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Abstract

This paper gathers the tools for solving Riemann-Liouville time frac-
tional non-linear PDE’s by using a Galerkin method. This method has the
advantage of not being more complicated than the one used to solve the
same PDE with first order time derivative. As a model problem, existence
and uniqueness is proved for semilinear heat equations with polynomial
growth at infinity.
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1. Introduction

The Galerkin approximation method in a simple and robust process for
solving partial differential equations (see for instance [12], [4], [13]). In that
paper, we introduce a Galerkin method for solving non-linear PDE’s with
Riemann-Liouville time fractional derivatives of order less than one.

In order to implement Galerkin’s method for solving time first order
PDE’s, three tools are used: (i) a functional framework based on the theory
of distributions; (ii) time inequalities; (iii) an Aubin-Lions theory.

Our method for solving time fractional PDE’s uses exactly the same
tools except that they are adapted to fractional order equations. So roughly
speaking, our Galerkin method for solving fractional order equations is not
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more complicated than the Galerkin method used to solve the correspond-
ing equation with first order time derivatives. Let us introduce these three
tools for fractional calculus.

(i) The functional framework. Usually, fractional Gagliardo-Sobolev
spaces are used. However, they are not very suitable for time fractional
problems since the connection between these spaces and time fractional
derivatives is not straightforward. The consequence is that a trivial ini-
tial condition is needed. Moreover, these spaces are quite complicated to
handle.

Recently, suitable and simpler fractional spaces appear in the literature.
See for instance [5], [7], [9]. These spaces are natural generalizations of the
spaces involved in the integer case. See Section 3 for details.

(ii) By time fractional inequalities, we mean for example

1

2
Dα

0,t

∫
Ω
u(t, x)2 dx ≤

∫
Ω
Dα

0,tu(t, x)u(t, x) dx. (1)

According to the integer setting, we cannot expect such an relationship
to hold without imposing a zero initial condition. Under some smoothness
conditions, (1) is proved in [10, Theorem 2.4], and in [7, Proposition 2.18] by
a simple and smart convexity argument. In order to apply (1) to nonlinear
problems, we have relaxed the smoothness assumptions by using a density
argument: see Corollary 3.1 and Proposition 3.1 where an integral version
of (1) is featured for functions with values in Banach spaces. Let us notice
that, in [9], time fractional inequalities are established for functions with
values in Hilbert spaces.

(iii) Aubin-Lions theory allows to get point-wise convergence by compac-
tness arguments, and to pass to the limit in non-linear terms. By adapting
the arguments of [7], we obtain the compactness result stated in Corollary
3.2.

In the two forthcoming sections, we recall or develop the tools for solving
fractional order equations. The Galerkin method is implemented in Section
4 for solving time fractional semilinear heat equations.

Let us emphasize that since our method displays essentially the same
features than the standard Galerkin method, it can be used to solve higher
order PDE’s, and PDE’s whose differential operator acting on the space
variables has low regularity or/and is time-dependent. We have chosen
here a semilinear heat equations only for simplicity.

In [11] R. Zacher implements a different Galerkin method based on the
accretivity of the Riemann-Liouville operator in the Banach space L1(0, T ).
See also [1]. In [7], existence results for linear problems are proved by
Galerkin’s method.
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2. Preliminaries

As far as integrable functions are concerned, convolution is a basic
tool in fractional calculus. However, in order to obtain a density result,
namely Theorem 3.1, we will need to make the convolution of non abso-
lutely integrable functions. That can be achieved following [2], for causal
functions.

Let (X, ‖.‖) be a real Banach space, and T be a positive number. Let
us recall that f ∈ L1

loc(R;X) is said to be causal if f = 0 a.e. on (−∞, 0).

Definition 2.1. Let f ∈ L1
loc(R;X), g ∈ L1

loc(R) be causal functions.
Then the convolution of f and g is the causal function of L1

loc(R;X) defined,
for a.e. t ∈ R, by

g ∗ f(t) =
∫
R

g(t− y)f(y) dy.

Classically, fractional derivatives involve another kind of convolution,
since the functions are defined on [0, T ].

Definition 2.2. Let f ∈ L1(0, T ;X) and g ∈ L1(0, T ). Then the
convolution of g and f is the element of L1(0, T ;X) defined, for a.e. t ∈
[0, T ], by

g ∗T f(t) :=

∫ t

0
g(t− y)f(y) dy.

Of course, these two definitions are consistent. Indeed, the following
result hods true.

Proposition 2.1. Let f ∈ L1
loc(R;X) and g ∈ L1

loc(R) be causal
functions. Then

g|[0,T ]
∗T f|[0,T ]

= (g ∗ f)|[0,T ]
in L1(0, T ;X).

In the above, f|[0,T ]
denotes the restriction of f to [0, T ]. The elementary

proof of that proposition is omitted. Owing to the above result, we will
write g ∗ f instead of g ∗T f , if no confusion can occur.

The following standard inequality will be useful. Let I = [0, T ] or R. If
f ∈ Lp(I;X) with 1 ≤ p ≤ ∞, and g ∈ L1(I) then g ∗f belongs to Lp(I;X)
and

‖g ∗ f‖Lp(I;X) ≤ ‖g‖L1(I)‖f‖Lp(I;X). (2)
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Let us turn our attention to the fractional derivatives. The following
kernels are fundamental in the theory of fractional calculus. For α ∈ (0,∞),
we denote by gα the causal function of L1

loc(R) defined, for a.e. t > 0, by

gα(t) =
1

Γ(α)
tα−1.

