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Abstract

In this article, we study the existence and uniqueness of solutions for
nonlinear fractional integro-differential equations with nonlocal Erdélyi-
Kober type integral boundary conditions. The existence results are based
on Krasnoselskii’s and Schaefer’s fixed point theorems, whereas the unique-
ness result is based on the contraction mapping principle. Examples illus-
trating the applicability of our main results are also constructed.
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1. Introduction

Through the development of mathematics, fractional derivatives are
gradually occurring in various research areas, such as viscoelasticity, elec-
tromagnetic, material science, aerodynamics, etc. Most works concentrated
on the solvability of initial value problems for differential equations of
fractional-order. Recently, attention has given to the theory of boundary
value problems for nonlinear fractional differential equations, and many as-
pects of this theory need to be explored. Many scholars have studied the
differential and integrodifferential fractional equations, supplemented with
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various types of initial and boundary conditions, see, [1, 2, 4, 5, 17, 18, 20]
and the references cited therein.

Several researchers have involved in their studies either on fractional
derivatives of the Riemann-Liouville or Caputo. Since 1940, Arthur Erdélyi
and Hermann Kober [6] introduced new more general form of fractional cal-
culus operators called as Erdélyi-Kober fractional integrals and derivatives.

Several researchers have recently studied fractional differential equa-
tions with integral boundary conditions of the Erdélyi-Kober type, and the
application aspects of the topic can be found, see [3, 7, 8, 14, 13, 15]. For ex-
ample, in [19], results of existence and uniqueness for the Riemann-Liouville
fractional differential equations with non-local Erdélyi-Kober fractional in-
tegral conditions of the form:

Dix(t) = f(t,x(t)), te(0,7),
m
.%'(0) =0, ch(T) = Zﬁllgf’ézx(fz)v
i=1
are discussed, where 1 < ¢ < 2, D? is the Riemann-Liouville fractional
derivative of order q, Igf"si are Erdélyi-Kober fractional integrals of order
0; >0, withn, >0and v, € R,i=1,2,....,m.

Motivated by the aforementioned papers, in this paper we study the
existence and uniqueness of the results for the fractional integro-differential
equation with non-local Erdélyi-Kober type integral boundary conditions
under Krasnoselskii’s fixed point theorem, Schaefer’s fixed point theorem
and contraction mapping principle. Precisely, we investigate the following
problem:

‘Dz(t) = g(t,x(t),/ot h(t,s,z(s))ds), 1<v <2 teJ=][0,1], (1.1)

¢ oet+o—1
o —o(6+e€) S €
z(0) = « CF(Q) /0 © 179$(8)d8 = aIU’ex(C),

o __ 50‘)
ey [ sl )
z(l) = Bn& 1“((6)+ : /0 (557 Sn)175x(5)d5 = 5137533(5)’ (1.2)

0,0 >0,0<(<1,eeR, on>0 0<E&E<], vER,

where D" is the Caputo fractional derivative of order 1 < v < 2, g :
J xR xR — R is a continuous function, I’ and I)*° denote Erdélyi-
Kober fractional integrals and X = C(J,R) denotes the Banach space of
all continuous functions from [0, 1] x R endowed with a topology of uniform
convergence with the norm denoted by ||z| = sup{|x(¢)| : t € J}.

i

Here we use the notation Hz(s) = / h(t,s,x(s))ds.
0
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The paper is organized as follows: In Section 2 we present some nec-
essary preliminaries and lemmas. Section 3 deals with the existence and
uniqueness results by using fixed point theorems of Krasnoselskii, Schaefer,
and Banach for the boundary value problem (1.1)-(1.2). Finally, several ex-
amples are provided in Section 4 to illustrate the applicability of our main
results.

2. Preliminary results

In this section, we recall some basic definitions on the fractional calculus
[9, 11, 12] and lemmas, which are used to our main results.

DEFINITION 2.1. The Riemann-Liouville fractional integral of order v
for a function g is defined as

Jg(t) = /t Mg(s)ds t>0,0>0
0 F(U) ) 7 7

provided the right hand-side is point-wise defined on [0, c0), where T is the

gamma function.

DEFINITION 2.2. For a function ¢ : [0,00) — R, the Caputo derivative
of order v is defined by

cnv _ 1 ! _Sv—l s)ds
D'g(t) = oy [, (=9 a(e)ds, >0

n—1<wv < n,n=[v]+ 1, where [v] denotes the integer part of the real
number v.

