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Abstract

By observing that the fractional Caputo derivative of order α ∈ (0, 1)
can be expressed in terms of a multiplicative convolution operator, we in-
troduce and study a class of such operators which also have the same self-
similarity property as the Caputo derivative. We proceed by identifying a
subclass which is in bijection with the set of Bernstein functions and we
provide several representations of their eigenfunctions, expressed in terms
of the corresponding Bernstein function, that generalize the Mittag-Leffler
function. Each eigenfunction turns out to be the Laplace transform of
the right-inverse of a non-decreasing self-similar Markov process associated
via the so-called Lamperti mapping to this Bernstein function. Resorting
to spectral theoretical arguments, we investigate the generalized Cauchy
problems, defined with these self-similar multiplicative convolution opera-
tors. In particular, we provide both a stochastic representation, expressed
in terms of these inverse processes, and an explicit representation, given in
terms of the generalized Mittag-Leffler functions, of the solution of these
self-similar Cauchy problems. This work could be seen as an-in depth anal-
ysis of a specific class, the one with the self-similarity property, of the
general inverse of increasing Markov processes introduced in [15].
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1. Introduction

The fractional Caputo derivative of order α ∈ (0, 1) which is usually
defined in terms of the additive convolution operator ∗ and the function

hα(y) =
y−α

Γ(1−α) , y > 0, as follows

Cdα

dtα
f(t) = f ′ ∗ hα(t) = 1

Γ(1− α)

∫ t

0

f ′(y)
(t− y)α

dy (1.1)

plays a central and growing role in various contexts, see e.g. the mono-
graphs [23, 26, 36, 40]. In particular, in analysis, it appears in the fractional
Cauchy problem, where one replaces the derivative of order 1 by the frac-

tional one, i.e.
Cdα

dtα f = Lf , with L the infinitesimal generator of a strong
Markov process X, see [43] for the introduction of this problem in relation
to some Hamiltonian chaotic dynamics of particles given in terms of stable
processes.

Bauemer and Meerschaert in [2] showed the intriguing fact that the so-
lution of this problem admits a stochastic representation which is given in
terms of a non-Markovian process defined as the Markov process X time-
changed by the inverse of an α-stable subordinator. This offers another
fascinating connection between stochastic and functional analysis. Observ-
ing that the mapping hα is the tail of the Lévy measure of this stable
subordinator, it is then natural to generalize the fractional operator as an
additive convolution operator by replacing the function hα with the tail of
the Lévy measure of any subordinator. It turns out that this interesting
program has been developed recently by Toaldo [41] and the corresponding
generalized fractional Cauchy problem has, when this tail has infinite mass,
a similar stochastic representation where the time-changed process is the
inverse of the subordinator, see [41, 7], and, see the recent paper [38] where
the independency assumption is relaxed.

Another important feature of the fractional Caputo derivative is its
self-similarity property

Cdα

dtα
dcf(t) = cα

Cdα

dtα
f(ct), c, t > 0, (1.2)

where dcf(t) = f(ct) is the dilation operator. It is not difficult to con-
vince yourself that this property follows from the homogeneity property of
the function hα which itself is inherited from the scaling property of the
α-stable subordinator, and thus it does not hold for any ∗-convolution op-
erators associated to any other subordinators. This property is appealing
from a modelling viewpoint as it has been observed in many physical and
economics phenomena [11] and is also central in (non-trivial) limit theorems
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for any properly normalized stochastic processes, see [19]. Two questions
then arise naturally:

(1) Can one define a class of linear operators enjoying the same self-
similarity property (1.2) as the fractional derivative?

(2) If yes, can one find a stochastic representation for the solution of
the corresponding self-similar Cauchy problem?

The aim of this paper is to provide a positive and detailed answer to each
of these questions. For (1), we observe that the fractional derivative (1.1)
admits also the representation as a multiplicative convolution operator

f ′ ∗ hα(t) = t−α

Γ(1− α)

∫ t

0
f ′(y)

(
1− y

t

)−α
dy = t−αf ′ � gα(t), (1.3)

where gα(r) =
(1−r)−α

Γ(1−α) I{0<r<1} and � stands for the multiplicative convolu-

tion operator defined for two functions f and g, whose domain is a subset
of R+, by

f � g(t) =

∫ ∞

0
f(r)g

(r

t

)
dr.

Note that it differs from the Mellin convolution operator which is defined
with respect to the measure dr/r. It is not difficult to show that the self-
similarity property (1.2) holds for any �-convolution operator of the form
(1.3) by replacing gα by any measurable function m on (0, 1). The an-
swer to the question (2) is more subtle. Indeed, we first realize that the
mapping y 	→ gα(e

−y) is the tail of the Lévy measure on R+ of a subordi-
nator. We manage to identify this subordinator as the Lévy process which
is associated, via the Lamperti transform defined in (2.3) below, to the sta-
ble subordinator seen as an increasing positive self-similar Markov process.
We then show, by a spectral theoretical approach, that the functional of
a Markov process X time-changed by the inverse of any increasing posi-
tive self-similar Markov process χ is the solution to a self-similar Cauchy
problem, where the multiplicative convolution is defined in terms of simple
transform of the tail of the Lévy measure of the subordinator associated,
via the Lamperti mapping, to χ. We mention that such a time-change has
already been used in Loeffen and al. [22] to provide detailed distributional
properties of the extinction time of some real-valued non-Markovian self-
similar processes. We also point out that such a time-change falls in the
framework developed by Hernandez-Hernandez et al. [14] and Kolokoltsov
[15, 16, 17] in a series of papers.

Another interesting aspect of the multiplicative convolution approach
is that it leads to some explicit representations of quantities of interest. For
instance, we shall show that the Laplace transform of the inverse process, in
this context, is expressed in terms of functions whose series representation
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is a generalization of the Mittag-Leffler function. As this latter for the
Caputo fractional operator, these functions are also eigenfunctions of the
multiplicative convolution operators.

We now recall that due to the non-locality of fractional derivatives
and integrals, fractional models provide a powerful tool for a description
of memory and hereditary properties of different substances, see e.g. Liu
et al. [21] and Podlubny [33]. Equations of fractional order appear in a
lot of physical phenomena, see e.g. Meerschaert and Sikorskii [26], and in
particular for modeling anomalous diffusions, see e.g. Benson et al. [4],
D’Ovidio [10] and Mainardi’s monograph [23]. Fractional calculus, which
defines and studies derivatives and integrals of fractional order, has been
applied in various areas of engineering, science, finance, applied mathe-
matics, and bio engineering. The fractional Cauchy problems replace the

integer time derivative by its fractional counterpart, i.e.
Cdα

dtα f = Lf . The
connection between fractional Cauchy problems and the inverse of a sta-
ble subordinator was explored by many authors, see e.g. Baeumer and
Meerschaert [2, 3], Meerschaert et al. [24], Saichev and Zaslavsky [35], Za-
slavsky [44] and Capitanelli and D’Ovidio [6], among others.

The rest of this paper is organized as follows. In Section 2, we study
some of the substantial properties of the inverse of an increasing self-similar
Markov process. In Section 3, we introduce a self-similar multiplicative con-
volution generalization of the fractional Caputo derivative. In Section 4, we
study the corresponding self-similar Cauchy problem and provide the sto-
chastic representation of its solution. Finally, to illustrate some examples,
Section 5 considers families of some self-adjoint, as well as, some non-local
and non-self-adjoint Markov semigroups.

2. Inverse of increasing self-similar Markov processes

Let χ = (χt)t≥0 be a non-decreasing self-similar Markov process of
index α ∈ (0, 1) issued from 0 and denote by ζ = (ζt)t≥0 its right-inverse,
that is, for any t ≥ 0,

ζt = inf{s > 0; χs > t}. (2.1)

Denoting the law of the process by Px when starting from x > 0, we say
that a stochastic process χ is self-similar of index α (or α-self-similar) if
the following identity

(cχc−αt,Px)t≥0
d
= (χt,Pcx)t≥0 (2.2)

holds in the sense of finite-dimensional distribution for any c > 0. Now, we
recall that Lamperti [20] identifies a one-to-one mapping between the class
of positive self-similar Markov processes and the one of Lévy processes. In
particular, one has, under Px, x > 0, that



SELF-SIMILAR CAUCHY PROBLEMS AND . . . 451

χt = x exp
(TAx−αt

)
, t ≥ 0, (2.3)

where At = inf{s > 0;
∫ s
0 exp(αTr)dr > t}. Here T is a subordinator,

that is a non-decreasing stochastic process with stationary and independent
increments and càdlàg sample paths, and thus its law is characterized by
the Bernstein function φ(u) = − logE[e−uT1 ], u ≥ 0, which in this case, for
sake of convenience in the later discussion, is expressed for any u ≥ 0, as

φ(u) = bu+ u

∫ 1

0
ru−1m(r)dr = bu+ u

∫ ∞

0
e−uym(e−y)dy (2.4)

where b ≥ 0 and r 	→ m(r) is a non-decreasing function on (0, 1) and∫ 1
0 (− ln r ∧ 1)rm(dr) < +∞, where m(r) =

∫ r
0 m(ds), r ∈ (0, 1). Note

that under this condition, the mapping y 	→ m(e−y) defined on R+, is
the tail of a Lévy measure of a subordinator. We also mention that φ as a
Bernstein function is infinitely continuously differentiable and its derivative
φ′ is completely monotone, i.e. for all n ≥ 0, (−1)n dn

dunφ(u) ≥ 0, u > 0, and
refer to the monograph [39] for a thorough account on this set of functions.
Furthermore, to ensure that χ can be started from 0, we assume further
that