These kernels satisfy the following semi-group property: for α > 0,
β > 0,

gα ∗ gβ = gα+β in L1
loc(R). (3)

Now, we are able to introduce the fractional Riemann-Liouville deriva-
tive of vector-valued functions. In the sequel, α ∈ (0, 1) will denote the
fractional order of differentiation.

Definition 2.3. Let 1 ≤ q < ∞ and u ∈ Lq(0, T ;X). We say
that u admits a fractional (Riemann-Liouville) derivative of order α in
Lq(0, T ;X) if

g1−α ∗ u ∈W 1,q(0, T ;X).

In this case, the fractional derivative of order α of u is the function of
Lq(0, T ;X) defined by

Dα
0,tu :=

d

dt
{g1−α ∗ u}.

In the above, W 1,q(0, T ;X) denotes the space of functions belonging
to Lq(0, T ;X) whose first order derivative (in the sense of distributions)
belongs to Lq(0, T ;X).

Proposition 2.2. Let 1 ≤ q < ∞, α ∈ (0, 1) and u ∈ Lq(0, T ;X). If
u admits a fractional derivative in Lq(0, T ;X), then

u = (g1−α ∗ u)(0)gα + gα ∗Dα
0,tu in Lq(0, T ;X). (4)

Moreover, if α ≤ 1− 1
q , then (g1−α ∗ u)(0) = 0.

Any function u satisfying the assumptions of Proposition 2.2 has, in
some sense, a weak singularity at t = 0. Indeed, let us assume that u = vgβ
where v ∈ X \ {0} and β > 0. Then by (3), u belongs to Lq(0, T ;X) and
has a α-derivative in Lq(0, T ;X) iff β > 1− 1

q or β = α.

P r o o f o f Proposition 2.2. Equality (4) is well known (see for instance
[5, Proposition 3.4]). In order to prove the second assertion, we observe
that gα does not belong to Lq(0, T ) if α ≤ 1 − 1

q . Thus we must have

(g1−α ∗ u)(0) = 0. �
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Let us now focus on the weak fractional derivative of vector-valued
functions. The starting point is the following standard integration by-part
formula.

Proposition 2.3. [5, Proposition 3.1] Let α ∈ (0, 1), f ∈ L1(0, T ;X)
and ψ ∈ C1([0, T ]). Assume that f admits a derivative of order α in
L1(0, T ;X). Then∫ T

0
Dα

0,tf(t)ψ(t) dt = −
∫ T

0
f(t)Dα

t,Tψ(t) dt+
[
g1−α ∗ f ψ

]T
0

in X, (5)

where

Dα
t,Tψ(t) :=

∫ T

t
g1−α(y − t)ψ′(y) dy, ∀t ∈ [0, T ],

and ψ′ := d
dtψ denotes the , of ψ. Moreover, if in addition ψ(0) = ψ(T ) = 0,

then ∥∥∥∫ T

0
f(t)Dα

t,Tψ(t) dt
∥∥∥ ≤ g2−α(T )‖f‖L1(0,T ;X)‖ψ′‖L∞(0,T ). (6)

This property allows us to define fractional derivative in the sense of
distributions. Indeed, (6) shows that the linear map

D(0, T )→ X, ϕ �→ −
∫ T

0
f(t)Dα

t,Tϕ(t) dt

is a vector-valued distribution, whose order is (at most) 1. The set of
distributions with values in X is denoted by D′(0, T ;X). That allows us to
set this definition.

Definition 2.4. Let α ∈ (0, 1), q ∈ [1,∞) and f ∈ Lq(0, T ;X).
Then the weak derivative of order α of f is the vector-valued distribution,
denoted by Dα

0,tf , and defined, for all ϕ ∈ D(0, T ), by

〈Dα
0,tf, ϕ〉 = −

∫ T

0
f(t)Dα

t,Tϕ(t) dt in X.

If we want to highlight the duality taking place in the above bracket,
we will write

〈Dα
0,tf, ϕ〉D′(0,T ;X),D(0,T )

instead of 〈Dα
0,tf, ϕ〉.

Clearly, the weak fractional derivatives are natural extensions of the
(first order) weak derivatives, also called derivatives in the sense of distri-
bution.
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Of course, the concept of weak fractional derivative extends that of the
fractional derivative given in Definition 2.3. See [5, Proposition 3.2] for
details. Finally, we recall a proposition useful for passing to the limit in
fractional derivatives.

Proposition 2.4. [5, Proposition 3.3] Let α ∈ (0, 1), V be a real
Banach space, q ∈ [1,∞), and f ∈ Lq(0, T ;V ′). We assume that f admits
a derivative of order α in Lq(0, T ;V ′). Then, for each v in V , 〈f, v〉V ′,V
admits a derivative of order α in Lq(0, T ) and

〈Dα
0,tf(·), v〉V ′,V = Dα

0,t

{〈f, v〉V ′,V
}
, in Lq(0, T ). (7)

Here, V ′ denotes the dual space of V and 〈·, ·〉V ′,V the corresponding
duality bracket.