DEerFINITION 2.3. The Erdélyi-Kober fractional integral of order § > 0
with 7 > 0 and « € R of a continuous function ¢ : (0,00) — R is defined by

gt = T [,
T TYTITE) fy sy

provided the right hand side is point wise defined on R,..

REMARK 2.1. For n = 1, the above operator is reduced to the Kober

operator LG4 by
Ty )
I'(9) (t—s)t=0
that was introduced for the first time by Kober in [10]. For v = 0, the
Kober operator is reduced to the Riemann-Liouville fractional integral with
a power weight:

t=0 ¢ S
1%0g(t) = F(5)/0 0 9(5))1_6ds, §>0.

ds, 7,0 >0,
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LEMMA 2.1. If§,n >0 and v,v € R, then we have
Ty + 5 +1)
Ty +2+6+1)

V040 _
Int—

LEMMA 2.2. For any k € C(J,R),z € C%(J,R) is a solution for the
fractional differential equation

‘Dz(t) = k(t), (2.1)
with the boundary conditions (1.2) if and only if
2(t) = JUk(t) + %(w — tuz) ISP Tk(C)

1
o (w2 + ) [BI) 0T k() — T k(1)) (2:2)
where
A = ujuy + ugug # 0, (2.3)
_ I(et1) = ¢ Lttt
up =1-— am Uz = O‘Cm (2 4)
[(v+1) Lty +D) .
us = 1= Prgasrny v = 1= AaiTisry

P r o o f. We know that, the general solution of (2.1) is of the form,
x(t) = co + ert + JUk(), (2.5)

where cg,c; € R are arbitrary constants.
Applying the boundary conditions (1.2) into (2.5) together with Lemma
2.1, we get

(—a I(e+1) ) W Lle+1+1) .
e+0+1))" T(e+L+6+1)"

T(y+1) P(y+5+1)
(1-7 (v+5+1))C°Jr (1—ﬁfr(7+ +5+1)> '
= BI°Jk (5) — JUk(1). (2.7)
Solving (2.6) and (2.7) and using (2.3) and (2.4), we get

oI Tk(C),  (2.6)

i{uwz’;ﬂﬂk(c) + upBI0TUk(E) — uQJv/-cu)},

Co = A
er = £ {wBIPAIHE) —ur Tk — usals T R(C)}
1 A 151y 1 3L, .

Substituting the values of ¢y and ¢; into (2.5), we obtain (2.2).
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Conversely, it can be easily verify that (2.2) satisfies by the direct com-
putation and the boundary conditions (1.2). This completes the proof.
O

3. Main results

From Lemma 2.2, we define an operator F': X — X by

(Fa)(t) = J°g(s,a(s), Ha(s)(1)
(s — tug) 57T g (s, 2(s), Har(s))(C)
(s + 1) [ |81 g s, (5), Hr(5))(@)

FIVg(s, z (), Hx(s))(l)}  teld.

Here, we use the following expressions, for ¢t € J, {,£ € (0,1):

JUg(s,x(s), Ha(s))(t) = (1)/(755)” tg(s, a(s), Hx(s))ds,
o o(e+6) FoEto— 1 s (v—1)
I ls), He9)(6) = e / / —
xg(s x( ))dsdr,
777+5 2=l — g)(=1)
Ig"Sng(s,x(s),HﬂJ(S))(f) = 775 / / (& —zﬂ 1)5
xg(s :c( ) ))dsdz.

For the forthcoming analysis, we need the following assumptions:

(A1) There exists positive constants L, and Ly, such that

(1) lg(t,x1,51) = gt w2,y2)| < Lg(llzr — @2l + llyn — w2l)), t €
J7 T1,22,Y1,Y2 € X.

(i0) |h(t, s,21) = h(t, s, 22)| < Ln(ll2r = 22]), t,s € J, 21,29 € X.

(A2) |g(t,z,y)| < U)o(||z]), (t,2,y) € J x R?, where | € L'(J,R") and
¢ :[0,00) — (0,00) is a continuous nondecreasing function.

