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Abstract

The global stability of continuous-time fractional orders nonlinear feed-
back systems with positive linear parts and interval state matrices is in-
vestigated. New sufficient conditions for the global stability of this class
of positive feedback nonlinear systems are established. The effectiveness of
these new stability conditions is demonstrated on simple example.

MSC 2010 : Primary 26A33; Secondary: 34D23, 93C10, 93D15, 93D30

Key Words and Phrases: global stability; fractional order; nonlinear
system; feedback system; positive fractional system; interval state matrix

1. Introduction

In positive systems inputs, state variables and outputs take only non-
negative values for any nonnegative inputs and nonnegative initial condi-
tions [1, 4, 7, 19]. Examples of positive systems are industrial processes
involving chemical reactors, heat exchangers and distillation columns, stor-
age systems, compartmental systems, water and atmospheric pollutions
models. A variety of models having positive behavior can be found in
engineering, management science, economics, social sciences, biology and
medicine, etc. An overview of state of the art in positive systems theory is
given in the monographs [1, 4, 7, 10, 13].
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Mathematical fundamentals of the fractional calculus are given in the
monographs [10, 13, 20, 21]. The positive fractional linear systems have
been investigated in [3, 6, 10]. Positive linear systems with different frac-
tional orders have been addressed in [8, 9, 25]. Descriptor positive systems
have been analyzed in [2, 24, 25]. Linear positive electrical circuits with
state feedbacks have been addressed in [2, 13]. The stability of nonlinear
standard and fractional positive feedback systems has been considered in
[5, 6, 11, 12, 15, 17, 18, 22, 23]. A relation between controllability and ob-
servability of standard and fractional different orders systems was discussed
in [14], and stability and stabilization of fractional-order linear systems with
convex polytopic uncertainties in [16].

In this paper the global stability of nonlinear different fractional orders
feedback systems with positive linear parts and interval sate matrices will
be addressed.

The paper is organized as follows. In Section 2 the basic definitions and
theorems concerning the positive different fractional orders linear systems
are recalled. The stability of positive linear different fractional orders sys-
tem with interval state matrices is investigated in Section 3. Main result
of the paper the new sufficient conditions for the global stability feedback
nonlinear systems with positive linear parts are established in Section 4.
Concluding remarks are given in Section 5.

The following notations will be used: R - the set of real numbers, Rn×m
- the set of n×m real matrices, Rn×m

+ - the set of n×m real matrices with

nonnegative entries and R
n
+ = R

n×1
+ , Mn - the set of n×n Metzler matrices

(real matrices with nonnegative off-diagonal entries), In- the n×n identity
matrix.

2. Positive different fractional orders linear systems

Consider the fractional continuous-time linear system

dαx(t)

dtα
= Ax(t) +Bu(t), (2.1a)

y(t) = Cx(t), (2.1b)

where x(t) ∈ R
n, u(t) ∈ R

m, y(t) ∈ R
p are the state, input and output

vectors, A ∈ R
n×n, B ∈ R

n×m, C ∈ R
p×n. In this paper the following

Caputo definition of the fractional derivative of α order will be used [10,
13, 20, 21],

0D
α
t f(t) =

dαf(t)

dtα
=

1

Γ(1− α)

t∫
0

ḟ(τ)

(t− τ)α
dτ, 0 < α < 1, (2.2)

where ḟ(τ) =
df(τ)

dτ
and Γ(x) is the Euler gamma function.
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Definition 2.1. ([10, 13]) The fractional system (2.1) is called (inter-
nally) positive if x(t) ∈ R

n
+ and y(t) ∈ R

p
+, t ≥ 0 for any initial conditions

x(0) ∈ R
n
+ and all inputs u(t) ∈ R

m
+ , t ≥ 0.

Theorem 2.1. ([10, 13]) The fractional system (2.1) is positive if and
only if

A ∈ Mn, B ∈ R
n×m
+ , C ∈ R

p×n
+ . (2.3)

Definition 2.2. The fractional positive linear system (2.1) is called
asymptotically stable (and the matrix A Hurwitz) if

lim
t→∞x(t) = 0 for all x(0) ∈ R

n
+. (2.4)

The positive fractional system (2.1) is asymptotically stable if and only
if the real parts of all eigenvalues sk of the matrix A are negative, i.e.
Resk < 0 for k = 1, . . . , n, [10, 13].