3. Fractional spaces

In this section, we introduce the functional framework for solving frac-
tional semilinear equations. Let X,Y be real Banach spaces such that X is
continuously embedded into Y . Also, let T > 0, α ∈ (0, 1) and p, q ∈ [1,∞).
Then we introduce the following space

Wα
p,q(0, T ;X,Y ) :=

{
u ∈ Lp(0, T ;X) : Dα

0,tu ∈ Lq(0, T ;Y )
}

(1)

and

0W
α
p,q(0, T ;X,Y ) := {u ∈Wα

p,q(0, T ;X,Y ) : (g1−α∗u)(0) = 0 in Y
}
. (2)

The space W 1
p,q(0, T ;X,Y ) is the standard Sobolev space used for solv-

ing non-linear PDE’s by the Galerkin method (see for instance [13]). There-
fore, Wα

p,q(0, T ;X,Y ) are the “simplest” spaces we can think of when solving
(19).

In (1), Dα
0,tu is understood in the sense of distribution, i.e. in the

sense of Definition 2.4. Alternatively, Wα
p,q(0, T ;X,Y ) may be defined

trough Definition 2.3, as the set of functions in Lp(0, T ;X) which admits a
fractional derivative in Lq(0, T ;Y ).

Equipped with the norm

‖u‖Wα :=
(‖u‖2Lp(0,T ;X) + ‖Dα

0,tu‖2Lq(0,T ;Y )

)1/2
, (3)

it is clear that Wα
p,q(0, T ;X,Y ) and 0W

α
p,q(0, T ;X,Y ), are Banach spaces.

We start by a density result. As far as the above fractional spaces are
considered, such results are quite uncommon in the literature (see however
[9, Theorem 39]). The following theorem allows to extend the coercivity
result of [7] from an Hilbertian setting into Banach setting.
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Theorem 3.1. Let X,Y be real Banach spaces such that X is contin-
uously embedded into Y and, for p, q ∈ [1,∞), let

u ∈ 0W
α
p,q(0, T ;X,Y ). (4)

Then there exists a sequence (un)n≥1 in C∞([0, T ];X) such that un(0) = 0
for each n, and

un → u, in 0W
α
p,q(0, T ;X,Y ). (5)

To prove this theorem we use the following lemma, whose proof can be
found in [14].

Lemma 3.1. Let T > 0 and u ∈ L1
loc(R;X) be a causal function such

that u|[0,T ]
belongs 0W

α
p,q(0, T ;X,Y ). Then, for each h > 0, u(· − h) lies in

0W
α
p,q(0, T ;X,Y ) and

u(· − h) −−−→
h→0

u, in Wα
p,q(0, T ;X,Y ).

P r o o f of Theorem 3.1. By Lemma 3.1 we may assume that there
exists h > 0 such that u = 0 a.e. on [0, h]. For each integer n ≥ 1, let us
choose ρn : R→ R to be a mollifier function such that

suppρn ⊆ [0, h], ∀n ≥ 1, (6)

where suppρn denotes the support of ρn. Let

ũ :=

{
u on [0, T ]

0 elsewhere
, (7)

and define

un := ρn ∗ ũ ∈ Lp(R,X). (8)

We observe that un ∈ C∞(R;X) and un(0) = 0 by (6). Firstly, it is
well known that the restriction of un converges towards u in Lp(0, T ;X).
Secondly, let us show that

Dα
0,t

(
un|[0,T ]

)→ Dα
0,tu in Lq(0, T ;Y ). (9)

For, let

F :=

{
Dα

0,tu on [0, T ]

0 elsewhere
.

For each n ≥ 1, the function

vn := ρn ∗ gα ∗ F (10)
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lies in L1
loc(R;Y ) and satisfies, according to [6, Lemma 2.2] or [2, Chap I.5],

g1−α ∗ vn = g1−α ∗ ρn ∗ gα ∗ F
= g1−α ∗ gα ∗ ρn ∗ F
= g1 ∗ ρn ∗ F.

Recalling that g1 is the causal function equal to 1 a.e. on [0,∞), we
get by differentiability

d

dt
{g1−α ∗ vn} = ρn ∗ F in Lq(R;Y ). (11)

Whence, since F = Dα
0,tu on [0, T ],

Dα
0,t

(
vn|[0,T ]

)
=

d

dt
{g1−α ∗ vn}|[0,T ]

−−−→
n→∞ Dα

0,tu in Lq(0, T ;Y ). (12)

Besides, since gα ∗ F is supported in [0,∞[, one has for a.e. t ∈ [0, T ],

vn(t) =

∫ t

0
ρn(t− y)(gα ∗ F )(y) dy,

and, by definition of F ,

(gα ∗ F )|[0,T ]
= gα ∗Dα

0,tu = u in Lq(0, T ;Y ),

thanks to Proposition 2.2 and the fact that (g1−α ∗ u)(0) = 0, since u = 0
a.e. on [0, h]. Thus, in view of (8),

vn|[0,T ]
= un|[0,T ]

,

so that (9) follows from (12). That completes the proof of the theorem. �
Let us now turn our attention to time fractional inequalities. For, let

X be a real Banach space densely and continuously embedded into a real
Hilbert space H. Then X is a Banach subspace of its dual space X ′ and

〈v, ·〉X′,X = (v, ·)H , ∀v ∈ X,

where the bracket denotes the duality between X ′ and X, and (·, ·)H the
inner product of H. By [7, Proposition 2.18], any u in W 1,1(0, T ;H) with
u(0) = 0, satisfies

1

2
g1−α ∗ ‖u(·)‖2H (t) ≤

∫ t

0

(
Dα

0,tu(s), u(s)
)
H
ds, ∀t ∈ [0, T ]. (13)

Then combining Theorem 3.1 and (13), we get easily the following result.