For our convenience, we can take

L L CT (4 241) L
X = F(vin{l* ey + 1y (sl + ) prerzren (U + 524)

(3.1)
T (y+37+1)
+ (| + yuZ\)[ymF o (L ) 1+ (M)]}

and
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_ _ 1 o] C"T(e42+1)
X1 = T+ {1 + |X\(’u3‘ + ‘MDW

o (3.2)
ET (4241
%(|U1| + |uz|) [|5|m + 1} }

Existence result via Krasnoselskii’s fixed point theorem:

LEMMA 3.1. ([16]) (Krasnoselskii’s fixed point theorem) Let S be a
closed, convex, nonempty subset of a Banach space X. Let A, B be two
operators such that:

(i). Az + By € S, whenever x,y € S;

(ii). A is compact and continuous;

(iii). B is a contraction mapping.

Then there exists z € S such that z = Az + Bz.

THEOREM 3.1. If the assumptions (A1) - (A2) hold, then there exists
a solution for the boundary value problem (1.1)-(1.2) on J, provided

L |a] C"T(e+2+1) ¢L
F(v—j-l){%(|u3| + |u4|)r‘(e+§+9+1) (1 + (v—f—}i))

€T (v 2 +1)
(] + uzl) [Wr wj CEWESY (1 + (th)) Tl (v+1)]} <L

(3.3)

Proof Consider B, = {x € X : ||z| <r}.
We define the operators F; and Fy by

Fix(t) = J%(s,z(s),Hz(s))(t), t € J,
Fa(t) = 7 (ua—tus)I5"Tg(s,a(s), He(s))(Q)

1
5 (u + ) |81 T g5, 2(s), Ha(5)) (€)
+Jg(s, 2(x), Ha(s))(1)], t e
Choosing r > ||I]|¢(r)x1, where x1 is defined by (3.2). For any z,y € B,
we have

[Fiz(t) + Foy(D)] < sup {J”\g(& (s), Ha(s))|(t)

8 — sl g (5,5 Hy ()| )
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ﬂ%m+mﬂwmﬁwmwmeM@

-HW@mammmmH
H

< 1010+ L8l + a1
okl + s ) 7(€) +1(6)o( bl (1)
swmwmfﬂlmmmmelﬁﬂ

=41
L (] + fuah [ 2+ D +q}

A Ty +24+6+1)

= tle(r)xa <.

Thus Fiz + Fyy € B,.
To show that F5 is a contraction mapping,

ﬂmm+wMWWU%@M%Hﬂw—mmMMM@NO

+J%g(s,z(s), Hx(s)) — g(s, y(s), Hy(s))’(l)] }

o , C'Te+2+1)
< Lgllx — 5
< Lol yH{ N ‘u3’+‘u4‘) Flv+1)l(e+2+0+1)
1 ETv+5+1) 1
’A’(’ul\-l-\m’)(‘m )F(’y—i-%—i-é—l—l) +I‘(v+1)
lal (T (e + 2+ 1)
L i ag
I TR Rl Yy s e gy

@wawmom

Ty +3+1) 1
Tw+20(7+2+0+1)  T(w+2)

}
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Lgllz —yll | |
Fg(vim{—ﬂuﬂ + |ual)

o (T(e+ L +1) ( Ly )

Fle+24+6+1) (v+1)

1 v+ 7 +1) €L L
+W(Iu1|+|u2|)[|ﬁlr(,y+%+"5+1) (1+ (thl)) 14 (v+h1)]}'

Since by (3.3), we have F» is a contraction.
The continuity of g and h implies that the operator Fj is continuous.
Also, F3j is uniformly bounded on B, as

Rt < sup g o(5), H (o)1) < L)

This is to prove the compactness of Fj.
Now, for t1,t5 € J with t; < t5 and x € B,., we have

|Fiz(ts) — Fiz(t)]
= |J(s,z(s), Hx(s))(ta) — Jg(s,2(s), Hx(s))(t1)|

2 (15 — s)o7L No(llzlNds — "oty —s)! Do (llzNds
| Bl - [ TSt

1
I'(v)

<

/0 "t — )71 — (81 — )" T]o(r)I(s)ds

+ / (ts — 5)"Lo(r)i(s)ds

t1

||l||L1¢(T) v v

—= |ty — 1 2ty —t1)"

F(U+1)[2 1+(2 1)]’
which is independent of x and tends to zero as to — t1. Thus Fj is equicon-
tinuous. By Arzela-Ascoli’s theorem, F} is compact on B,.. Hence by
Lemma 3.1, there exists a fixed point z € X such that Fx = x which is a
solution to the problem (1.1)-(1.2) on J. This completes the proof. O

Existence result via Schaefer’s fixed point theorem:

LEMMA 3.2. ([16]) (Schaefer’s fixed point theorem) Let X be a Banach
Space. Assume that T : X — X is a completely continuous operator and
the set Q@ ={u € X :u= puTu,0 < p <1} is bounded. Then T has a fixed
point in X.