Theorem 2.2. The positive fractional system (2.1) is asymptotically
stable if and only if one of the following equivalent conditions is satisfied:

1) All coefficients of the characteristic polynomial

det[Ins−A] = sn + an−1sn−1 + . . .+ a1s+ a0 (2.5)

are positive, i.e. ai < 0 for i = 0, 1, . . . , n− 1.
2) There exists strictly positive vector λ = [ λ1 . . . λn ], λk > 0,
k = 1, . . . , n such that

Aλ < 0 or λTA < 0. (2.6)

The transfer matrix of the system (2.1) is given by

T (sα) = C[Ins
α −A]−1B. (2.7)

Now consider the fractional linear system with two different fractional or-
ders [

dαx1(t)
dtα

dβx2(t)
dtβ

]
=
[
A11 A12

] [ x1(t)
x2(t)

]
+

[
B1

B2

]
u(t), (2.8a)

y(t) =
[
C1 C2

] [ x1(t)
x2(t)

]
, (2.8b)

where 0 < α, β < 1, x1(t) ∈ R
n1 and x2(t) ∈ R

n2 are the state vectors,
Aij ∈ Rni×nj , Bi ∈ Rni×m, Ci ∈ Rp×ni; i, j = 1, 2; u(t) ∈ Rm is the input
vector and y(t) ∈ R

p is the output vector. Initial conditions for (2.8) have
the form

x1(0) = x10, x2(0) = x20 for x0 =

[
x10
x20

]
. (2.9)
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Remark 2.1. The state equation (2.8a) of fractional continuous-time
linear systems with two different fractional orders has similar structure as
the 2D Roeesser type models.

Definition 2.3. The fractional system (2.8) is called positive if x1(t) ∈
R
n1
+ and x2(t) ∈ R

n2
+ , t ≥ 0 for any initial conditions x10 ∈ R

n1
+ , x20 ∈ R

n2
+

and all input vectors u ∈ R
m
+ , t ≥ 0.

Theorem 2.3. The fractional system (2.8) for 0 < α < 1; 0 < β < 1
is positive if and only if

Ā =

[
A11 A12

A21 A22

]
∈ MN , B̄ =

[
B1

B2

]
∈ R

N×m
+ ,

C̄ =
[
C1 C2

] ∈ R
p×n
+ , N = n1 + n2.

(2.10)

Theorem 2.4. The positive fractional system (2.8) is asymptotically
stable if and only if one of the following equivalent conditions is satisfied:

1) All coefficients of the characteristic polynomial

det[Ins− Ā] = sn + ān−1sn−1 + . . .+ ā1s+ ā0 (2.11)

are positive, i.e. āi > 0 for i = 0, 1, . . . , n− 1.

2) There exists strictly positive vector λ = [ λ1 . . . λn ], λk > 0,
k = 1, . . . , n such that

Āλ < 0 or λT Ā < 0. (2.12)

Theorem 2.5. The solution of the equation (2.8a) for 0 < α < 1;
0 < β < 1 with initial conditions (2.9) has the form

x(t) =

[
x1(t)
x2(t)

]
= Φ0(t)x0 +

t∫
0

M(t− τ)u(τ)dτ, (2.13)

where

M(t) = Φ1(t)B10 +Φ2(t)B01

=

[
Φ1
11(t) Φ1

12(t)
Φ1
21(t) Φ1

22(t)

] [
B1

0

]
+

[
Φ2
11(t) Φ2

12(t)
Φ2
21(t) Φ2

22(t)

] [
0
B2

]
=

[
Φ1
11(t)B1 +Φ2

12(t)B2

Φ1
21(t)B1 +Φ2

22(t)B2

]
=

[
Φ1
11(t) Φ2

12(t)
Φ1
21(t) Φ2

22(t)

] [
B1

B2

] (2.14a)

and

Φ0(t) =

∞∑
k=0

∞∑
l=0

Tkl
tkα+lβ

Γ(kα+ lβ + 1)
, (2.14b)

Φ1(t) =
∞∑
k=0

∞∑
l=0

Tkl
t(k+1)α+lβ−1

Γ[(k + 1)α+ lβ]
, (2.14c)
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Φ2(t) =

∞∑
k=0

∞∑
l=0

Tkl
tkα+(l+1)β−1

Γ[kα+ (l + 1)β]
. (2.14d)

In the above,

Tkl =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

In for k = l = 0,[
A11 A12

0 0

]
for k = 1, l = 0,[

0 0
A21 A22

]
for k = 0, l = 1,

T10Tk−1,l + T01Tk,l−1 for k + l > 1.

