0, x) = u1(x), x ∈ Ω,

(4.17)

then we define the normal derivative ∂νu of u such that for any T > 0 we
have ∫ T

0

∫
∂Ω

∣∣∂νu∣∣2dσdt ≤ C
(
‖∇u0‖2L2(Ω) + ‖u1‖2L2(Ω)

)
, (4.18)

for some constant C = C(T ) independent of the initial data.

P r o o f. For u0 ∈ H2(Ω) ∩ H1
0 (Ω) and u1 ∈ H1

0 (Ω), if we denote by
u the weak solution of problem (4.17), then, thanks to Theorem 4.1, the
inequality (4.18) holds for any T > 0. By density there exists a unique
continuous linear map

L : H1
0 (Ω)× L2(Ω)→ L2

loc((0,∞);L2(∂Ω))

such that

L(u0, u1) = ∂νu ∀(u0, u1) ∈
(
H2(Ω) ∩H1

0 (Ω)
)×H1

0 (Ω)

and ∫ T

0

∫
∂Ω

∣∣L(u0, u1)
∣∣2dσdt ≤ C

(
‖∇u0‖2L2(Ω) + ‖u1‖2L2(Ω)

)
,

for any (u0, u1) ∈ H1
0 (Ω)× L2(Ω).

Finally, given u0 ∈ H1
0 (Ω) and u1 ∈ L2(Ω) for the weak solution u of

(4.17) we use the notation ∂νu instead of L(u0, u1), and in addition (4.18)
holds. �

Remark 4.2. Theorem 4.2 does not follow from the classical trace
theorems of the Sobolev spaces. For this reason it can be called a hidden
regularity result. The corresponding inequality (4.18) is often called a direct
inequality.
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