E[T1] = φ′(0+) = b+

∫ 1

0

m(r)

r
dr < +∞, (2.5)

see [5, Theorem 1]. Then, we denote the set of Bernstein functions that
satisfy this condition by

B = {φ of the form (2.4) such that φ′(0+) < +∞}.
We shall also need, for any φ ∈ B, the constant

aφ = sup{u ≤ 0; |φ(u)| = ∞} ∈ (−∞, 0]. (2.6)

Note that by [37, Theorem 25.17] and after performing an integration by

parts, we have that
∫ A
0 raφ+ε−1m(r)dr < ∞ for some A ∈ (0, 1) and any

ε > 0. Moreover, the same result also yields that φ admits an analytical
extension to the half-plane {z ∈ C; �(z) > aφ}. Next, we recall from [20,
Theorem 6.1] that the characteristic operator of χ is given for at least
functions f such that f, tf ′ ∈ Cb(R+), the space of continuous and bounded
functions on R+, by

Af(t) = t−α
(
btf ′(t) +

∫ ∞

0
(f(tey)− f(t))m(de−y)

)
, (2.7)

where m(de−y) stands for the image of the measure m(dy) by the mapping
y 	→ e−y. Next, since χ has a.s. non-decreasing sample paths, this entails
that the paths of ζ, as its right-inverse, are a.s. non-decreasing. Moreover,
they are continuous if and only if the ones of χ are a.s. increasing which
from the Lamperti mapping in (2.3) is equivalent to T being a.s. increasing.
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This is well known, see e.g. [18, Section 5], to be the case when the latter
is not a compound Poisson process, that is when

φ(∞) = ∞ ⇐⇒ b > 0 or

∫ 1

A
m(dr) = ∞ for some A ∈ (0, 1). (2.8)

We also define a subset of B which will be useful in the sequel, as follows

B∂� = {φ ∈ B; aφ ≤ −α and lim
u↓0

uφ(u− α) ≤ 0}.
Note that if aφ < −α, then we always have limu↓0 uφ(u− α) = 0. We refer
to the monograph [18] for a nice account on Lévy processes. Now, for any
φ ∈ B we consider the function Wφ which is the unique positive-definite
function, i.e. the Mellin transform of a positive measure, that solves the
functional equation, for �(z) > aφ,

Wφ(z + 1) = φ(z)Wφ(z), Wφ(1) = 1. (2.9)

It is easily checked that for any integer n, Wφ(n+1) =
∏n

k=1 φ(k), see [30]
for a thorough study of this functional equation. Throughout, for a random
variable X, we use the notation

MX(z) = E[Xz]

for at least any z ∈ iR, the imaginary line, meaning that MX(z − 1) is
its Mellin transform. Next, we recall that for any integrable function f on
(0,∞), its Mellin transform is defined by

f̂(z) =

∫ ∞

0
qz−1f(q)dq

for any complex z such that this integrable is finite. We also recall that
χ is the Lamperti process of index α ∈ (0, 1) associated to the Bernstein
function φ ∈ B, and we denote by ζ = (ζt)t≥0 its right-inverse, see (2.1).
We recall that ζ was used in [22] as a time changed of self-similar Markov
processes in the investigation of their extinction time. We are now ready
to gather some substantial properties of ζ.

Proposition 2.1. Let φ ∈ B, α ∈ (0, 1), and write, for any u ≥ 0,
φα(u) = φ(αu) ∈ B.

(i) For any t > 0 and z ∈ C,

Mζt(z) =
tzα

φ′α(0+)
Γ(z)

Wφα(z)
. (2.10)

In particular, for any t > 0, z 	→ Mζt(z) in analytical on the half-plane
�(z) > aφ = inf{u > −1; |φ(u)| = ∞} ∈ (−1, 0].

(ii) ζ is 1
α -self-similar and in particular, for all q, t > 0 E[e−qζt ] = E[e−qtαζ1 ].

Moreover, for any |q| < φ(∞),
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E[e−qζ1 ] = Eφα(e
iπq) =

1

φ′α(0+)

∞∑
n=0

(−1)n
qn

nWφα(n)
, (2.11)

where Eφα extends to an analytical function on Dφ(∞) = {z ∈ C; |z| <
φ(∞)}. Consequently, the law of ζt is, for all t > 0, moment deter-
minate. Moreover, as a Laplace transform of a Radon measure, the
mapping q 	→ Eφα(e

iπq) is, when φ(∞) = ∞, completely monotone.

(iii) Furthermore, if aφα < 0, then Eφα admits the following Mellin-Barnes
integral representation, for any 0 < a < |aφα |,

Eφα(z) =
−1

φ′α(0+)
1

2πi

∫ a+i∞

a−i∞

φα(−ξ)

ξ

Γ(−ξ)Γ(1− ξ)

Wφα(1− ξ)
(−z)−ξdξ (2.12)

which is absolutely convergent on the sector {z ∈ C; | arg(−z)| < π
2 }

and q 	→ Eφα(e
iπq) ∈ C∞0 (R+), the space of infinitely continuously

differentiable functions on R+ vanishing at infinity along with their
derivatives.

(iv) Finally, assume that φα is meromorphic on the half-plane �(z) >
−p− ε for some ε > 0 with a unique and simple pole at −p. If p ∈ N

(resp. p �∈ N) and 0 <
∣∣limz→0

∏p
k=0 φα(z − k)

∣∣ < ∞ (resp. 0 < |Cp| <
∞, where Cp = limz→p(z − p)φα(−z)), then, writing C(p) = (−1)p

pWφα (−p)
(resp. C(p) = Γ(p)Γ(−p)

Wφα(1−p)Cp),
Eφα(e

iπq)
+∞∼ C(p)

φ′α(0+)
q−p

where for two functions f and g we write f
a∼ g if limx→a

f(x)
g(x) = 1.

We proceed by showing that the class of functions Eφα , which is in
bijection with the set of Bernstein functions B, encompasses some famous
special functions such as the Mittag-Leffler one and some q-series.

Example 2.1 (Mittag-Leffler function). It turns out that the function
Eφα is a generalization of the Mittag-Leffler function. Indeed, recall that
α ∈ (0, 1) and define

φα(z) =
Γ(α+ αz)

Γ(αz)
, R(z) > −1,

which is a Bernstein function, see e.g. Loeffen et al. [22]. Furthermore,
since φ′(0+) = Γ(α) < ∞, we have φ ∈ B. Then, an easy algebra yields

that Wφα(z) = Γ(αz)
Γ(α) , �(z) > 0, with Wφα(1) = 1. Therefore, by means
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of Proposition 2.1 and the recurrence relation of the gamma function, one
gets, for q ∈ R and t > 0,

Eφα(q) =
1

φ′α(0+)

∞∑
n=0

qnΓ(α)

nΓ(αn)
=

∞∑
n=0

qn

Γ(αn + 1)
= Eα(q)

where Eα is the Mittag-Leffler function. Next, since aφα = −1, (2.12) yields
that Eα admits the following Mellin-Barnes integral representation, for any
0 < a < 1,

Eα(z) = − 1

φ′α(0+)
1

2πi

∫ a+i∞

a−i∞

φα(ξ)

ξ

Γ(ξ)Γ(1− ξ)

Wφα(1− ξ)
(−z)ξdξ

= − 1

2πi

∫ a+i∞

a−i∞

Γ(ξ)Γ(1− ξ)

Γ(1− αξ)
(−z)ξdξ,

where we use the Stirling formula of the gamma function, recalled in (2.16)
below, to obtain that this integral is absolutely convergent on the sec-
tor {z ∈ C; | arg z| < (2 − α)π2 }. Next, since the gamma function is a
meromorphic function with simple poles at the non-positive integers and
z 	→ 1/Γ(z) is an entire function, we have that φα has a pole at −1
and it is meromorphic on R(z) > −1 − ε for some ε > 0. Furthermore,

0 < |limz→0 φα(z)φα(z − 1)| =
∣∣∣limz→0

Γ(αz+α)
Γ(αz−α)

∣∣∣ = ∣∣∣ Γ(α)
Γ(−α)

∣∣∣ < ∞. Thus, the

conditions of Proposition 2.1 are satisfied with p = 1, and it yields that for
any q, t > 0,

Eφα(e
iπq)

+∞∼ q−1

Γ(1− α)

which is the well-known asymptotic behavior of the Mittag-Leffler function,
see e.g. Gorenflo et al. [13, Chapter 3].