(2.14e)

and Φ0(t),Φ1(t),Φ2(t) are the two-parameter Mittag-Leffler functions Eα,μ,
respectively with μ = lβ + 1, μ = lβ + α, μ = lβ + β, see for example [21].

P r o o f. A proof is given in [8, 9]. �

Note that if α = β, then from (2.13) we have the 1-parameter Mittag-
Leffler function

Φ0|α=β (t) =

∞∑
k=0

Āktkα

Γ(kα+ 1)
= Eα(Āt

α). (2.15)

The transfer matrix of the system (2.8) is given by

T (sα, sβ) = C̄

[[
In1s

α 0
0 In2s

β

]
− Ā

]−1
B̄. (2.16)

3. Stability of positive different fractional orders linear systems
with interval state matrices

Consider the positive different fractional orders linear system[
dαx1(t)
dtα

dβx2(t)
dtβ

]
= Ā

[
x1(t)
x2(t)

]
, n = n1 + n2, 0 < α, β < 1

Ā =

[
A11 A12

A21 A22

]
, A11 ∈ Mn1 , A22 ∈ Mn2 ,

(3.1)

where x1(t) ∈ R
n1
+ , x2(t) ∈ R

n2
+ are the state vectors and the interval state

matrix Ā ∈ Mn is defined by

A1 ≤ Ā ≤ A2, or equivalently Ā ∈ [A1, A2]. (3.2)

Definition 3.1. The interval positive system (3.1) is called asymptot-
ically stable if the system is asymptotically stable for all matrices A ∈ Mn

satisfying the condition (3.2).
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The matrix

A = (1− q)A1 + qA2, 0 < q < 1, (3.3)

is called the convex linear combination of the matrices A1 ∈ Mn1 and
A2 ∈ Mn2 .

Theorem 3.1. If the matrices A1 ∈ Mn1 and A2 ∈ Mn2 of positive
system (3.1) are asymptotically stable, then their convex linear combination
(3.3) is also asymptotically stable.

P r o o f. By condition (2.12) of Theorem 2.4, if the positive linear
system (3.1) is asymptotically stable, then there exists strictly positive

vector λ̄ =

[
λ1

λ2

]
∈ R

n
+ such that (2.12) holds.

Using (2.6) and (3.3) we obtain

Āλ̄ = [(1 − q)A1 + qA2]λ̄ = (1− q)A1λ̄+ qA2λ̄ < (1− q)λ̄+ qλ̄ = λ̄,

for 0 < q < 1.
(3.4)

Therefore, if the positive linear system (3.1) is asymptotically stable and
(3.4) holds, then their convex linear combination is also asymptotically
stable. �

Theorem 3.2. The interval positive system (3.1) is asymptotically
stable if and only if the positive systems (3.2) are asymptotically stable.

P r o o f. By condition (2.12) of Theorem 2.4 the matrices A1 ∈ Mn1 ,
A2 ∈ Mn2 are asymptotically stable if and only if there exists a strictly
positive vector λ ∈ R

n
+ such that (3.4) holds. The convex linear combination

(3.3) satisfies the condition Āλ̄ < 0 if and only if (3.4) holds. Therefore,
the interval positive system (3.1) is asymptotically stable if and only if the
positive systems (3.2) are asymptotically stable. �

Example 3.1. Consider the interval positive linear system (3.1) with
the matrices

A1 =

⎡⎣ −2 1 0
1 −3 1
0 1 −2

⎤⎦ , A2 =

⎡⎣ −3 1.5 1
1.5 −4 1.5
1 2 −3

⎤⎦ ,

n1 = 2, n2 = 1.

(3.5)

For the matrices (3.5) we choose λ̄T = [ 1 0.8 1 ]T and we obtain
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A1λ̄ =

⎡⎣ −2 1 0
1 −3 1
0 1 −2

⎤⎦⎡⎣ 1
0.8
1

⎤⎦ =

⎡⎣ −1.2
−0.4
−1.2

⎤⎦ ,

A2λ̄ =

⎡⎣ −3 1.5 1
1.5 −4 1.5
1 2 −3

⎤⎦⎡⎣ 1
0.8
1

⎤⎦ =

⎡⎣ −0.6
−0.2
−1.4

⎤⎦ .

(3.6)

Therefore, by Theorem 3.2 the interval positive system (3.1) with (3.5) is
asymptotically stable.