Corollary 3.1. For X, H as above, let p ≥ 2 whose conjugate
exponent is denoted by p′. Assume that

u ∈ 0W
α
p,p′(0, T ;X,X ′). (14)

Then, for each t ∈ [0, T ],
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1

2
g1−α ∗ ‖u(·)‖2H (t) ≤

∫ t

0

〈
Dα

0,tu(s), u(s)
〉
X′,X ds. (15)

That corollary will be useful to get uniqueness results. Regarding
existence, the following proposition will be used.

Proposition 3.1. Let X, H as above, α ∈ (0, 1) and p ≥ 2 be such
that α > 1/p′. Assume

u ∈Wα
p,p′(0, T ;X,X ′), (16)

and (g1−α ∗ u)(0) ∈ X. Then∫ T

0

〈
Dα

0,tu(t), u(t) − (g1−α ∗ u)(0)gα(t)
〉
X′,X dt ≥ 0.

P r o o f. Set for simplicity v := (g1−α ∗ u)(0). Since α > 1/p′, the
function u−vgα belongs to Lp(0, T ;X). Moreover, for each t ∈ [0, T ], there
holds

g1−α ∗ (u− vgα)(t) = g1−α ∗ u(t)− v −−−→
t→0+

0, in X ′.

Hence, u(t) − vgα lies in 0W
α
p,p′(0, T ;X,X ′) and Dα

0,t(u − vgα) = Dα
0,tu.

Then the assertion follows from Corollary 3.1. �

The following compactness result is proved in [7] for Caputo’s derivati-
ves. We just adapt their proof to our framework.

Corollary 3.2. Let X ⊂ X0 ⊂ Y be Banach spaces such that
X is compactly embedded into X0. Let α ∈ (0, 1) and p > 1. Then
Wα

p,1(0, T ;X,Y ) is compactly embedded into Lr(0, T ;X0), for all r ∈ [1, p).

P r o o f. Let B(0, R) denote the closed ball of Wα
p,1(0, T ;X,Y ) with

radius R > 0 and center 0. Since B(0, R) is bounded in Lp(0, T ;X), it is
enough to prove, according to classical Simon’s result [3, Theorem 6], that
for each τ ∈ (0, T ) and h ∈ [0, T − τ ],

sup
u∈B(0,R)

‖u(·+ h)− u(·)‖L1(0,τ ;Y ) −−−→
h→0

0 (17)

For, by Proposition 2.2, we have

u = gα(·) (g1−α ∗ u)(0) + gα ∗Dαu in L1(0, T ;Y ).

Thus, for all h ∈ [0, T − τ ] such that h ≤ 1, one has, for a.e. t ∈ [0, τ ],
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u(t+ h)− u(t) =
(
gα(t+ h)− gα(t)

)
g1−α ∗ u(0)

+

∫ t

0

(
gα(t+ h− y)− gα(t− y)

)
Dαu(y) dy

+

∫ t+h

t
gα(t+ h− y)Dαu(y) dy. (18)

Let us estimate the first term in the right hand side of the above
equation. Since W 1,1(0, T ;X,Y ) is embedded into C([0, T ], Y ), we have

‖g1−α ∗ u‖2C([0,T ],Y ) ≤ C‖g1−α ∗ u‖2L1(0,T,X) + C‖Dαu‖2L1(0,T,Y ).

With (2) and u ∈ B(0, R), we get

‖g1−α ∗ u‖C([0,T ],Y ) ≤ C
(‖g1−α‖2L1(0,T ) + 1)1/2R.

Besides,∫ τ

0

∣∣gα(t+ h)− gα(t)
∣∣ dt = gα+1(τ)− gα+1(τ + h) + gα+1(h)

≤ gα+1(h),

since gα+1 is increasing. There result that the first term is bounded in
L1(0, τ, Y ) by C(R)gα+1(h), for some constant C(R) independent of u and
h.

Regarding the second term, its L1(0, τ, Y )-norm is bounded by∫ τ

0

∫ t

0

∣∣gα(t+ h− y)− gα(t− y)
∣∣‖Dαu(y)‖Y dy dt

≤
∫ τ

0
‖Dαu(y)‖Y dy

∫ τ

y
gα(t− y)− gα(t+ h− y) dt,

by Fubini’s Theorem. Moreover,∫ τ

y
gα(t− y)− gα(t+ h− y) dt = gα+1(τ − y)− gα+1(τ + h− y) + gα+1(h)

≤ gα+1(h),

since gα+1 is increasing. Thus second term is bounded in L1(0, τ, Y ) by
Rgα+1(h).

We proceed in the same way for the third term of (18). Its L1(0, τ, Y )-
norm is bounded by∫ τ+h

0
‖Dαu(y)‖Y dy

∫ y

y−h
gα(t+ h− y) dt ≤ Rgα+1(h).