Example 2.2 (q-series). Let now φ be the Laplace exponent of a
Poisson process of parameter log q, 0 < q < 1, that is φ(u) = 1− qu, u ≥ 0,
which admits an extension as an entire function. Next, introducing the
following notation from the q-calculus, (a; q)n =

∏n−1
k=0(1 − aqk), see [12],

and observing that Wφα(n+1) = (qα; qα)n, with n an integer, we get that,
for |z| < φ(∞) = 1,

Eφα(z) =
1

α| ln q|
∞∑
n=0

1− qn

n

zn

(qα; qα)n
.
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P r o o f. For any bounded Borelian function f , we have

E[f(ζt)] = E[f(tαζ1)] =

∫ ∞

0
f(tαs)P(ζ1 ∈ ds)

= α

∫ ∞

0
s−α−1f(tαs)P(χ1 ∈ ds−α)

=

∫ ∞

0
f((t/u)α)P(χ1 ∈ du) = E[f

(
tαχ−α1

)
], (2.13)

where we used the identities P(ζ1 ≤ s) = P(χs ≥ 1) = P(χ1 ≥ s−α). Then,
according to [30, Theorem 2.24], we deduce that for any �(z) > 0,

Mζt(z) = E[ζzt ] = tαzE[χ−zα1 ] =
tαz

φ′α(0+)
Γ(z)

Wφα(z)
. (2.14)

Therefore, in particular, z 	→ Mζt(z) is analytical on �(z) > aφα , since
using (2.9) and the recurrence property of the gamma function, we have

Γ(z)

αWφα(z)
=

Γ(z + 1)

Wφα(z + 1)

φα(z)

αz

and limu↓0
φα(u)
αu = φ′(0+) < ∞. Next, by an expansion of the exponential

function combined with an application of a standard Fubini argument, the
identity (2.14) and the recurrence relation for the gamma function, one gets

E

[
eqζ1

]
=

∞∑
n=0

E[ζn1 ]
qn

n!
=

1

φ′α(0+)

∞∑
n=0

1

n

qn

Wφα(n)
= Eφα(q)

where, by using the functional equation (2.9), the series is easily checked
to be absolutely convergent, and hence an analytical function, on {z ∈
C; |z| < φ(∞)}. Then, admitting exponential moments, the law of ζt is
moment-determinate for all t > 0. Next, since χ is an α-self-similar process,
by (2.1), plainly ζ is 1

α -self-similar. To derive the Mellin-Barnes integral
representation of Eφα , we first observe from (2.14) that the mapping

z 	→ E[ζz1 ] =
1

φ′α(0+)
Γ(z)

Wφα(z)

is analytical on �(z) > 0 since z 	→ Γ(z) and z 	→ Wφα(z) are analytical on
�(z) > 0, and the latter is also zero-free on the same half-plane, see [30,
Theorem 4.1]. Next, let us assume that aφα < 0, and observe, using (2.9),
that∫ ∞

0
E

[
e−qζ1

]
qξ−1dq = E

[
ζ−ξ1

]
Γ(ξ) =

Γ(−ξ)

φ′α(0+)Wφα(−ξ)
Γ(ξ)

=
1

φ′α(0+)
φα(−ξ)

−ξ

Γ(ξ)Γ(1− ξ)

Wφα(1− ξ)
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which is analytical on 0 < �(ξ) < |aφα |. Indeed, first, since ξ 	→ Γ(ξ) is
analytical on the right half-plane �(ξ) > 0, plainly, ξ 	→ Γ(ξ) is analytical
on �(ξ) > 0. Next, as above, we have that ξ 	→ Wφα(1 − ξ) is zero-free on
�(ξ) < 1 and meromorphic on �(ξ) < |aφα | with a simple pole at 1, see
[30, Theorem 4.1], which cancels the one of Γ(1− ξ), and we get the sought
analyticity from the definition of aφα . We write

Ê∗φα
(ξ) =

1

φ′α(0+)
φα(−ξ)

−ξ

Γ(ξ)Γ(1− ξ)

Wφα(1− ξ)
. (2.15)

Next, we recall that the Stirling’s formula yields that for any a ∈ R fixed,
when |b| → ∞,

|Γ(a+ ib)| ∞∼ Ca|b|a− 1
2 e−|b|

π
2 (2.16)

where Ca > 0, see e.g. [31, Lemma 9.4]. Furthermore, [31, Proposition
6.12(2)] gives that for any a > 0,

lim|b|→∞
e−|b|

π
2 |b|− 1

2

|Wφα(a+ bi)| ≤ c+(a) (2.17)

for some positive finite constant c+(a). Therefore, taking ξ = a+ ib for any

b ∈ R and 0 < a < |aφα |, using (2.16) and (2.17), there exists C̃a > 0 such
that for a fixed and |b| large

|Ê∗φα
(ξ)| =

∣∣∣∣φα(−ξ)

−ξ

Γ(ξ)Γ(1 − ξ)

φ′α(0+)Wφα(1− ξ)

∣∣∣∣ ≤ C̃a |b|2a− 1
2 e−|b|

π
2 , (2.18)

where we used the upper bound of φ found in [30, Proposition 6.2]. Thus,
by Mellin’s inversion formula, see e.g. [28, Chapter 11], one gets that for
any 0 < a < |aφα |,

E

[
e−zζ1

]
=

1

2πi

∫ a+i∞

a−i∞
Ê∗φα

(ξ)z−ξdξ

and thus by uniqueness of analytical extension, we get that

Eφα(z) =
1

φ′α(0+)
1

2πi

∫ a+i∞

a−i∞

φα(−ξ)

−ξ

Γ(ξ)Γ(1− ξ)

Wφα(1− ξ)
(−z)−ξdξ (2.19)

which is a function analytical on the sector {z ∈ C; | arg(−z)| < π
2}. In-

deed, first, by the discussion above, we have that ξ 	→ Ê∗φα
(ξ) is analytical on

the strip 0 < �(ξ) < |aφα |. Next, taking ξ = a+ ib, using (2.9) and (2.18),

we have that when |b| is large, there exists a constant C̃a > 0 such that∣∣∣Ê∗φα
(ξ)(−z)−ξ

∣∣∣ ≤ C̃a |z|−a |b|2a− 1
2 e−|b|

π
2
+b arg(−z). (2.20)

Putting pieces together, we indeed get the claimed analytical property of
Eφα . Now, to study the asymptotic behavior of Eφα , we write, for q > 0,
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Eφα(e
iπq) =

1

φ′α(0+)
1

2πi

∫ a+i∞

a−i∞

Γ(ξ)Γ(−ξ)

Wφα(−ξ)
q−ξdξ, (2.21)

recall that the gamma function has simple poles at non-positive integers,

and investigate the poles of fφ(ξ) = Γ(ξ)
Wφα(ξ) . Using (2.9), we get that fφ

satisfies to the following functional equation

fφ(ξ + 1) =
ξ

φα(ξ)
fφ(ξ). (2.22)

Next, since 0 < φ′(0+) < ∞, we have that 0 < limξ→0
ξ

φα(ξ)
< ∞. More-

over, since q 	→ 1
φα(q)

is the Laplace transform of a positive measure whose

support is contained in [0,∞), see e.g. [31, Proposition 4.1(4)], it has its
singularities on the negative real line. Thus, s < 0 is a pole for fφ if
φα(s) = −∞. Next, since φα is meromorphic on �(ξ) > −p − ε with a
unique pole at −p with p > 0, we can extend the domain of analyticity of
Wφα on �(ξ) > −p− ε, and by Cauchy’s theorem, we have

Eφα(e
iπq) =

1

φ′α(0+)
Res(Eφα , p)

+
1

φ′α(0+)
1

2πi

∫ p+ε+i∞

p+ε−i∞

Γ(ξ)Γ(−ξ)

Wφα(−ξ)
q−ξdξ. (2.23)

Next, if p ∈ N, then we have

Wφα(ξ − p) =
Wφα(ξ + 1)∏p
k=0 φα(ξ − k)

, �(ξ) > 0.

Hence, since Wφα(1) = 1, we deduce that

0 < lim
ξ→0

|Wφα(ξ − p)| = |Wφα(−p)| = 1∣∣limξ→0
∏p

k=0 φα(ξ − k)
∣∣ < ∞,

and since Res(Γ,−n) = (−1)n
n! , n = 1, 2, · · · , we have

Res(Eφα , p) =
Γ(p)

Wφα(−p)

(−1)p

p!
q−p =

(−1)p

pWφα(−p)
q−p.

Therefore, combining this with (2.23), we obtain

Eφα(e
iπq)

+∞∼ (−1)p

φ′α(0+)pWφα(−p)
q−p.

Otherwise, if p �∈ N, we have

lim
ξ→p

(ξ − p)
Γ(−ξ)

Wφα(−ξ)
= Γ(−p) lim

ξ→p

(ξ − p)φα(−ξ)

Wφα(1− ξ)

= −1

p

Γ(1− p)

Wφα(1− p)
lim
ξ→p

(ξ − p)φα(−ξ)
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which is finite since Γ(1−p)
Wφα(1−p) < ∞ as −p was the first pole of the function fφ

defined in (2.22), and by assumption 0 < |Cp| = | limξ→p(ξ−p)φα(−ξ)| < ∞.
Hence,

Res(Eφα , p) =
Γ(p)Γ(−p)

Wφα(1− p)
Cp q−p

and, with (2.23), we get

Eφα(e
iπq)

+∞∼ Γ(p)Γ(−p)

φ′α(0+)Wφα(1− p)
Cp q−p.

To conclude the proof, we use the estimate (2.18) to apply the Riemann-
Lebesgue lemma to get

lim
q→∞

q−p

φ′α(0+)

∫ p+ε+i∞

p+ε−i∞

Γ(ξ)Γ(−ξ)

Wφα(−ξ)
q−ξdξ

= lim
q→∞ q−ε

∫ ∞

−∞
eib ln qΓ(p+ ε+ ib)Γ(−p− ε− ib)

φ′α(0+)Wφα(−(p+ ε+ ib))
db

= 0.

�

3. Self-similar multiplicative convolution generalization of
fractional operators

In this section, we introduce a class of multiplicative convolution op-
erators that generalize the fractional Caputo derivative and provide some
interesting properties. In particular, we show that they have the same self-
similarity property than the fractional Caputo derivative and we identify
conditions under which these operators admit the functions Eφα as eigen-
functions. Inspired by the multiplicative convolution representation of the
fractional Caputo derivative presented in (1.3), we introduce its generaliza-
tion as follows. We denote by AC[0, t] the space of absolutely continuous
functions on [0, t], t > 0, and by L1(0, t) the space of Lebesgue integrable
functions on (0, t), t > 0.