4. Different orders nonlinear feedback systems with positive
linear parts and interval state matrices

Consider the nonlinear feedback system shown in Fig. 4.1 which consists
of the positive linear part, the nonlinear element with characteristic u =
f(e), the positive scalar feedback with gain h and interval state matrix Ā.
The positive linear part is described by the equations[

dαx1(t)
dtα

dβx2(t)
dtβ

]
= Ā

[
x1(t)
x2(t)

]
+ B̄u(t),

y(t) = C̄

[
x1(t)
x2(t)

]
,

(4.1)

where 0 < α, β < 1, x1 = x1(t) ∈ R
n1
+ and x1 = x2(t) ∈ R

n2
+ are the state

vectors, u = u(t) ∈ R is the input vector, y = y(t) ∈ R is the input vector,
matrices Ā, B̄, C̄ for p = m = 1 are defined by (2.10).

Fig. 4.1: The nonlinear feedback system

The characteristic of the nonlinear element is shown in Fig. 4.2 and it
satisfies the condition

0 < f(e) < ke, 0 < k < ∞. (4.2)

It is assumed that the positive linear part is asymptotically stable (the
matrix Ā ∈ Mn is Hurwitz) for all Ā satisfying (3.2).
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Fig. 4.2: The characteristic of the nonlinear element

Definition 4.1. The nonlinear positive system is called globally stable

if it is asymptotically stable for all nonnegative initial conditions

[
x10
x20

]
∈

R
n
+ and all state matrices satisfying (3.2).

The following theorem gives sufficient conditions for the global stability
of the positive nonlinear system with interval state matrix Ā satisfying
(3.2).

Theorem 4.1. The nonlinear system consisting of the positive linear
part, the nonlinear element satisfying the condition (4.2), interval matrix
(3.2) and the positive scalar feedback with gain h is globally stable if the
matrix

A1 + kihB̄C̄ ∈ Mn for i = 1, 2 (4.3)

is asymptotically stable (Hurwitz matrix), where B̄, C̄ are given by (2.10).

P r o o f. The proof will be accomplished by the use of the Lyapunov
method [17, 18]. As the Lyapunov function V̄i(x), i = 1, 2 we choose

V̄i(x) = Vi,1(x) + Vi,2(x) = λT
i,1xi,1 + λT

i,2xi,2 ≥ 0

for x̄i =

[
xi,1
xi,2

]
∈ R

n
+, λ̄i =

[
λi,1

λi,2

]
∈ R

n
+,

(4.4)

where λ̄i, i = 1, 2 2 are strictly positive vectors with all positive compo-
nents.
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Using (4.4) and (4.2) we obtain

dαVi,1(x)

dtα
+

dβVi,2(x)

dtβ
=
[
λT
i,1 λT

i,2

] [ dαxi,1

dtα
dβxi,2

dtβ

]
= λ̄T

i (Aix̄i + B̄u) ≤ λ̄T
i (Ai + kihB̄C̄)x̄i,

(4.5)

since u = f(e) ≤ ke = khiC̄x̄i for i = 1, 2.

From (4.5) it follows that
dαVi,1(x)

dtα
+

dβVi,2(x)

dtβ
< 0 if the matrix (4.3)

is Hurwitz and nonlinear system is globally stable. �

To find the maximal value of k for which the fractional positive non-
linear system with interval state matrices is globally stable the following
procedure can be used.

Procedure 4.1.

Step 1. Find the value of k1 for which the matrix

A1 + k1hB̄C̄ ∈ Mn1 (4.6)

is asymptotically stable.
Step 2. Find the maximal value of k2 for which the matrix

A2 + k2hB̄C̄ ∈ Mn2 (4.7)

is asymptotically stable.
Step 3. Find the desired value of k as

k = min(k1, k2). (4.8)

Note that to check the global stability of the fractional positive non-
linear system it suffices to check the condition (4.3) only for the matrix
A1(A2) with greater sum of all its entries.