Finally, (17) holds which completes the proof of the theorem. �
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4. Time fractional semilinear heat equations

Let n be a positive integer, Ω be a bounded open subset of Rn, T > 0,
and 0 < α < 1. The problem under consideration is⎧⎪⎪⎪⎨⎪⎪⎪⎩

Find u : [0, T ]× Ω→ R such that

Dα
0,tu−Δu+ f(u) = 0 on (0, T ]× Ω

u = 0 on (0, T ]× ∂Ω

(g1−α ∗ u)(0, ·) = v on Ω.

(19)

Here v : Ω → R is the initial condition and f : R → R is a non-linear
function with polynomial growth at infinity. We will assume that f has
the convenient sign at ±∞ in order to avoid blow-up phenomena and get
global in time solutions. These assumptions on f are standard in pattern
formation equations (see [12]).

We will solve (19) by the Galerkin method. In the standard case
where α = 1, that method consists in solving first a finite dimensional
approximated problem, and then pass to the limit. In the fractional case, it
turns out that some extra condition is needed for the solvability of the
approximated problem . Roughly speaking, that condition looks like a
growth condition on the derivative of f (see [14]). However, it is not needed
to pass to the limit. Also such assumption is not needed in the case α = 1.

In order to avoid that extra assumption, we truncate the non-linear
term f . Then we solve the truncated fractional PDE by projecting onto
a finite dimensional space. Finally, we pass to the limit in the truncated
problem. Hence, we will first solve (19) for sub-linear f . The general case
will be investigated in the second subsection.

4.1. The Hilbertian case. When f : R → R has a sub-linear growth,
we may work with Hilbert spaces. Thus we have only to control the
fractional derivative. More precisely, we will assume that there exists a
positive constant C such that∣∣f(u)− f(v)

∣∣ ≤ C
∣∣u− v

∣∣ (20)

f(u)u ≥ −C, ∀u, v ∈ R. (21)

Recalling the notation (1) for fractional spaces, the problem under con-
sideration is then⎧⎪⎨⎪⎩

Find u ∈Wα
2,2

(
0, T ;H1

0 (Ω),H
−1(Ω)

)
such that

Dα
0,tu−Δu+ f(u) = 0 in L2

(
0, T ;H−1(Ω)

)
(g1−α ∗ u)(0) = v in L2(Ω).

(22)

Theorem 4.1. Assume v ∈ H1
0 (Ω) and f satisfies (20), (21).
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(i) If α ∈ (12 , 1), then (22) has a unique solution.

(ii) If α ∈ (0, 12 ], then
(a) if v �= 0 then (22) has no solution;
(b) if v = 0 then (22) has a unique solution.

P r o o f. By Proposition 2.2, we derive that (22) has no solution if
α ≤ 1/2 and v �= 0. On the other hand, if v = 0 then the solvability of
(22) can be achieved as in the case α ∈ (12 , 1). Thus we will only consider
in the sequel the case where α > 1/2.

Existence of a solution. We will implement the Galerkin approximation
method. For, let us introduce some notation. Denote by (·, ·)0 the inner
product of L2(Ω) and

A : H1
0 (Ω)→ H−1(Ω), u �→ −Δu.

For k = 1, 2, . . . , let (wk, λk) ∈ H1
0 (Ω)×(0,∞) be a kth mode of A such that

(wk)k≥1 forms an Hilbertian basis of L2(Ω). For n = 1, 2, . . . , we denote by
Fn the vector space generated by w1, . . . , wn. Finally, we decompose the
initial condition v, by writing

v =
∑
k≥1

bkwk in H1
0 (Ω),

and we set

vn :=

n∑
k=1

bkwk. (23)

Whence vn ∈ Fn and vn → v in H1
0 (Ω).

(i) An approximated problem . For each integer n ≥ 1, our approximated
problem takes the form⎧⎪⎨⎪⎩

Find un ∈ L2(0, T ;Fn) such that Dα
0,tun ∈ L2(0, T, Fn)(

Dα
0,tun, w)0 +

(∇un,∇w)0 + (
f(un), w)0 = 0 in L2(0, T ), ∀w ∈ Fn

(g1−α ∗ un)(0) = vn.
(24)

Thanks to (20), we may show by standard methods in fractional calculus
(see [14] for details) that the ordinary fractional differential equation (24)
is uniquely solvable.

(ii) Estimates. Since α > 1/2 and vn ∈ H1
0 (Ω), w := un− gαvn is a suitable

test-function for (24), hence
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(
Dα

0,tun, un − gαvn)0 +

∫
Ω
|∇un|2 dx+

∫
Ω
f(un)un dx

= gα

∫
Ω
∇un∇vn dx+

∫
Ω
f(un)gαvn dx,

in L2(0, T ). Since un belongs to Wα
2,2(0, T ;L

2(Ω), L2(Ω)), Proposition 3.1
yields that the time integral of the term involving the fractional derivative
is non negative. Then, using (20), (21) and the boundedness of (vn) in
H1

0 (Ω), we derive by standard estimates

‖un‖L2(0,T ;H1
0 (Ω)) ≤ C (25)

‖Dα
0,tun‖L2(0,T ;H−1(Ω)) ≤ C (26)

‖f(un)‖L2(0,T ;L2(Ω)) ≤ C. (27)

(iii) Passage to the limit. According to (25), there exists u ∈ L2(0, T ;H1
0 (Ω))

such that up to a subsequence

un ⇀ u in L2(0, T ;H1
0 (Ω))-weak.