Definition 3.1. 1) Let m be a non-negative measurable function de-

fined on (0, 1), b ∈ R and write Φ(z) = bz+z
∫ 1
0 rz−1m(r)dr for z ∈ CΦ =

{z ∈ C; r 	→ rz−1m(r) ∈ L1(0, 1)}. For α ∈ (0, 1) and f ∈ D(∂�Φ
t ) =

C1(R+) ∩ {f ∈ AC[0, t]; y 	→ f ′(y)m
( y
t

) ∈ L1(0, t)}, we define

∂�Φ
t f(t) = t1−αbf ′(t) + t−αf ′ � m(t) (3.1)

where we recall that f ′ � m(t) =
∫ t
0 f

′(r)m
(
r
t

)
dr.
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2) If φ ∈ B is defined by (2.4), b ≥ 0 and r 	→ m(r) is a non-decreasing

function on (0, 1) such that
∫ 1
0 (− ln r ∧ 1)rm(dr) < +∞, then Φ ≡ φ

and we write ∂�Φ
t = ∂�φ

t .

We proceed by providing some substantial properties of these general-
ized fractional operators.

Proposition 3.1. (i) ∂�Φ
t is a linear operator that satisfies the scal-

ing property

∂�Φ
t dcf(t) = cα∂�Φ

t f(ct), c, t > 0.

(ii) For any z ∈ CΦ and t > 0, writing pz(t) = tz, we have

∂�Φ
t pz(t) = Φ(z)pz−α(t). (3.2)

Consequently, if φ ∈ B, then for any z ∈ C(aφ,∞), we have ∂�φ
t pz(t) =

φ(z)pz−α(t). Moreover, let mα(r) = r−αm(r), r ∈ (0, 1) and for
z ∈ Cφφφ = {z ∈ C; r 	→ rz−1mα(r) ∈ L1(0, 1)}, define

φφφ(z) =
z

z − α
Φ(z − α). (3.3)

Then, for z ∈ Cφφφ and t > 0,

∂�φφφ
t pz(t) = φφφ(z)pz−α(t). (3.4)

Note that, in any case, ∂�φφφ
t p0(t) = 0.

(iii) Assume that either φ ∈ B with aφ < 0 and φ(∞) = ∞ or φ ∈ B∂�

with aφ < −α. Then, writing Fq(t) = Eφα(qt
α), we have, for any

q ∈ R and t > 0,

∂�φφφ
t Fq(t) = qFq(t) (3.5)

where, as in (3.3), we have set φφφ(z) = z
z−αφ(z − α). Moreover, if

in addition φ ∈ B∂� , see (2.4), and r 	→ mα(r) = r−αm(r) is a
non-decreasing function on (0, 1), then the mapping φφφ is a Bernstein
function, and φφφ ∈ B if aφ < −α.

(iv) Let φ ∈ B. Then, we have the following relation, at least for functions
f such that f, tf ′ ∈ Cb(R+),

∂�φ
t Λf(t) = −t−2αΛAf (t) , (3.6)

where Λf = f ◦ ι with ι(y) = 1
y , is an involution, and A is the

characteristic operator, defined in (2.7), of the self-similar Markov
process associated via the Lamperti mapping with φ.
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Remark 3.1. Note that if φ ∈ B with φ(∞) < ∞, then (3.5) still
holds for any q ∈ R and t > 0, such that |q|tα < φ(∞).

Example 3.1. Let χ be an α-stable subordinator, and note that it
is also an increasing positive self-similar Markov process. Moreover, the
Laplace exponent of the subordinator associated with χ, via the Lamperti

mapping, is well known to be φ(u) = Γ(u+α)
Γ(u) , u > 0, see e.g. [22], and note

that in this case aφ = −α with limu↓0 uφ(u − α) = 1
Γ(−α) < 0. Using the

integral representation for the ratio of two gamma functions, see e.g. [42,
(15)], we can write φ as

φ(u) =
α

Γ(1− α)

∫ ∞

0
(1− e−uy)

e−αy

(1− e−y)α+1
dy

from where we deduce, since m(e−y) is the tail of a Lévy measure, that, for
any y > 0,

m(e−y) =
α

Γ(1− α)

∫ ∞

y

e−αr

(1− e−r)α+1
dr =

α

Γ(1− α)

∫ ∞

y

er

(er − 1)α+1
dr

=
(ey − 1)−α

Γ(1− α)
.

Hence, we have, for any r ∈ (0, 1),

m(r) = rα
(1− r)−α

Γ(1− α)
.

Next, noting that r 	→ mα(r) = r−αm(r) = (1−r)−α

Γ(1−α) is a non-decreasing

function on (0, 1), item (iii) implies that φφφ is a Bernstein function, and we
obtain

∂�φφφ
t f(t) =

t−α

Γ(1− α)

∫ t

0
f ′(y)

(y

t

)−α (
t

y
− 1

)−α
dr =

Cdα

dtα
f(t).

Example 3.2. Let φ(u) = 1 − qu, u ≥ 0, be as in Example 2.2 with
0 < q < 1. Then, we can write

φ(u) =

∫ ∞

0
(1− e−uy)δ− log q(y)

where δ− log q is the Dirac measure supported on {− log q}. Therefore, as
above, we deduce that, for any y ≥ 0,

m(e−y) =
∫ ∞

y
δ− log q(r) = �{y≤− log q}.
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Thus, a change of variable yields, that for any r ∈ (0, 1),

m(r) = �{q≤r<1}.

Therefore, since r 	→ r−αm(r) is a non-decreasing function, item (iii) im-
plies that φφφ is a Bernstein function, and we have

∂�φφφ
t f(t) = t−α

∫ t

0
f ′(y)

(y

t

)−α
�{y≥tq}dy =

∫ t

tq
f ′(y)y−αdy

= t−αf(t)− (tq)−αf(tq) + α

∫ t

tq
f(y)y−α−1dy

where in the last step we performed an integration by parts.

P r o o f. First, plainly ∂�Φ
t is a linear operator and for c, t > 0, we note

that

∂�Φ
t dcf(t) = t1−αbcf ′(ct) + t−α

∫ t

0
cf ′(cy)m

(y

t

)
dy

= cαb(ct)1−αf ′(ct) + cα(ct)−α
∫ ct

0
f ′(r)m

( r

ct

)
dr

= cα∂�Φ
t f(ct),

and this completes the proof of item (i). To prove item (ii), we perform a
change of variable and get

∂�Φ
t pz(t) = t1−αbztz−1 + t−α

∫ t

0
zyz−1m

(y
t

)
dy

= tz−αbz + tz−αz
∫ 1

0
rz−1m(r)dr = Φ(z)pz−α(t).

We now prove item (iii). We first take φ ∈ B and thus deduce that the
mapping

z 	→ φφφ(z) =
z

z − α
φ(z − α) = bz + z

∫ 1

0
rz−1mα(r)dr (3.7)

is analytical on the right-half plane �(z) > aφ + α, see below (2.6). More-
over, from item (ii), we get, for such a z, that

∂�φφφ
t pz(t) = φφφ(z)pz−α(t). (3.8)

Next, let us assume first that φ(∞) = ∞ and aφ < 0. Then, using the
series expansion of Eφα in (2.11) combined with the previous identity (3.8)
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with z = αn, we get, writing Fq(t) = Eφα(qt
α), for any q ∈ R and t > 0,

∂�φφφ
t Fq(t) = t1−αbF ′q(t) + t−α

∫ t

0
F ′q(y)m

(y

t

)
dy

= t1−αb
∂

∂t

∞∑
n=1

qnpαn(t)

nWφα(n)
(3.9)

+t−α
∫ t

0

(
∂

∂y

∞∑
n=0

qnpαn(y)

nWφα(n)

)
m

(y

t

)
dy

=
1

φ′α(0+)

∞∑
n=1

qn∂�φφφ
t pαn(t)

nWφα(n)

=
1

φ′α(0+)

∞∑
n=1

qnφφφ(αn)pα(n−1)(t)
nWφα(n)

=
1

φ′α(0+)

∞∑
n=1

qnpα(n−1)(t)
(n− 1)Wφα(n− 1)

= qFq(t), (3.10)

where we used, from (3.1), that ∂�φφφ
t p0(t) = 0, the functional equation sat-

isfied by Wφα , see (2.9), the relation (3.7), the fact that power series can
be term-by-term differentiated inside the interval of its convergence, and
changing the order of integration and summation by a dominated conver-
gence argument which is justified since

∞∑
n=1

|q|n
nWφα(n)

∫ t

0
αnyαn−1

(
t

y

)α

m
(y
t

)
dy

=

∞∑
n=1

|q|ntαn
nWφα(n)

αn

∫ 1

0
rαn−α−1m(r)dr

=

∞∑
n=1

|q|ntαn
Wφα(n)

α

∫ 1

0
rαn−α−1m(r)dr < +∞,

as by assumption aφ < 0, that is
∫ 1
0 rαn−α−1m(r)dr < ∞ for any n ≥ 1, see

below (2.6) again. Now, we move to the proof of item (iii) when φ ∈ B∂�

with aφ < −α. Recall from (2.12) that one has, for any 0 < a < |aφα |,
q ∈ R, t > 0,

Fq(t) = Eφα(qt
α) =

1

2πi

∫ a+i∞

a−i∞
(−qtα)−z Ê∗φα

(z)dz

=
1

2πi

∫ a+i∞

a−i∞
p−αz(t)(−q)−z Ê∗φα

(z)dz.
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Next, observe that for any z = a+ ib with |b| large,∣∣∣∣ ∂∂tp−αz(t)(−q)−z Ê∗φα
(z)

∣∣∣∣ ≤ α|q|−at−αa−1
∣∣∣zÊ∗φα

(z)
∣∣∣

≤ C̃a t−αa−1|q|−a |b|2a+ 1
2 e−|b|

π
2

where C̃a > 0 and we used the bound (2.20). This justifies the application
of the dominated convergence theorem to get

∂

∂t
Fq(t) =

∂

∂t

1

2πi

∫ a+i∞

a−i∞
p−αz(t)(−q)−z Ê∗φα

(z)dz

= − α

2πi

∫ a+i∞

a−i∞
zt−αz−1(−q)−z Ê∗φα

(z)dz.

