[

jractional Calculus
& /r\,pplied C nalysis

An Iriternational Journal for Theory and Applications

VOLUME 23, NUMBER 5 (2020) (Print) ISSN 1311-0454
(Electronic) ISSN 1314-2224

RESEARCH PAPER

FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS
IN WIENER SPACES

Vu Kim Tuan

Abstract
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1. Introduction

Consider the time fractional integro-differential equation

Ofu(x,t) = kAu(x,t) — f(fg(t — T)u(z, 7)dT + h(x), (x,t) € Q x Ry,
u(z,t) =0, (x,t) € 0 x Ry,
u(m,O) = f(:C), T € (),

(1.1)
where 0f is either the Caputo or the Riemann-Liouville fractional deriva-
tives of order v € (0, 1] with respect to time variable ¢ [9], and A is a self-
adjoint differential operator acting in L? (), Q ¢ R? (d > 1). Equation
(1.1) is a well known model for heat distribution of a visco-elastic material
with memory and has important applications in material science [1, 3, 4].
When o = 1, the local and global existence of solutions is usually handled
by semi-group theory, [7, 13]. However, when 0 < o < 1, the proof for the
local existence of solutions by semi-group theory is not possible, because
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©* is a non-local operator. Due to the presence of the convolution opera-

tor, Laplace transform becomes the tool of choice as it takes care of both
the nonlocal operation J;* and the Laplace convolution fg g(t—7)u(z, T)dT.
Until now it is not clear which function space (especially in time variable)
does the solution u(z,t) belong to. Clearly LP-spaces do not serve the pur-
pose. The main contribution of this paper is to show that the Wiener space
of functions with bounded square averages [17] is the right function space
for (1.1).

In this paper we are interested in two objectives:

A: Characterize the Laplace transform of Wiener functions with bounded
square averages and prove the global existence of solutions in direct prob-
lems in the Wiener space.

B: Given A = A = 88—;% + -4+ ;—;2, the Laplace operator, solve the
inverse problem of reconstructing the frcéctional order «, the parameter k,
and the memory function ¢ from a single observation of the solution at one
point.

The outline of the paper is as follows: In Section 2 we introduce the
Wiener space of functions with bounded square averages and characterize
the Laplace transform of such functions. In Section 3 we solve Caputo
and Riemann-Liouville fractional ordinary integro-differential equations,
i.e. when A is the identity operator, while in Sections 4 and 5, A = A, and
we deal with time fractional partial integro-differential equations where we
prove the global existence of solutions in the Wiener space and then solve
inverse problems for such equations in Section 6.

2. Functions with bounded square averages

Denote by £ and £~! the Laplace transform and its inverse ([16])

F(s) = (Lf)(s)= /0 o (2.1)

fE) = (LF) () = = F(s) e ds.

2mi Res=d
In practice given a function F', the crucial issue is to find conditions such
that it is the Laplace transform of a certain function f? Characterizing
the range of the Laplace transform has been investigated extensively and
the first result in this direction is the celebrated Paley-Wiener theorem for
the Fourier transform [11], which takes the following form for the Laplace
transform [16].

PROPOSITION 2.1 (Paley-Wiener). f € L*(Ry) if and only if F €
()
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Here HP(R?) is the Hardy space of functions F(s) = F(z+iy), analytic
in the right half-plane with

oo
sup/ |F(x 4 1y)[Pdy < oo.

x>0 .J -0

For f € L>*(Ry) Widder [16] proved the following result.

PROPOSITION 2.2 (Widder). A function F is the Laplace transform of
f € L>®(Ry) if and only if F is infinitely differentiable on Ry, and

xn—l—l
sup

In [14] it was shown that

F(z)

' :x>0,n:0,1,---}<oo.
n!

00 T
sup / |F(z +iy)|? dy = sup 1 |f(1)|* dt < oc.
>0 _oo >0 1" Jo
It turns out that functions with bounded square averages on R, first
defined on R by N. Wiener in the celebrated paper [17], can play very
important role in studying fractional integro-differential equations. Let us
start with the definition of such functions.