Example 4.1. Consider the fractional (α = 0.4, β = 0.6) nonlinear
system with the positive linear part with the interval state matrices

A1 =

⎡⎢⎢⎣
−2.5 0.4 0.2 0.1
0.8 −1.8 0.2 0.3
0.2 0.3 −4.5 0.3
0.3 0.4 0.4 −3.5

⎤⎥⎥⎦ , A2 =

⎡⎢⎢⎣
−3 0.5 0.2 0.1
1 −2 0.2 0.3
0.2 0.3 −5 0.4
0.3 0.4 0.5 −4

⎤⎥⎥⎦ ,

B̄ =

⎡⎢⎢⎣
0.5
0.2
0.6
0.4

⎤⎥⎥⎦ , C̄ =
[
0.2 0.4 0.5 0.3

]
, n1 = n2 = 2,

(4.9)
the nonlinear element satisfying the condition (4.2) and the positive feed-
back with gain h = 0.5. Find k satisfying (4.2) for which the fractional
positive nonlinear system is globally stable.
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Using Procedure 4.1 and (4.9) we obtain the following:

Step 1. Using (4.6) and (4.9) for h = 0.5 we obtain

Â1 = A1 + k1hB̄C̄ =

⎡⎢⎢⎣
−2.5 0.4 0.2 0.1
0.8 −1.8 0.2 0.3
0.2 0.3 −4.5 0.3
0.3 0.4 0.4 −3.5

⎤⎥⎥⎦

+ 0.5k1

⎡⎢⎢⎣
0.5
0.2
0.6
0.4

⎤⎥⎥⎦ [ 0.2 0.4 0.5 0.3
]

=

⎡⎢⎢⎣
−2.5 + 0.05k1 0.4 + 0.1k1 0.2 + 0.125k1 0.1 + 0.075k1
0.8 + 0.02k1 −1.8 + 0.04k1 0.2 + 0.05k1 0.3 + 0.03k1
0.2 + 0.06k1 0.3 + 0.12k1 −4.5 + 0.15k1 0.3 + 0.09k1
0.3 + 0.04k1 0.4 + 0.08k1 0.4 + 0.1k1 −3.5 + 0.06k1

⎤⎥⎥⎦ .

(4.10)

The characteristic polynomial of the matrix (4.10) has the form
det(I4s− Â1) = s4 + (12.3 − 0.3k1)s

3 + (53.96 − 2.9k1)s
2

+ (98.83 − 9.21k1)s+ (62.19 − 9.66k1)
(4.11)

and its coefficients are positive, which implies that the nonlinear
system with (4.10) is globally stable, for k1 < 6.43.

Step 2. Using (4.3) and (4.9) we obtain

Â2 = A2 + k2hB̄C̄ =

⎡⎢⎢⎣
−3 0.5 0.2 0.1
1 −2 0.2 0.3
0.2 0.3 −5 0.4
0.3 0.4 0.5 −4

⎤⎥⎥⎦

+ 0.5k1

⎡⎢⎢⎣
0.5
0.2
0.6
0.4

⎤⎥⎥⎦ [ 0.2 0.4 0.5 0.3
]

=

⎡⎢⎢⎣
−3 + 0.05k2 0.5 + 0.1k2 0.2 + 0.125k2 0.1 + 0.075k2
1 + 0.02k2 −2 + 0.04k2 0.2 + 0.05k2 0.3 + 0.03k2
0.2 + 0.06k2 0.3 + 0.12k2 −5 + 0.15k2 0.4 + 0.09k2
0.3 + 0.04k2 0.4 + 0.08k2 0.5 + 0.1k2 −4 + 0.06k2

⎤⎥⎥⎦ .

(4.12)

The characteristic polynomial of the matrix (4.12) has the form

det(I4s− Â2) = s4 + (14 − 0.3k2)s
3 + (70.05 − 3.31k2)s

2

+ (146.39 − 11.99k2)s+ (104.64 − 14.28k2)
(4.13)
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and its coefficients are positive, which implies that the nonlinear
system with (4.12) is globally stable, for k2 < 7.32.

Step 3. Using (4.8) and the results of Steps 1 and Step 2 we obtain

k = min(k1, k2) = min(6.43, 7.32) = 6.43. (4.14)

Therefore, the fractional positive nonlinear system is globally stable
for k < 6.43.

5. Different orders nonlinear feedback systems with positive
linear parts and interval state matrices

The global stability of continuous-time different fractional orders non-
linear systems with positive linear parts and interval state matrices and
scalar positive feedback with gain h has been investigated. New sufficient
conditions for the global stability of this class of positive nonlinear systems
are established (Theorem 4.1). The effectiveness of these new stability
conditions has been demonstrated on simple example of positive nonlin-
ear different fractional orders system. The considerations can be extended
to discrete-time fractional different orders nonlinear systems with positive
linear parts with interval state matrices and positive scalar feedbacks. An
open problem is an extension of the considerations to nonlinear different
orders fractional systems with all interval matrices of their positive linear
parts.
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