Thus, denoting ∂�mα
t f(t) = t−αf ′ � mα(t), we obtain

∂�mα
t Fq(t) =

t−α

2πi

∫ t

0

∫ a+i∞

a−i∞

∂

∂y
p−αz(y)(−q)−z Ê∗φα

(z)dz mα

(y

t

)
dy.

Now, by (2.20), we have∣∣∣∣ ∂∂yp−αz(y)(−q)−z Ê∗φα
(z)mα

(y
t

)∣∣∣∣ ≤ C̃a y−αa−1|q|−a |b|2a+ 1
2 e−|b|

π
2mα

(y
t

)
.

Therefore, since aφ < −α and 0 < a < |aφα |, one can choose a = ε
α for

ε > 0 such that aφ < −α− ε, to deduce that, for all t > 0,∫ t

0
y−αa−1mα

(y
t

)
dy = tα

∫ t

0
y−(α+αa+1)m(y)dy < ∞. (3.11)

Thus, ∫ t

0

∫ a+i∞

a−i∞
C̃a y−αa−1|q|−a |b|2a+ 1

2 e−|b|
π
2mα

(y
t

)
dz dy < ∞

and, by Fubini’s theorem, we get

∂�mα
t Fq(t) =

1

2πi

∫ a+i∞

a−i∞
∂�m
t p−αz(t)(−q)−z Ê∗φα

(z)dz.

Finally, putting pieces together, we have
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∂�φφφ
t Fq(t) = t1−α b

∂

∂t
Fq(t) + ∂�mα

t Fq(t)

= t1−α b
1

2πi

∫ a+i∞

a−i∞

∂

∂t
p−αz(t)(−q)−z Ê∗φα

(z)dz

+
1

2πi

∫ a+i∞

a−i∞
∂�mα
t p−αz(t)(−q)−z Ê∗φα

(z)dz

=
1

2πi

∫ a+i∞

a−i∞
∂�φφφ
t p−αz(t)(−q)−z Ê∗φα

(z)dz.

Next, since from (3.8) we have that ∂�φφφ
t p−αz(t) = z

z+1φα(−z−1)p−α(z+1)(t)

and recalling from (2.9) that for �(z) < aφα , Wφα(1−z) = φα(−z)Wφα(−z),
and the recurrence relation of the gamma function, Γ(z+1) = zΓ(z), z ∈ C,
we obtain

∂�φφφ
t Fq(t) =

1

2πi

∫ a+i∞

a−i∞
∂�φφφ
t p−αz(t)(−q)−z Ê∗φα

(z)dz (3.12)

=
1

2πi

∫ a+i∞

a−i∞

z

z + 1
φα(−z − 1)p−α(z+1)(t)(−q)−z Ê∗φα

(z)dz

=
−q

2πi

∫ a+i∞

a−i∞

z

z + 1
φα(−1− z)

(−qtα)−(z+1)

φ′α(0+)
Γ(z)Γ(−z)

Wφα(−z)
dz

=
q

2πi

∫ a+i∞

a−i∞

(−qtα)−(z+1)

φ′α(0+)
Γ(z + 1)Γ(−z − 1)

Wφα(−z − 1)
dz

=
q

2πi

∫ a+1+i∞

a+1−i∞
(−qtα)−z

1

φ′α(0+)
Γ(z)Γ(−z)

Wφα(−z)
dz

=
q

2πi

∫ a+1+i∞

a+1−i∞
(−qtα)−z Ê∗φα

(z)dz = qFq(t), (3.13)

where the justification of the last identity is given as follows. First, the

mapping z 	→ F (z) = p−αz(t)(−q)−z Ê∗φα
(z) is analytical in the strip �(z) ∈

(a, a+ 1), and for some b > 0, we have∫ a+1−bi

a−bi
F (z)dz +

∫ a+1+bi

a+1−bi
F (z)dz +

∫ a+bi

a+1+bi
F (z)dz +

∫ a−bi

a+bi
F (z)dz = 0.

(3.14)
Now, to estimate the third integral, a change of variable yields∫ a+bi

a+1+bi
F (z)dz =

∫ a+bi

a+1+bi
p−αz(t)q−z Ê∗φα

(z)dz

= −
∫ a+1

a
t−α(y+bi)q−(y+bi)Ê∗φα

(y + bi)dy.
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Thus, using (2.18), we obtain∣∣∣∣∫ a+bi

a+1+bi
F (z)dz

∣∣∣∣ ≤ t−αaq−aCab
a− 1

2 e−b
π
2 .

Thus,
∫ a+i∞
a+1+i∞ F (z)dz = 0. Similarly, one can show

∫ a+1−i∞
a−i∞ F (z)dz = 0.

Hence, we deduce from (3.14) that∫ a+1+i∞

a+1−i∞
F (z)dz =

∫ a+i∞

a−i∞
F (z)dz

which completes the proof of the identity (3.5). Finally, the additional
condition of the second part of item (iii), that is r 	→ mα(r) is a non-
decreasing function on (0, 1), yields that the mapping y 	→ mα(e

−y) defined
on R+ is the tail of a Lévy measure of a subordinator. Thus, it follows from
[29, Proposition 2.1] that φφφ is a Bernstein function. Furthermore, easy

algebra yields that φφφ′(0+) = −φ(−α)
α which is finite if and only if aφ < −α,

and this concludes the proof of item (iii).

Finally, to prove item (iv), making a change of variables and performing
an integration by parts in (2.7), we have

Af(t) = t−α
(
btf ′(t)−

∫ ∞

0
(f(tey)− f(t))dm(e−y)

)
= t−α

(
btf ′(t) +

∫ ∞

0
teyf ′(tey)m(e−y)dy

)
= t−α

(
btf ′(t) +

∫ ∞

t
f ′(r)m

(
t

r

)
dr

)
.

Then, recalling that Λf = f ◦ ι with ι(y) = 1
y , and making another change

of variable, we obtain that

AΛf(t) = t−α
(
bt

−1

t2
f ′

(
1

t

)
+

∫ ∞

t

−1

r2
f ′

(
1

r

)
m

(
t

r

)
dr

)
= −t−α

(
b
1

t
f ′

(
1

t

)
+

∫ 1
t

0
f ′(y)m

(
y

1/t

)
dy

)
,

and thus

ΛAΛf(t) = −tα
(
btf ′ (t) +

∫ t

0
f ′(y)m

(y

t

)
dy

)
= −t2α∂�φ

t f(t),

from where we conclude the proof of the intertwining relation by using the
fact that Λ is an involution. �
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4. Self-similar Cauchy problem and stochastic representation

Let X = (Xt)t≥0 be a strong Markov process defined on a filtered
probability space (Ω,F , (Ft)t≥0,P) and taking values in E ⊂ R

d, d ∈ N,
endowed with a sigma-algebra E . We denote its associated semigroup by
P = (Pt)t≥0 which is defined, for any t ≥ 0 and f a bounded Borelian
function, by

Ptf(x) = Ex[f(Xt)]

where Ex stands for the expectation operator with respect to Px(X0 = x) =
1. Since x 	→ Ex is E-measurable, for any Radon measure ν, we use the
notation

νPtf = Eν [f(Xt)] =

∫
E
Ex[f(Xt)]ν(dx).

We say that a Radon measure ν is an invariant measure if for all t ≥ 0,
νPtf = νf . Now, since ν is non-negative on E, we define the weighted
Hilbert space

L2(ν) = {f : E → R measurable;

∫
E
f2(x)ν(dx) < ∞}

endowed with the inner product 〈·, ·〉ν , where 〈f, g〉ν =
∫
E f(x)g(x)ν(dx),

and norm ‖f‖ν =
√〈f, f〉ν . We simply write L2(R+) when ν is the

Lebesgue measure on R+. Then, a classical result yields that we can ex-
tend P as a strongly continuous contraction Markov semigroup in L2(ν),
and when there is no confusion, we still denote this extension by P . We
denote by (L,D(L)) the infinitesimal generator of the semigroup P , i.e.

D(L) = {f ∈ L2(ν);Lf = lim
t→0

Ptf − f

t
∈ L2(ν)}.

In order to provide a stochastic and explicit representation of the solution
to the self-similar Cauchy problem, we shall consider two different cases, for
which we recall that as bounded family of operators P admits an adjoint
semigroup P ∗ = (P ∗t )t≥0, which is defined, for all t ≥ 0, by 〈Ptf, g〉ν =
〈f, P ∗t g〉ν . We say that P is normal (resp. self-adjoint) if PtP

∗
t = P ∗t Pt

(resp. Pt = P ∗t ), and of course the second property is stronger. We set the
following assumption.

Assumption:

P is a normal semigroup on L2(ν). (4.1)

Note that under Assumption 4.1, L is a non-negative, densely defined and
normal operator on L2(ν), and there is a unique resolution I of the identity,
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supported on σ(L), the spectrum of L, where for any λ ∈ σ(L), �(λ) ≥ 0,

L =

∫
σ(L)

−λdI(λ) (4.2)

with the domain D(L) = {f ∈ L2(ν);
∫
σ(L) |λ|2dIf,f (λ) < ∞}, see e.g. [34,

Chapter IX]. The identity (4.2) is a shorthand notation that means

〈Lf, g〉ν =

∫
σ(L)

−λdIf,g(λ), f ∈ D(L), g ∈ L2(ν),

where dIf,g(λ) is a regular Borel complex measure of bounded variation
concentrated on σ(L), with d|If,g|(σ(L)) ≤ ‖f‖ν‖g‖ν . Then, for ψ a real
measurable function defined on σ(L), the operator ψ(L) is given by

ψ(L) =

∫
σ(L)

ψ(−λ)dI(λ) with the domain D(ψ(L))

= {f ∈ L2(ν);

∫
σ(L)

|ψ(−λ)|2dIf,f (λ) < ∞}.