THEOREM 3.2. Assume that (As) hold, then there exists a solution for
the problem (1.1)-(1.2) on J.
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P roof. Since f is continuous on J, therefore the operator F' is con-
tinuous.

Next, we are to show that the operator F' is completely continuous.

Consider B, = {x € X : ||z|| < r}. Then for t € J, we have

[Fz(t)] < J°lg(s,x(s), Hx(s))[(t)

||A|| s — tus 15TV g s, 2(s), Ha(s))|(C)

*W'“‘* o+t [|B117 % g(s, 2(s), Ha(s))|(€)

+I°lg(s,2(s), Ha(s))|(1)]

26 [, Lol CT(e+2+1)
< m{l‘i‘m‘?)"f"zl‘) T(et+2+6+1)
T(y+2+1)
i \uwuz\)[w — +5+1)+1}}

< lllro(r)xa-

Next, we prove that F' maps bounded sets into equicontinuous sets of X.
Let 7,79 € J with 7 < 7 and = € B,, we have

|(Fz)(72) = (F)(m1)]
< [ J7g(s,x(s), Ha(s))(12) — Jg(s, x(s), Hx(s))(71)]

o A‘, uslire — 15" g(s,2(s), Ha(s))](€)

,A,ruluw il 1811727 lg s, @(s), Ha(s))|(€)

+J%g(s,z(s), Hz(s))|(1 )}

= W”Ll?b(r){ﬁ‘ /071[(72 — )"t = (11— )" ]ds

T2
+/ (1o — 5)""Lds| +
T1

1
+oyluline = nl| 1817 + ()] }
which is independent of x and tends to zero as 7 — 7.

Hence, by Arzela-Ascoli theorem, the operator F' : X — X is com-
pletely continuous.

+ Susllr = 1570
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Now it remains to show that the set Q@ ={r € X : x = AF(2),0 < A <
1} is bounded. For z € Q and t € J, we have

1 CT(e+ L +1)
||l||L1¢(T)m{1 + m(|u3| + | 4|)

Lle+2+0+1)
1 ET(y+5+1)
+m(lu1|+|u2|)[|ﬁlr(,y+%+”5+l) +1}}

= [ltlzro(r)xa-

This shows that 2 is bounded. Hence, by Lemma 3.2, the boundary value
problem (1.1)-(1.2) has at least one solution on J. This completes the
proof. O

IN

]

Uniqueness result via Banach’s fixed point theorem:

THEOREM 3.3. If the assumptions (A1), (A2) are satisfied and x < 1,
then there exists a unique solution for the boundary value problem (1.1)-
(1.2) on J.

Proof. Let M; =suplg(t,0,0)], Mo —sup\h (t,s,0)| and choose r >

teJ
M e
S %{ + 2+ ) C(vrf;jj))
+ﬁ(|m| + Jus)) [|6|F5(:Ff%+f;:i) +1] }
+ﬁ<|u1|+|u2|>[|ﬁ|5v(+l+(;i§:)) 1]}.

Now we show that F'B, C B,. Now for each x € B, and t € J, we have

|(F)(t)]
< J(lg(s,x(s), Ha(s)) — 9(s,0,0) +1g(s,0,0)[)(1)

12l + mweeﬂ (lg(s.2(s). Ha(s)) — 9(5.0,0)

+19(5,0,0))(¢) + 5 (lua| + !m\)[\ﬁm‘sﬂ l9(s, 2(s), Ha(s))

IAI



ANALYSIS OF FRACTIONAL INTEGRO-DIFFERENTIAL... 1411

*9(8’0’0” + |g(5’0’0)|)(£)
+J%(lg(s,x(s), Ha(s)) — g(s,0,0)| + [g(s,0, 0)\)(1)]
U [Lg(llz(s)l] + [|Hz(s)]) + M) (1)

o
Al

X(!Ul\ + |ua]) [!ﬁ\fg"sJ”[Lg(Hw(S)H + [ Hz(s)[]) + Mi](€)
+J Ly (lz(s)[ + [Hz(s)]]) + Ml](l)]

rLg + M ) |e| C"T'le+ 2 +1)
I'(v+1) Al Fle+2+0+1)