DEFINITION 2.1. By BSA(R.), the Wiener linear space of functions
with bounded square averages on R, we denote the set of locally integrable
functions f on R, such that

1 T

sup |£()]* dt < cc. (2.2)

>0 T'+1 Jg
We say f € BSA™R,) if f,f/,---,f™ € BSA(R,).

It is readily seen that L?(R.) U L>®(R,) C BSA(R,) and by Holder’s
inequality LP(R;) € BSA(R;) for 2 < p < oco. However, note that, for
—2 < B <0, we have f(t) =t# € BSA(R,), and yet f(t) & LP(Ry), 2 <
p < 00.

Now we characterize the Laplace transform of functions from BSA(R. ).

THEOREM 2.1. A function F(s) is the Laplace transform of f €
BSA(Ry) if and only if F(s) is analytic in the right-half plane Res > 0,
and

X o0 . 2
sup Fx+1 dy < oo. 2.3
sup [ 1P+l dy (2.3
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P r oo f. The proof follows [14]. Let f € BSA(R,). Denote f(T) =
fOT f(t)dt. Integration by parts gives

oo - T=00 © ~
F(s):= / e Sf(t)dt = e*STf(T)‘T . + 3/ e St f(t)dt, Res> 0.
0 = 0
By Holder’s inequality we have, for T" > 0,

- T T T
£ (T)] /O 1-\f(t)!dt§\//0 dt/o £ (t)[2dt
T
0

= VT / |F(®)]2dt < MVTVT +1.

IN

Here and throughout the paper M denotes a universal constant that can
be distinct in different places. Hence

e ’ 1 (), R(lS (),

F(s) :s/oooe_Stf(t)dt, Res > 0.

Since |f(t)] < M+/t(t + 1), the Laplace transform of f(t), i.e. ng), exists
and is analytic in the right half plane Re s > 0.
Integration by parts yields

0o T T=0c0
/ o2t (1) Pdt = 2T / PP dt
0 0 T=0
0 T 0 M 1
—i—2x/ e—M/ |f())? dtdT < Mx/ (T +1)e 2T dT < %
0 0 0
(2.4)

Hence, e ! f(t) € L?(R,) for any = > 0. Consequently, F(s) with Res >
xo > 0 is the Laplace transform of e=%0!f(¢) € L*(R,) at the point s — 0.
The Parseval formula for the Laplace transform in L?(R. ), see [16], gives

oo 1 oo
/ e 2 F (1) Pdt = —/ \F(z+iy)[*dy, x> x> 0. (2.5)
0 27 —00
Since x is an arbitrary positive constant, equality (2.5) holds for any = > 0.
Combining formulas (2.4) and (2.5) we obtain
o0 ) Mz +1
| P+ P ay < D,
oo x
that yields (2.3).
Conversely, assume that F(s) is analytic in the right-half plane Res > 0

and formula (2.3) holds. Then
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o0
sup / |F(x +iy)|>dy < o0, 0 > 0.

x>x0 J —00

Hence F(s+x0) is a Hardy function H?(R? ) in the right-half plane Re s > 0.
Therefore, by the Paley-Wiener Proposition 2.1 function F'(xzg + s) is the
Laplace transform of a function, say, f,(t) € L*(R.)

F(zo+s) = / e 5 fu(t)dt, Res>0.
0
Thus

Flzg+x1+s) = / eTIS)tp () dt
0

:/0 elmmo=s)tf (t)dt, Res,xg,x1 > 0.