We point out that spectral theoretical arguments have already been used
in the context of the fractional Cauchy problems associated to self-adjoint
operators, see e.g. [8], [24], [25], [27].

Next, we say that sequences (Pn)n≥0 and (Vn)n≥0 are biorthogonal in
L2(ν) if they both belong to L2(ν) and 〈Pm,Vn〉ν = I{m=n}. Moreover, a
sequence that admits a biorthogonal sequence will be called minimal and a
sequence that is both minimal and complete, in the sense that its linear span
is dense in L2(ν), will be called exact. It is easy to show that a sequence
(Pn)n≥0 is minimal if and only if none of its elements can be approximated
by linear combinations of the others. Next, recall that (Pn)n≥0 form a
Bessel sequence in L2(ν) with bound B > 0, if for any f ∈ L2(ν),

∞∑
n=0

|〈f,Pn〉ν |2 ≤ B‖f‖2ν . (4.3)

Then, the so-called synthesis operator S : l2(N) → L2(ν) defined by

S : c = (cn)n≥0 	→ S(c) =
∞∑
n=0

cnPn

is a bounded operator with norm ‖S‖ν ≤ √
B, i.e. the series is norm-

convergent for any sequence (cn)n≥0 in l2(N). Furthermore, when (Pn)n≥0 is
an orthogonal system, in (4.3) we also have a lower bound and the operator
S is invertible. We shall need the following.

Assumption: Assume that P admits the following spectral expansion,
for any f ∈ D with D = L2(ν), and t > T for some T > 0,
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Ptf =

∞∑
n=0

e−λnt〈f,Vn〉νPn in L2(ν), (4.4)

where (λn)n≥0 ∈ C, with �(λn) ≥ 0, n ≥ 0, is the sequence of the or-
dered (in modulus) eigenvalues associated to the sequence of eigenfunc-
tions (Pn)n≥0 which is an exact Bessel sequence in L2(ν) with Bessel bound
B > 0, and (Pn,Vn)n≥0 form a biorthogonal sequence in L2(ν).

Note that when P is self-adjoint, then Pn = Vn, ∀n ∈ N, and (Pn)n≥0
form an orthogonal basis of L2(ν) and (4.4) is valid for all t ≥ 0. In general,
(Pn,Vn)n≥0 do not need to form a basis.

Now, let ζ be the right-inverse of the non-decreasing α-self-similar
Markov process, with 0 < α < 1, associated via the Lamperti’s mapping
with φ defined by (2.4). Recall that if φ ∈ B∂� , then Proposition 2.1 implies
that for q, t > 0,

E

[
e−qζt

]
=

∫ ∞

0
e−qsP(ζt ∈ ds) = Eφα(−qtα) (4.5)

which either admits the series or the Mellin-Barnes integral representation
provided in Proposition 2.1. We denote the time-changed process by Xζ =

(Xζt)t≥0, and for f ∈ L2(ν), define the family of linear operators P φα =

(P φα
t )t≥0 by the Bochner integral

P φα
t f(x) = Ex[f(Xζt)] =

∫ ∞

0
Psf(x)P(ζt ∈ ds). (4.6)

Throughout this section we assume that φ ∈ B∂� , and recall that φφφ(u) =
u

u−αφ(u− α), u > 0, is well-defined. Then, we define the set of functions

DL =
{
f ∈ L2(ν); (λn〈f,Vn〉ν)n≥0 ∈ l2(N)

}
⊆ D(L)

and since clearly Span(Pn) ⊆ DL and by Assumption 4.4, Span(Pn) is
dense in L2(ν), we have DL is also dense in L2(ν). We are now ready to
state the last main result of this paper.

Theorem 4.1. Let φ ∈ B∂� . If Assumption 4.1 (resp. Assump-
tion 4.4) holds, then for any f ∈ D(L) (resp. f ∈ DL), the function

u(t, x) = P φα
t f(x), is a strong solution in L2(ν) to

∂�φφφ
t u(t, x) = Lu(t, x), t > 0 (resp. t > T ),

u(0, x) = f(x)

in the following sense:

t 	→ u(t, ·) ∈ C1
0 ((0,∞), L2(ν)) (resp. C1

0 ((T,∞), L2(ν)))
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and both t 	→ u(t, ·) and t 	→ Lu(t, ·) are analytical on the half plane
R(z) > 0 (resp. R(z) > T ). Moreover, if Assumption 4.1 holds, then for

any f ∈ D(L) and t > 0, P φα
t f admits the following spectral representation

P φα
t f =

∫
σ(L)

Eφα(−λtα)dI(λ)f in L2(ν). (4.7)

Otherwise if Assumption 4.4 holds, then, for any f ∈ DL and t > T ,

P φα
t f =

∞∑
n=0

Eφα(−λnt
α)〈f,Vn〉νPn in L2(ν). (4.8)

P r o o f. First, note that since Pt is for all t ≥ 0 a contraction, using
Bochner’s inequality, see [1, Theorem 1.1.4], one can note from (4.6) that,
for any f ∈ L2(ν),

‖P φα
t f‖ν =

∥∥∥∥∫ ∞

0
PsfP(ζt ∈ ds)

∥∥∥∥
ν

≤
∫ ∞

0
‖Psf‖νP(ζt ∈ ds) ≤ ‖f‖ν .

Thus, for any t ≥ 0, P φα
t is a bounded operator in L2(ν). Now, let As-

sumption 4.1 holds. Then, by the functional calculus, we have that for all
t > 0

Pt = etL =

∫
σ(L)

e−tλdI(λ).

Therefore, ζ being the right-inverse of the non-decreasing self-similar Markov
process associated to φ ∈ B∂� , we have, using the identity (4.6), that for
any f ∈ L2(ν) and t > 0,

P φα
t f =

∫ ∞

0
PsfP(ζt ∈ ds) =

∫ ∞

0

∫
σ(L)

e−sλdI(λ)fP(ζt ∈ ds)

=

∫
σ(L)

∫ ∞

0
e−sλP(ζt ∈ ds)dI(λ)f

=

∫
σ(L)

Eφα(−λtα)dI(λ)f, (4.9)

where for the transition from second to third equality, we used Fubini’s
theorem under the inner product 〈·, ·〉ν = ‖ · ‖2ν , by a simple polarization
argument, which is allowed since the measure dI is of bounded variation on
σ(L) and, as a Laplace transform of a probability measure, for all t,�(λ) ≥
0, |Eφα(−λtα)| ≤ 1, and for the last step we used the identity (4.5). Now,

as for any t ≥ 0, P φα
t is bounded in L2(ν), we have P φα

t L ⊆ LP φα
t and

thus D(P φα
t L) = D(L) ⊆ D(LP φα

t ) = {f ∈ L2(ν);P φα
t f ∈ D(L)}, see [34,

Theorem 13.24, (15) and (10)]. Hence, we conclude that P φα
t maps D(L)
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into itself, and since P φα
t f ∈ D(L) for all f ∈ D(L), by the functional

calculus, we obtain

LP φα
t f =

∫
σ(L)

−λEφα(−λtα)dI(λ)f. (4.10)

Next, since by Proposition 2.1(iii), t 	→ Eφα(−t) ∈ C∞0 (R+), then, for
�(λ) > 0, the mapping t 	→ Eφα(−λtα) ∈ C∞0 (R+) and

d

dt
Eφα(−λtα) =

d

dt
E[e−λt

αζ1 ] = −λαtα−1E[ζ1e−λt
αζ1 ] (4.11)

which is bounded on t ∈ [t0,∞) for any t0 > 0 and �(λ) ≥ 0 since by
item (i) of Proposition 2.1, E[ζ1] =

1
φ′α(0+) < ∞. Furthermore, since we

have, for any t, s > 0,

‖P φα
t f − P φα

s f‖2ν =

∫
σ(L)

(Eφα(−λtα)− Eφα(−λsα))2dIf,f (λ)

and ∥∥∥∥∥P φα
t f − P φα

s f

t− s
−

∫
σ(L)

d

dt
Eφα(−λtα)dI(λ)f

∥∥∥∥∥
2

ν

=

∫
σ(L)

(Eφα(−λtα)− Eφα(−λsα)

t− s
− d

dt
Eφα(−λtα)

)2

dIf,f (λ)

we obtain that, in the Hilbert space topology, t 	→ P φα
t is also continu-

ously differentiable vanishing along with its derivative at ∞, i.e. it is in
C1
0 ((0,∞), L2(ν)). Indeed, the last identity entails that for any t > 0,

d

dt
P φα
t =

∫
σ(L)

d

dt
Eφα(−λtα)dI(λ), (4.12)

where we note that for any t > 0 and f ∈ D(L),∥∥∥∥∥
∫
σ(L)

d

dt
Eφα(−λtα)dI(λ)f

∥∥∥∥∥
2

ν

=

∫
σ(L)

(
d

dt
Eφα(−λtα)

)2

dIf,f (λ)

≤
(

αtα−1

φ′α(0+)

)2 ∫
σ(L)

|λ|2dIf,f (λ) < ∞, (4.13)

where we used (4.11), and once again that |E[ζ1e−λtαζ1 ]| ≤ E[ζ1] =
1

φ′α(0+)

for any t,�(λ) ≥ 0. Then, by (4.12) and Proposition 3.1(iii), we have that
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∂�φφφ
t P φα

t f = t1−αb
d

dt
P φα
t f + t−α

∫ t

0

d

dt
P φα
t f m

(y
t

)
dy

= t1−αb
∫
σ(L)

d

dt
Eφα(−λtα)dI(λ)f

+ t−α
∫ t

0

∫
σ(L)

d

dy
Eφα(−λyα)dI(λ)f m

(y
t

)
dy

=

∫
σ(L)