IN

(Jus| + [uaI5° T [Ly (|ll| + Ha(s)])) + Mi)(C)

IN

(lua| + [ual)

| ET( 424 1)
gl + [Pl e +1]}

e+ 2 +1)

rL,Ly + L M- a
M{NJ |(,u3‘+‘ 4,)

SCES) A T(c+ 2 o)
1 varl (»Y_|_——i—1)
|A| \m!ﬂm\)[\ﬁ! NG +n+g+1)+1]}

= A1+A2§r'

This shows that F'B, C B,. Now, for x,y € X and t € J, we have

|Fx(t) — Fy(t)]
< Sup {Jvlg(s,l‘(S), Hzx(s)) — g(s,y(s), Hy(s))|(¢)

{Akma+|MMIﬁJ%m5x<>Hw@»sx&y@xﬂywnuo

,A,(!Ua\ + \U2!)[!ﬁm‘5ﬂ\g s,2(s), Hz(s)) — g(s,y(s), Hy(s))|(£)

+7"g(s, 2(5), Ha(s)) — g5, y(s), Hy(s)) (1)) }
1 ol (‘T'(e+ 2 +1)
{Fw+1f*ﬁﬁmﬂ+W”H% FOe+ £ D)
ET(v+3+1) 1
T+ DL +2+0+1)  T+1)

IN

g

1
Al

(lua| + fuzl) [!ﬁ\

}Hw—yH
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]a\ CUFIT (e + 2 4+ 1)
+Lp =— ug| + |u. g
h{r( ) TN A R v

1 5““ (v+7+1) 1

Lyllz—y| Ly laf ¢Tle+7+1) ¢Lp
lf(v+1) {1+( )+W(| sl F P +U+0+1)(H(v+1)>

1Bl%

IN

+L<|ul|+|m|>[|ﬂ| Rt R ( odm) oy ]}

|A] I'(y —i—n—l—é—i—l) (v+1) (v+1)
= xllz—yll
Since x < 1, we have F' is a contraction. Hence, by the Banach’s fixed point
theorem, F' has a fixed point which is the unique solution for the problem
(1.1)-(1.2) on J. This completes the proof. O

4. Examples

ExamMpLE 4.1. Consider the following nonlinear fractional integro-
differential equation

epd ooy 1 oe Ja(t)] Lo [fe®  a(s)]
Dra®) = S T4 o) *5/0 5 ites @Y

with the boundary conditions

V3 2f 3 B2 2
x(0)27%7 x(g) and 2(1) = 21,7 a(3). (4.2)
Hoev =§.0=%8=f0=5e=§.0=.(=fn=j7="0=
5,5 2 . Also Lg—32,Lh

Using the given data, we found that u; = 0.15160103681942672, uy =
0.7814552314958013, u3 = 0.4348335918159857, us = 0.7734309135282774
and A = 0.4570559135537951 # 0.

Thus,

. {'O"<ru\+\ DEHere (o)

T(v+1) | |A| Fle+2+0+1) (v+1)
1 ('H +1) ELy, L

~ 0.040229397218974706 < 1.

Clearly, all conditions of Theorem 3.1 are satisfied. Hence the problem
(4.1) with (4.2) has at least one solution on J.
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ExaMpPLE 4.2. Consider the nonlinear fractional integro-differential
equation:

1a?(t) + 2a(t 1 [tes
CDix(t) = —(M) sin2t+—/ ‘ cos sds, (4.3)
6 1+ |z(t)] 3Jo 7
with the boundary conditions (4 2).
Herev—4,a—\[,ﬁ U—%e:%ﬁ i(z%n:é,'y:
\{l_, 5,5 Q.AlsoLg—g,Lh—7.

Using the given data, we found that u; = 0.15160103681942672, us =
0.7814552314958013, u3 = 0.4348335918159857, us = 0.7734309135282774
and A = 0.4570559135537951 # 0.

Thus
L Ly, |a| C”F(e—i— +1) CLy,
r(vin{” BTN e )(”(UH))
1 ET(y+7+1) ¢L, Ly,

= (0.5633023999907423 < 1.

Clearly, all assumptions of Theorem 3.3 are satisfied. Therefore, the prob-
lem (4.3) with (4.2) has a unique solution on J.
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