Moreover, by Corollary 3.2, Wα
2,1(0, T ;H

1
0 (Ω),H

−1(Ω)) is compactly

embedded into L1(0, T ;L2(Ω)). Thus, up to a subsequence,

un → u a.e. on [0, T ]× Ω.

Then, by continuity of f ,

f(un)→ f(u) a.e. on [0, T ]× Ω.

Thus, using also (27), Lion’s lemma [4, Lemma I-1.3] yields

f(un) ⇀ f(u) in L2(0, T ;L2(Ω)).

(iv) Solvability of the equation of (22). Let us show that

Dα
0,tu−Δu+ f(u) = 0 in L2(0, T ;H−1(Ω)).

For, let k ≥ 1 be fixed and n ≥ k. For each ϕ ∈ D(0, T ), we derive from
(24), Proposition 2.4 and Proposition 2.3 that〈 ∫ T

0
−un(t)Dα

t,Tϕ(t) +
(
Aun − f(un)

)
ϕ(t) dt, wk

〉
H−1(Ω),H1

0 (Ω)
= 0.

Passing to the limit in n and using Definition 2.4, we get

Dαu+Au+ f(u) = 0 in D′(0, T ;H−1(Ω)).

Since Au and f(u) belong to L2(0, T ;H−1(Ω)), we derive that u lies in
Wα

2,2

(
0, T ;H1

0 (Ω),H
−1(Ω)

)
and
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Dαu+Au+ f(u) = 0 in L2
(
0, T ;H−1(Ω)

)
. (28)

(v) Initial condition. Let 1 ≤ k ≤ n and ψ ∈ H1(0, T ) with ψ(T ) = 0.
Then, starting from (28) and using Proposition 2.4 and Proposition 2.3, we
derive

−
∫ T

0

(
u(t), wk

)
0
Dα

t,Tψ(t) dt−
(
(g1−α ∗ u)(0), wk

)
0
ψ(0)

+

∫ T

0
〈Au,wk〉H−1(Ω),H1

0 (Ω)ψ(t) dt+

∫ T

0

(
f(u(t)), wk

)
0
ψ(t) dt = 0. (29)

Besides, going back to the equation of (24) and proceeding in the same
way, we get

−
∫ T

0
(un(t), wk)0D

α
t,Tψ(t) dt−

(
(g1−α ∗ un)(0), wk

)
0
ψ(0)

+

∫ T

0
〈Aun, wk〉H−1(Ω),H1

0 (Ω)ψ(t) dt+

∫ T

0

(
f(un(t)), wk

)
0
ψ(t) dt = 0.

We pass to the limit to get

−
∫ T

0
(u(t), wk)0D

α
t,Tψ(t) dt− (v,wk)0ψ(0)

+

∫ T

0
〈Au,wk〉H−1(Ω),H1

0 (Ω)ψ(t) dt+

∫ T

0

(
f(u(t)), wk

)
0
ψ(t) dt = 0. (30)

Comparing (29) with (30), we deduce that (g1−α ∗ u)(0) = v.

Uniqueness for Problem (22). Let u1, u2 be two solutions to (22). Then
u := u1 − u2 satisfies

Dα
0,tu−Δu+ f(u1)− f(u2) = 0 in L2(0, T ;H−1(Ω)) (31)

(g1−α ∗ u)(0) = 0. (32)

Let τ ∈ (0, T ]. Testing (31) with u, we derive with the Lipschitz as-
sumption (20)∫ τ

0
〈Dα

0,tu(t), u(t)〉H−1(Ω),H1
0 (Ω) dt ≤ C

∫ τ

0
‖u(t)‖2L2(Ω) dt. (33)

By (32), u lies in 0W
α
2,2(0, T ;H

1
0 (Ω),H

−1(Ω)). Then Corollary 3.1 yields

g1−α ∗ ‖u(.)‖2L2(Ω)(τ) ≤ 2C

∫ τ

0
‖u(t)‖2L2(Ω)dt. (34)

If there exists τ ∈ (0, T ] such that u = 0 a.e. on [0, τ ] then we set

t0 := sup{τ ∈ (0, T ] : u = 0 a.e. on [0, τ ]}.
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Otherwise, we put t0 := 0. Now, in order to get uniqueness, it is enough to
show that t0 = T . Arguing by contradiction, let us assume that t0 ∈ [0, T ).
Then for each τ ∈ (t0, T ], we have∫ τ

t0

‖u(t)‖2L2(Ω) dt =

∫ τ

0
‖u(t)‖2L2(Ω) dt �= 0.

Then going back to (34) and using the decay of g1−α, we derive

g1−α(τ − t0)

∫ τ

t0

‖u(t)‖2L2(Ω) dt ≤ 2L

∫ τ

t0

‖u(t)‖2L2(Ω)dt.