∂�φφφ
t Eφα(−λtα)dI(λ)f =

∫
σ(L)

−λEφα(−λtα)dI(λ)f,

where in the second step to change the order of integration, we used Fubini’s
theorem for Bochner integrals, see [1, Theorem 1.1.9], which is justified
since by (4.13) we have∫ t

0

∥∥∥∥∥
∫
σ(L)

d

dy
Eφα(−λyα)dI(λ)f

∥∥∥∥∥
ν

m
(y
t

)
dy

≤ α

φ′α(0+)

(∫
σ(L)

|λ|2dIf,f (λ)
) 1

2 ∫ t

0
yα−1m

(y

t

)
dy

≤ αtα

φ′α(0+)

(∫
σ(L)

|λ|2dIf,f (λ)
) 1

2 ∫ 1

0
rα−1m(r)dr < ∞,

since α ∈ (0, 1). Thus, LP φα
t f = ∂�φφφ

t P φα
t f , and taking t = 0 in (4.6),

we easily check that u(0, x) = f(x), x ∈ E. Now, let us assume that
Assumption 4.4 holds, and define the family of linear operators Sφα =

(Sφα
t )t>T , for f ∈ DL and t > T , by

Sφα
t f =

∞∑
n=0

∫ ∞

0
e−λns P(ζt ∈ ds)〈f,Vn〉νPn =

∞∑
n=0

Eφα(−λnt
α)〈f,Vn〉νPn.

(4.14)

Note that Sφα
t f ∈ L2(ν) for any f ∈ DL. Indeed, recalling that �(λn) ≥

0, n = 0, 1, · · · , as a Laplace transform of a probability measure, we have
that |Eφα(−λnt

α)| ≤ 1 for any t ≥ 0, and hence

∞∑
n=0

|Eφα(−λnt
α)|2|〈f,Vn〉ν |2 ≤

∞∑
n=0

|〈f,Vn〉ν |2

≤ M +

∞∑
n=m

|λn|2|〈f,Vn〉ν |2 < ∞,



472 P. Patie, A. Srapionyan

where m = min{k ≥ 0; |λk| ≥ 1} and in which case there exists M ≥ 0

such that
∑m−1

n=0 |〈f,Vn〉ν |2 ≤ M . Moreover, by the Bessel property of

(Pn)n≥0, we have that S
φα
t is a bounded operator on DL with ‖Sφα

t ‖ν ≤ √
B.

Furthermore, since 〈Pm,Vn〉ν = I{m=n}, we have, for any m ∈ N,

Sφα
t Pm =

∞∑
n=0

Eφα(−λnt
α)〈Pm,Vn〉νPn = Eφα(−λmtα)Pm.

On the other hand, recalling the spectral expansion of Pt given in (4.4), we
have, for t > T ,

P φα
t Pm =

∫ ∞

0

∞∑
n=0

e−λns〈Pm,Vn〉νPn P(ζt ∈ ds)

=

∫ ∞

0
e−λmsPm P(ζt ∈ ds)

= Eφα(−λmtα)Pm.

Thus, P φα
t and Sφα

t coincide on Span(Pn), and since Span(Pn) = L2(ν) ⊇
DL, the bounded linear transformation Theorem implies that P φα

t = Sφα
t

on DL when t > T . Next, since for all n, Pn is an eigenfunction, Pn ∈
L2(ν), PtPn = e−λntPn and hence Pn ∈ D(L) with LPn = −λnPn. Thus,
by linearity, for any t ≥ 0 and N = 1, 2, · · · , hNt ∈ D(L), where hNt =∑N

n=0 Eφα(−λnt
α)〈f,Vn〉νPn, f ∈ D(L), and

LhNt =
N∑

n=0

Eφα(−λnt
α)〈f,Vn〉νLPn =

N∑
n=0

−λnEφα(−λnt
α)〈f,Vn〉νPn.

Then, letting N → ∞, we obtain

hNt =

N∑
n=0

Eφα(−λnt
α)〈f,Vn〉νPn → P φα

t f, and

LhNt =
N∑

n=0

−λnEφα(−λnt
α)〈f,Vn〉νPn →

∞∑
n=0

−λnEφα(−λnt
α)〈f,Vn〉νPn.

Observing that, since |Eφα(−λnt
α)| ≤ 1, for any n = 0, 1, 2, · · · , t ≥ 0 and

f ∈ DL ⊆ D(L),
∞∑
n=0

| − λnEφα(−λnt
α)〈f,Vn〉ν |2 ≤

∞∑
n=0

λ2
n|〈f,Vn〉ν |2 < ∞

and thus the Bessel property of (Pn)n≥0 implies that
∞∑
n=0

−λnEφα(−λnt
α)〈f,Vn〉νPn ∈ L2(ν).
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Therefore, since the operator L is closed, we obtain that P φα
t f ∈ D(L) and

LP φα
t f =

∞∑
n=0

−λnEφα(−λnt
α)〈f,Vn〉νPn. (4.15)

Now, similar to the justification under Assumption 4.1 above, one can show

that for any f ∈ DL, the mapping t 	→ P φα
t is a C1

0 ((T,∞), L2(ν)) function,
and for any t > T , (4.12) holds. Then, for any f ∈ DL and t > T , we have

∂�φφφ
t P φα

t f = ∂�φφφ
t

∞∑
n=0

Eφα(−λnt
α)〈f,Vn〉νPn

=

∞∑
n=0

∂�φφφ
t Eφα(−λnt

α)〈f,Vn〉νPn

=
∞∑
n=0

−λnEφα(−λnt
α)〈f,Vn〉νPn ∈ L2(ν)

where we noted that we are allowed to change the order of the operator ∂�φφφ
t

and summation similar to the case of the normal operator above. Indeed, to
change the order of summation and integration, using the Bessel property
of (Pn)n≥0 and recalling the definition of DL, we apply Fubini’s theorem.

Thus, we conclude that for f ∈ DL and t > T , ∂�φφφ
t P φα

t f = LP φα
t f .

Moreover, taking t = 0 in (4.6), one can easily check that u(0, x) =
f(x) for x ∈ E. Finally, under Assumption 4.1 (resp. Assumption 4.4),

given the eigenvalues expansion of P φα
t , we have that t 	→ u(t, ·) = P φα

t f

and t 	→ Lu(t, ·) = P φα
t Lf are analytical on the half plane R(z) > 0

(resp. R(z) > T ), and this concludes the proof. �

5. Examples

Let ζ = (ζt)t≥0 be the inverse of the non-decreasing α-self-similar
Markov process χ = (χt)t≥0 defined in Section 2, and associated via the
Lamperti mapping to the subordinator with a Laplace exponent φ ∈ B∂� ,
defined by (2.4). Furthermore, recall that φφφ is defined by (3.3). In this sec-
tion, we consider some examples that illustrate the variety of applications
of our main results and they cover the both situations when Assumption 4.1
or Assumption 4.4 holds. Namely, Sections 5.1 and 5.2 include examples of
self-adjoint, and non-self-adjoint and non-local semigroups respectively.

5.1. Some self-adjoint examples.
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5.1.1. Squared Bessel semigroups. We consider first the case where
P = (Pt)t≥0 is the semigroup of the squared Bessel process of order 2, that
is its infinitesimal generator is given, for a smooth function f , by

Lf(x) = 2xf ′′(x) + 2f ′(x), x > 0. (5.1)

It is well known that Pt is a strongly continuous contraction semigroup and
self-adjoint in L2(R+). Next, we define the function J , for z ∈ C, by

J(z) =

∞∑
n=0

(eiπz)n

(n!)2

and observe that J
(
z2

4

)
= J0(z), where J0 is the Bessel function of the first

kind of order 0. We also recall that H, the Hankel transform associated to
J , is an involution of L2(R+), i.e. HH is the identity, defined by

Hf(x) =

∫ ∞

0
J(λx)f(λ)dλ.

Then, P admits the following spectral expansion, for any t > 0 and f ∈
L2(R+),

Ptf = HetHf,

where we set et(x) = e−tx, see e.g. [32]. Then, since Assumption 4.1 is

satisfied, Theorem 4.1 implies that, for any f ∈ D(L), P φα
t f solves the

self-similar Cauchy problem,

∂�φφφ
t u(t, x) = Lu(t, x), t > 0,

u(0, x) = f(x).

Furthermore, the solution has the following spectral representation, for all
t > 0,

P φα
t f(x) =

∫ ∞

0
Eφα(−λtα)Hf(λ)J(λx)dλ in L2(R+). (5.2)

5.1.2. The classical Laguerre semigroup. Let P = (Pt)t≥0 be the clas-
sical Laguerre semigroup of order 0, i.e. its infinitesimal generator takes the
form, for a smooth function f ,

Lf(x) = xf ′′(x) + (1− x)f ′(x), x > 0,

see e.g. [31, Section 3.1]. Then, the semigroup P is a self-adjoint and
strongly continuous contraction semigroup on the weighted Hilbert space
L2(ν) with ν(dx) = e−xdx, x > 0, which is the unique invariant measure.
Moreover, it admits the eigenvalues expansions, valid for any t > 0,

Ptf =

∞∑
n=0

e−nt〈f,Ln〉νLn in L2(ν)



SELF-SIMILAR CAUCHY PROBLEMS AND . . . 475

where for any n ≥ 0, Ln is the Laguerre polynomial of order 0, defined
through the polynomial representation

Ln(x) =

n∑
k=0

(−1)k
(
n

k

)
xk

k!
.