Consequently, e~ ! f, (t) = e %f, (t). Denote f(t) = e™'f, (t). It is
clear that f(t) is independent of zp > 0 and F is the Laplace transform of

/s
F(s):/ e f(t)dt, Res > xo+z1.
0

As e @t f(t) = fi(t) € L*(R,), the Parseval formula for the Laplace
transform [16] yields

o0 1 o0 M 1
/ e_%(’t\f(t)Pdt = —/ |F(zo + iy)]2 dy < M, zo > 0.
0 2 —c0 o
Let g be a bounded function on Ry. Then
< x —2z < ~ M(x+1
[T et iswra < ol [~ e @R < HEED
(2.6)

for x > 0. Take

1 -2
3 t>e
_ E
g(t)_{ 0, 0<t<e?

Then ||g|l = €2, and (2.6) becomes
1/z M 1
[ isopa < ML s
0

Replacing = by % we arrive at
1 T

741,
Thus f € BSA(R,) and Theorem 2.1 is proved. O

If®)2dt <M, T >0.
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COROLLARY 2.1. Let F(s) be analytic in the right half plane Re s > 0
and |F(s)] < C|s|™®, 1 < a < 1. Then F is the Laplace transform of a
function f € BSA(RY).

Proof Because a > i, F(z +ie) € L*(R), and for 3 < a < 1,

o0 M o0
v / Fletiy)Pdy < 22 / (@ 1 )~ dy

z+1 /) o z+1) o
Ml (o — 1) 220
Vil (a—3) z < oo,
') r+1
hence, formula (2.3) holds, i.e., f € BSA(Ry). O

The following result is very important in solving fractional integro-
differential equations in Sections 3-5.

THEOREM 2.2. Let ||g||; < k, 0 < a <1, then for the inverse Laplace
transform £+

. 804—1

Proof. Since g € L'(R,), its Laplace transform G(s) is analytic in
the right half-plane, and from

1G(s)| < / e Bes)t 1 gt)] dt < ||gll, < k, for Res >0,
0
Safl
we deduce that m is also analytic in the right half-plane. Let

us denote by
h(s) = k+ G(s),
then h(s) is clearly analytic in the right half-plane, and for Re s > 0,
0<e:=k—|g|l; <Reh(s) andalso e < |h(s)| < 2k. (2.8)

a—1
It is enough to show that asih satisfies (2.3). Put s =z + iy, * > 0,
T 00 ‘8‘2a72 5 (8)
dy = ILi(z)+ L(z
x—i—l/_oo lso‘—i-h(s)\z Y i) + Bo(w)

T ‘8‘2a72

L e dy
z+1 /yeR, Re(s*h())20 [s@ + h(s)|?

T |8|2a—2

[ e,
T+ 1 Jyer, Re(s7h(s))<0 |5 + h(s)]
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We need to show that [;(x) and Iz(z) are uniformly bounded.
For I (z) we see first that

5% + h(s)[2 = (s + h(s)) (ga n h(s)) = |s|* + 2Re (sah(s)) +h(s)[?,
and thus it follows that
Re (sah(s)) >0 = |5+ h(s)]2 > |s|>. (2.9)

Using (2.9) when Re (30‘ h(s)) > 0, we have

200—2 00
x S x 1
Li(z) < / i 5 dy < / —5 dy
T+ 1 Jyer, Re(s*h())>0 |5 e+ 1) o s

x /OO dy T
g o <7‘(‘_
x+1 )22 4+y2 xz+1~
For Re (sa h(s)) < 0 write

h(s) = hl(s) + ’ihg(s),
where h; = Reh and hy = Imh. We then have for s = re'?, -5 <p<3,

0 > Re (sa Ws)) =7 (h1 (s) cos ap + ha (s) sinap) . (2.10)

Since ap € (55, 5) then cosayp > 0 and by (2.8)
hi(s) = Reh(s) > e >0, (2.11)
which means that
ha (s)sinap < 0 when Re (so‘ m) <0

by (2.10). In other words ha(s) and sin(ay) have different signs, and
furthermore

0 < hy (s)cosap < |ha (s)sinagp|. (2.12)
When Re (so‘ %) < 0 we can write
15 + h(s)|2 = |s]* + 2Re (saw) +|h(s)]2 (2.13)
— N2
Re ( s*h(s) Re ( s*h(s)
(e % o[- |(h<s>|2 !

o T~ [Re (s B@)]" _ [t (o 707)

>
[(s)[? [h(s))”
Thus we have from (2.13)
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. ’8’2(1—2
Lz) < / B el (2.14)
2() T+ 1 JyeR, Re(s2h())<0 5@ + h(s)|?
- / [A(s)I* Is[*
< _ 2
r+1 yER, Re(sah(s))<0 [Im (80‘ h(S))] |5|2

T

dy.