The condition
∫ t
t0
‖u(y)‖2L2(Ω) dy �= 0 leads to the boundedness of

τ �→ g1−α(τ − t0) on (t0, T ]. That impossibility shows that t0 = T . The
proof of the theorem is now completed. �

4.2. The polynomial growth case. We will assume that the reaction
term f has a polynomial growth at infinity. Thus we cannot work no more
with fractional Hilbert spaces. However, our functional framework remains,
in some sense Hilbertian, since the initial condition is constrained to stay
in a subspace of L2(Ω).

Let n be a positive integer, Ω be a bounded open subset of Rn, and
0 < α < 1. Let f : R→ R satisfy, for some positive constants C, c and p

f(u)u ≥ c|u|p+1 − C (35)

|f(u)| ≤ C|u|p + C, ∀u ∈ R (36)

f is non decreasing on some neighborhood of −∞ and ∞ (37)

f ∈W 1,1
loc (R). (38)

The latter condition means that f is a locally Lipschitz function on R.
Also, (37) means that there exists some M0 ∈ (0,∞) such that f is non
decreasing on (−∞,−M0] and on [M0,∞).

Let us denote by (p + 1)′ the conjugate exponent of p + 1, that is,
(p+ 1)′ ∈ (1,∞) and

(p + 1)′ :=
p+ 1

p
⇐⇒ 1

(p + 1)′
+

1

p+ 1
= 1.

The problem under consideration is:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Find u ∈ L2

(
0, T ;H1

0 (Ω)
) ∩ Lp+1

(
0, T ;Lp+1(Ω)

)
such that

Dα
0,tu ∈ L2

(
0, T ;H−1(Ω)

)
+ L(p+1)′(0, T ;L(p+1)′(Ω)

)
Dα

0,tu−Δu+ f(u) = 0 in L2
(
0, T ;H−1(Ω)

)
+L(p+1)′(0, T ;L(p+1)′(Ω)

)
(g1−α ∗ u)(0) = v.

(39)



770 Y. Ouedjedi, A. Rougirel, K. Benmeriem

Let us notice that (39) is a natural extension of the standard case where
α = 1. See for instance [12], [4] or [8].

Moreover, for each

u ∈ Lp+1
(
0, T ;Lp+1(Ω)

)
,

(36) and the Hölder inequality yield that

f(u) ∈ L(p+1)′(0, T ;L(p+1)′(Ω)
)
. (40)

Hence the three terms involved in the equation of Problem (39) belong to

L2
(
0, T ;H−1(Ω)

)
+ L(p+1)′(0, T ;L(p+1)′(Ω)

)
.

If p ≥ 1 and

u ∈ L2
(
0, T ;H1

0 (Ω)
)
, Dα

0,tu ∈ L2
(
0, T ;H−1(Ω)

)
+L(p+1)′(0, T ;L(p+1)′(Ω)

)
,

then u has a fractional derivative in L(p+1)′(0, T ;H−1(Ω) + L(p+1)′(Ω)).

Hence g1−α ∗ u lies in C([0, T ];H−1(Ω) +L(p+1)′(Ω)). Therefore the initial
condition in Problem (39) is meaning full.

Now, we may state our main result.

Theorem 4.2. Let us assume the following:

(i) α ∈ (0, 1), p ∈ [1,∞);
(ii) v ∈ H1

0 (Ω) ∩ Lp+1(Ω);
(iii) f satisfies (35)-(38).

Then,

(a) if α > p
p+1 then (39) has a unique solution;

(b) if α ≤ 1
p+1 then

(b-1) if v �= 0 then (39) has no solution;
(b-2) if v = 0 then (39) has a unique solution.

For sake of simplicity, we set

Vp := H1
0 (Ω) ∩ Lp+1(Ω), (41)

and denote its dual space by V ′p .

P r o o f of Theorem 4.2. Let α ≤ 1
p+1 and u be a solution to (39). Since

p ≥ 1, we have (p + 1)′ ≤ 2. Thus u and Dαu belong to L(p+1)′(0, T ;V ′p).
Hence Proposition 2.2 yields

(g1−α ∗ u)(0)gα ∈ L(p+1)′(0, T ;V ′p).

Since gα �∈ L(p+1)′(0, T ), the initial condition v must be trivial. In that
case, existence and uniqueness may be achieved as in the case α > p

p+1 . So,

in the sequel of that proof, we will assume that α > p
p+1 .
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Existence of a solution.
(i) A truncated problem . For all positive integer M ≥ M0, we define fM :
R→ R by

fM(u) =

⎧⎪⎨⎪⎩
f(u) if |u| ≤M

f(M) if u > M

f(−M) if u < −M.

(42)

By (35), one has for all M ≥M0

fM (u)u ≥ −C, ∀u ∈ R, (43)

where C is the constant appearing in (35). Then, according to Theorem
4.1, the following truncated problem⎧⎪⎨⎪⎩

Find uM ∈Wα
2,2

(
0, T ;H1

0 (Ω),H
−1(Ω)

)
such that

Dα
0,tuM −ΔuM + fM (uM ) = 0 in L2(0, T ;H−1(Ω))

(g1−α ∗ uM )(0) = v in L2(Ω)

(44)

has a unique solution since α > p
p+1 ≥ 1/2. Observe that fM converges

toward f uniformly on compact sets of R. Thus it is expected that, in the
limit M →∞, uM gives a solution to (39).