Since P is self-adjoint in L2(ν), Assumption 4.1 is satisfied with σ(L) =
{λn = n, n ≥ 0}, and it follows from Theorem 4.1 that for any f ∈ D(L),

P φα
t f solves the self-similar Cauchy problem,

∂�φφφ
t u(t, x) = Lu(t, x), t > 0,

u(0, x) = f(x).

Furthermore, the solution has the following spectral representation, for all
t > 0,

P φα
t f =

∞∑
n=0

Eφα(−ntα)〈f,Ln〉νLn in L2(ν).

5.1.3. Classical Jacobi semigroups. Now, assume λ1 > μ > 0 and let
us consider the classical Jacobi semigroup P = (Pt)t≥0 on E = (0, 1),
which is a Feller semigroup and its infinitesimal generator Lμ has, for any
f ∈ C2(E), the following form

Lμf(x) = x(1− x)f ′′(x)− (λ1x− μ)f ′(x), x ∈ (0, 1),

see e.g. [9, Section 5]. The classical Jacobi semigroup P admits a unique
invariant measure βμ, which is the distribution of a beta random variable
of parameters μ > 0 and λ1 − μ > 0, i.e.

βμ(dy) = βμ(y)dy =
Γ(λ1)

Γ(μ)Γ(λ1 − μ)
yμ−1(1− y)λ1−μ−1dy, y ∈ (0, 1).

(5.3)
Moreover, P extends to a strongly continuous contraction semigroup on
L2(βμ) which we still denote by P . The eigenfunctions of P are the Jacobi
polynomials which form an orthonormal basis in L2(βμ) and are given, for
any n ∈ N and x ∈ E, by

Pλ1,μ
n (x) =

√
Cn(μ)

n∑
k=0

(−1)n+k

(n− k)!

(λ1 − 1)n+k

(λ1 − 1)n

(μ)n
(μ)k

xk

k!
, (5.4)

where we have set

Cn(μ) = (2n + λ1 − 1)
n!(λ1)n−1

(μ)n(λ1 − μ)n
. (5.5)

Next, the eigenvalue associated to the eigenfunction Pn is, for n ∈ N,

λn = n2 + (λ1 − 1)n = n(n− 1) + λ1n. (5.6)
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The semigroup P then admits the spectral decomposition given, for any
f ∈ L2(βμ) and t ≥ 0, by

Ptf =
∞∑
n=0

e−λnt〈f,Pλ1,μ
n 〉βμPλ1,μ

n . (5.7)

Since P is self-adjoint, Assumption 4.1 is satisfied with σ(L) = {λn =
n(n − 1) + λ1n, n ≥ 0}, and it follows from Theorem 4.1 that for any

f ∈ D(Lμ), P
φα
t f solves the self-similar Cauchy problem,

∂�φφφ
t u(t, x) = Lμu(t, x), t > 0,

u(0, x) = f(x).

Furthermore, the solution has the following spectral representation, for all
t > 0,

P φα
t f =

∞∑
n=0

Eφα(−(n(n − 1) + λ1n)t
α)〈f,Pλ1,μ

n 〉βμPλ1,μ
n in L2(βμ).

5.2. Some non-self-adjoint and non-local examples.

5.2.1. A generalized Laguerre semigroup. We next follow [31, Section
3.2] to present a special instance of the so-called generalized Laguerre semi-
groups. In particular, let m ≥ 1 and P = (Pt)t≥0 be the non-self-adjoint
semigroup whose infinitesimal generator is given, for a smooth function f ,
by

Lmf(x) = xf ′′(x) +
(
m2 − 1

m
+ 1− x

)
f ′(x)

+

∫ ∞

0
(f(e−yx)− f(x) + yxf ′(x))

me−my

x
dy, x > 0.

The semigroup P is ergodic with a unique invariant measure, which in this
case is an absolutely continuous probability measure with a density denoted
by ν and which takes the form

ν(y) =
(1 + y)

m+ 1

ym−1e−y

Γ(m)
, y > 0.

Moreover, Pt admits the following spectral representation for any f ∈ L2(ν)
and t > 0,

Ptf =

∞∑
n=0

e−nt〈f,Vn〉νPn in L2(ν).
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Here, (Pn,Vn)n≥0 form an orthogonal sequence in L2(ν), and are expressed

in terms of the Laguerre polynomials
(
L(m)
n

)
n≥0

as follows, for n ∈ N,

Pn(x) =

n∑
k=0

(−1)k
(
n

k

)
Γ(m+ 2)

Γ(m+ k + 2)

m+ k

m
xk

= cn(m+ 1)L(m+1)
n (x)− cn(m+ 1)

m
xL(m+2)

n−1 (x),

Vn(x) =
1

x+ 1
L(m−1)
n (x) +

x

x+ 1
L(m)
n (x).

Here, cn(m + 1) = Γ(n+1)Γ(m+2)
Γ(n+m+2) and we recall that L(m)

n is the Laguerre

polynomial of order m,

L(m)
n (x) =

n∑
k=0

(−1)k
(
n+m

n− k

)
xk

k!
, x > 0.

Therefore, since Assumption 4.4 is satisfied with σ(L) = {λn = n, n ≥ 0},
Theorem 4.1 implies that f ∈ D(Lm), P

φα
t f solves the self-similar Cauchy

problem,

∂�φφφ
t u(t, x) = Lmu(t, x), t > 0,

u(0, x) = f(x).

Furthermore, the solution has the following spectral representation, for all
t > 0,

P φα
t f =

∞∑
n=0

Eφα(−ntα)〈f,Pn〉νVn in L2(ν).

5.2.2. Generalized Jacobi semigroups. In this section, following Patie
et al. [9], we provide a short description of a special instance of generalized
Jacobi semigroups. In particular, let λ1 > m > 2 with λ1 − m /∈ N,
and P = (Pt)t≥0 be the non-self-adjoint semigroup associated with the
infinitesimal generator given for a smooth function f on (0, 1)

Lmf(x) = x(1− x)f ′′(x)− (λ1x−m− 1)f ′(x)− x−(m+1)

∫ 1

0
f ′(r)rmdr.

Then, we have by [9, Proposition 4.1] that the density of the unique invari-
ant measure of the Markov semigroup P is given by

β(y) =
((λ1 −m− 2)y + 1)

(m+ 1)(1 − y)
βm(y), y ∈ (0, 1),

where βm is the distribution of the beta random variable of parameters
m > 0 and λ1−m > 0, see (5.3). Furthermore, for any t > 0 and f ∈ L2(β),
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Pt admits the following spectral representation

Ptf =
∞∑
n=0

e−λnt〈f,Pn〉βVn in L2(β)

where we recall that (λn)n≥0 are defined by (5.6), and (Pn,Vn)n≥0 form a
biorthogonal sequence in L2(β) and are defined as follows. We have that
P0 ≡ 1 and, for n ≥ 1,

Pn(x) =
n!

(m+ 2)n

√
Cn(1)

⎛⎝P(λ1,m+2)
n (x)√
Cn(m + 2)

+
x

m

P(λ1+1,m+3)
n−1 (x)√
C̃n−1(m+ 3)

⎞⎠ , x ∈ (0, 1).

making explicit the dependence on the two parameters for the classical

Jacobi polynomials (5.4), and where C̃n(m+3) = n!(2n+λ1)(λ1+1)n/(m+
3)n(λ1−m−2)n and Cn-s are defined by (5.5). For any n ∈ N the function
Vn is given, for x ∈ (0, 1), by

Vn(x) =
Cλ1,m,n

β(x)

∞∑
k=0

(m+ 1)k+n

(m+ 1)k

Γ(k +m− n− λ1 + 1)

k!
(k − 1)xk+m

where Cλ1,m,n = sin(π(m−λ1))
π m(λ1−1)Γ(λ1+n−1)

√
Cn(1)(−2)n/(n!Γ(m+

2)). Hence, since Assumption 4.4 is satisfied, Theorem 4.1 implies that for

f ∈ D(Lm), P
φα
t f solves the self-similar Cauchy problem,

∂�φφφ
t u(t, x) = Lmu(t, x), t > 0,

u(0, x) = f(x).

Lastly, the solution has the following spectral representation, for all t > 0,

P φα
t f =

∞∑
n=0

Eφα(−(n(n− 1) + λ1n)t
α)〈f,Vn〉βPn in L2(β).

Acknowledgements

This paper is dedicated to the memory of Mark Meerschaert who sadly
passed away on September 29th 2020. We decided to leave the acknow-
ledgements from the first version of the paper, as: The authors are indebted
to Mark Meerschaert for providing them many interesting references on the
spectral approach in the context of the fractional Cauchy problem and also
for his invaluable encouragements.

The authors are grateful to the referees for careful reading, constructive
comments and providing several interesting references on different aspects
of the paper.



SELF-SIMILAR CAUCHY PROBLEMS AND . . . 479

References

[1] W. Arendt, C.J.K. Batty, M. Hieber, F. Neubrander, Vector-valued
Laplace transforms and Cauchy problems. Monographs in Mathematics
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and Application. De Gruyter Studies in Mathematics 37, Walter de
Gruyter & Co., Berlin (2010).

[40] H. Sun, Y. Zhang, D. Baleanu, W. Chen, Y. Chen, A new collection of
real world applications of fractional calculus in science and engineering.
Commun. Nonlinear Sci. Numer. Simul. 64 (2018), 213–231.

[41] B. Toaldo, Convolution-type derivatives, hitting-times of subordina-
tors and time-changed C0-semigroups. Potential Anal. 42, No 1 (2015),
115–140.
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