To proceed further we shall need the following estimate:
If Re (30‘ h(s)> < 0 then

s¢ W‘Q < (45%2 + 1> [Im (sa %)]2 for Res > 0. (2.15)

In fact, from (2.12) and (2.8) we have

2k
|Re (s* h(s))| < r%|ha (s)sinap| < r*2k|sinap| < ro‘? £ [sin g ,

and by (2.11) we have

2k
|Re (s* h(s))] < TO‘? |h1(s) sin ay

2k
< ?(Ta |hi(s)sin ap| + 7% |ha(s) cos apl)

2k
< —r%| hi(s)sinay — ha(s) cos ap|
€

as hi(s)sinap and —ha(s)cosayp have the same sign. Thus we deduce
that

2k —
« < «
|Re (s* h(s))| < - ‘Im (s h(s))‘,
and it follows that

s* h(s)

= oo ()] + o)
< <4€i22 + 1) [Im (sa%)]z,
which proves (2.15).

Going back to (2.14) we get
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x o0 h(s)|? |s|?®
PRI L

|
)
8 4|8
—
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+
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o |
[\v]
QL
Ng

Consequently, f € BSA(Ry). O

REMARK 2.1. From the proof of Theorem 2.2 we have the following

estimate
2%k )2 1
— | +1]—, Res > 0. (2.16)
((k—Hmh )\ﬂ

Combining Corollary 2.1 and Remark 2.1, we arrive at

Safl

L
s+ k+G(s)| ~

COROLLARY 2.2. Let ||g||; < k, 2 < a <1, then the inverse Laplace

transform
1
=L — 2.17
! <8°‘ +k+ G(s)) ( )
is from BSA(RY).

LEMMA 2.1. Let f € BSA(R,) and g € L*(R,). Then their Laplace
convolution

h(t) = (f = g)(t /ft—T (2.18)
belongs to BSA(RY).

Proof. In fact, by applying the Laplace transform to (2.18), we
obtain H(s) = F(S)G( ), therefore, |H(s)| < |F(s)||lg]l1, and thus

X

sup

o
P / |F(z +iy)|* dy < co.
x

a

[e.9]
H ; dy <
|G+l dy < gl s —
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3. Fractional integro-differential equations

3.1. Caputo fractional integro-differential equation. Now consider
the following Caputo fractional integro-differential equation

IO+ [ =i =hO. fO)=fo  j<as<i

(3.1)
where g,h € L'(R,) are given, and f is an unknown. Here €02 is the
Caputo fractional derivative defined by ([9])

Copft) = /Ot (t;(ﬂiwﬂf(”)(ﬂ dr,n—1<a<n; g7 f(t) = f ().

n—a)
. (3.2)
It is well known [9] that
n—1
L (Caf‘f) (s) = s*F(s) — Z sk ®), n—1<a<n. (3.3)
k=0

THEOREM 3.1. Let k > 0, fo € R, g,h € L'(R,), be given, and
llglli < k. Then the Caputo fractional integro-differential equation (3.1)
has a unique solution f from BSA(R,).