(ii) Estimates. Arguing as in the proof of Theorem 4.1, we get, using in
particular Proposition 3.1∫ T

0

∫
Ω
|∇uM |2 + fM (uM )uM dxdt ≤ C + C

∫ T

0

∫
Ω
fM (uM )gαv dxdt.

The Young inequality and Lemma 4.1 below lead to∣∣fM (uM )gαv
∣∣ ≤ ε

∣∣fM(uM )
∣∣(p+1)′

+Cε

∣∣gαv∣∣p+1

≤ εC0fM(uM )uM + εC0 + Cε

∣∣gαv∣∣p+1
, ∀M ≥M0,

where C0 and M0 are the constants appearing in Lemma 4.1. Thus∫ T

0

∫
Ω
|∇uM |2 + fM(uM )uM dxdt ≤ C. (45)

Also, by (45) and Lemma 4.1 again,∫ T

0

∫
Ω
|fM (uM )|(p+1)′ dxdt ≤ C. (46)

Let us now show that the sequence (DαuM )M≥0 remains bounded in
L1(0, T, V ′p). Indeed, testing (44) with w ∈ Vp, and using the Hölder in-
equality, we arrive to∣∣〈DαuM , w〉H−1(Ω)

∣∣ ≤ ‖uM‖H1
0 (Ω)‖w‖H1

0 (Ω)+‖fM (uM )‖L(p+1)′ (Ω)‖w‖Lp+1(Ω).
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Moreover, by density, H−1(Ω) is a subspace of V ′p. Thus, with (45) and
(46) ∫ T

0
‖DαuM‖V ′

p
dt ≤ C, ∀M ≥M0. (47)

(iii) Passage to the limit. According to (45) and (46), Corollary 3.2 yields
the existence of some u ∈ L1(0, T ;L2(Ω)) such that up to a subsequence,

uM −−−−→
M→∞

u a.e. on [0, T ]× Ω. (48)

Since fM converges toward f uniformly on compact sets of R, there
holds fM(uM ) → f(u) a.e. on [0, T ] × Ω. Thus, using also (43) and (45),
Fatou’s lemma leads to ∫ T

0

∫
Ω
f(u)udxdt ≤ C.

Thus, with (35), we get that u ∈ Lp+1(0, T ;Lp+1(Ω)), and (see (40)) that

f(u) lies in L(p+1)′(0, T ;L(p+1)′ (Ω)). Then Lion’s lemma yields

fM(uM ) ⇀ f(u) in L(p+1)′(0, T ;L(p+1)′ (Ω)).

For any w ∈ Vp and ϕ ∈ D(0, T ), testing (44) with wϕ and using
Proposition 2.4, we get in a standard way

Dα
0,tu−Δu+ f(u) = 0 in L2

(
0, T ;H−1(Ω)

)
+L(p+1)′(0, T ;L(p+1)′(Ω)

)
.

(49)

(v) Initial condition. Since (p + 1)′ ≤ 2, (49) holds in L1(0, T ;V ′p). Then

testing (49) with wψ for any w ∈ Vp and ψ ∈ H1(0, T ) such that ψ(T ) = 0,
we derive, by applying Proposition 2.4 in L1(0, T ;V ′p),

−
∫ T

0
〈u(t), w〉V ′

p ,VpD
α
t,Tψ(t) dt− 〈(g1−α ∗ u)(0), w〉V ′

p ,Vpψ(0)

+

∫ T

0
〈Au,w〉H−1(Ω),H1

0 (Ω)ψ(t) dt+

∫ T

0

∫
Ω
f
(
u(t)

)
wψ(t) dxdt = 0. (50)

On the other hand arguing as in the proof of Theorem 4.1, we obtain

−
∫ T

0
(u(t), w)0D

α
t,Tψ(t) dt− (v,w)0ψ(0)∫ T

0
〈Au,w〉H−1(Ω),H1

0 (Ω)ψ(t) dt+

∫ T

0

∫
Ω
f
(
u(t)

)
wψ(t) dxdt = 0. (51)

Comparing (50) with (51), we deduce that (g1−α ∗ u)(0) = v.
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Uniqueness for Problem (39). We proceed as in the proof of Theorem
4.1. The nonlinear term is controlled in a usual way, by using the following
property. There exists M > 0 such that(

f(u)− f(v)
)
(u− v) ≥ 0, ∀|u| ≥M, ∀v ∈ R.

See [14] for details. The proof of the theorem is now completed. �
If p > 1, then the theorem tells nothing when 1

p+1 < α ≤ p
p+1 . More

regularity on Dα
0,tu allows to fill that gap. Indeed, let α ≤ p

p+1 and u be a

solution to (39) such that

Dα
0,tu ∈ L(p+1)′(0, T ;H−1(Ω) + L(p+1)′(Ω)

)
.

Then, according to the proof of Theorem 4.2, v = 0; so that (39) has a
unique solution for v = 0 and α ≤ p

p+1 .

The following result is used in the proof of Theorem 4.2. We refer to
[14] for its proof.

Lemma 4.1. Let f : R → R satisfy (35), (36) with p > 0 and fM
defined by (42). Then there exist M0 > 0 and C0 > 0 such that

|fM (u)| p+1
p ≤ C0fM (u)u+ C0, ∀u ∈ R, ∀M ≥M0.
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Basel (2005).

[14] Y. Ouedjedi, Equation de champ de phase cristallin avec dérivée tem-
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