P r o o f. Applying the Laplace transform to equation (3.1) and taking
into account (3.3) we obtain
s“F(s) — s L fg + kF(s) + G(s)F(s) = H(s). (3.4)
Solving for F'(s) yields
s fo + H(s)

. FO) = i r s ats) (3.5)
51 1
Lo = wirram MO = wimiom) (36)

then according to Theorem 2.2 and Corollary 2.2, their inverse Laplace
transforms, namely I(t), m(t ) belong to BSA(R+) and

f(t) / m(t — 7)h(T)dr. (3.7)

Since m € BSA(R) and h € L1 (Ry), by Lemma 2.1, their Laplace con-
volution m * h belongs to BSA(R,). Hence, f, deﬁned by (3.7), is from
BSA(R,). Using the Tauberian theorem for the Laplace transform ([16])
Ata—l
I(a)’

F(s)wséa, s—o00 = f(t)~ t— 0+, (3.8)

we have
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1
L(s)~—-, s—o0 = It)~1], t—0+.
s

Consequently, f(0) = fo.

Conversely, let f be given by (3.7), where [,m are defined by (3.6).
Then f € BSA(R;) and f(0) = fo. Applying the Laplace transform to
(3.7) and taking into account (3.6) we arrive at (3.5). Hence, (3.4) holds.
The Laplace inverse of (3.4) yields (3.1). O

3.2. Riemann-Liouville fractional integro-differential equation. Con-
sider now the following Riemann-Liouville fractional integro-differential
equation

t
D8‘+f(t)+k:f(t)+/0 g(t—7)f(T)dT = h(t), Ié;a (0+) = fo, % <a<l,

(3.9)
where g,h € L'(R,) are given, and f is an unknown. Here Dg, is the
Riemann-Liouville fractional derivative ([9])

dn t t—1 n—a—1
DE S0 = gl s 0, 100 = [ rwan o
It is well known [9] that (3.10)
n—1
(D0+f) (s) = s*F(s) — Zs”_k_lD(o)‘ik_”f(O—i—), n—1<a<n.
- (3.11)

THEOREM 3.2. Let k > 0, fo € R, g,h € L*(R,), be given, and
llglli < k. Then the Riemann-Liouville fractional integro-differential equa-
tion (3.9) has a unique solution f from BSA(R).

P r o o f. Applying the Laplace transform to equation (3.9) and taking
into account (3.11) we obtain

sYF(s) — fo+ kF(s) + G(s)F(s) = H(s). (3.12)
Solving for F'(s) yields
_ Jo+ H(s)
F(s) = P ETGE) (3.13)

Define again M(s) by (3.6), then according to Corollary 2.2, its inverse
Laplace transform m(t) belongs to BSA(R, ), and

f(t) = fom(t) /mtT ) dr. (3.14)
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Since m € BSA(Ry) and h € L'(R,), by Lemma 2.1, their Laplace con-
volution m * h belongs to BSA(R.). Hence, f, defined by (3.14), is from
BSA(Ry). Using the Tauberian theorem for the Laplace transform (3.8)

we have
1 ot

M(S)Ns_a’ s—o00 = m(t)wm,

Consequently, Ié;am(t) ~ 1, t — 0+. Together with (3.14) it yields
I F(04) = fo.

Conversely, let f be given by (3.14), where m is defined by (3.6). Then
f € BSA(R;) and Ié_;af(O—i—) = fo. Applying the Laplace transform to
(3.14) and taking into account (3.6) we arrive at (3.13). Hence, (3.12)
holds. The Laplace inverse of (3.12) yields (3.9). O

t—0+.

4. Partial Caputo fractional integro-differential equation

In this section we study the following partial Caputo fractional integro-
differential equation

Copu(x,t) =kAu(x,t) — fg gt — Tu(z,7)dr, (2,t) € Q :=Q xR,

u(z,t) =0, (x,t) € 00 x RT,

u(z,0) = f(x), x € Q,

(4.1)
with % < a <1, where Q c R? (d > 1) is a bounded domain with smooth
boundary 992 € C (5141, Here [a] denotes the integer part of a. The model
in (4.1) appears in many modeling situations of new viscoelastic materials
such as polymers [1, 3, 4, 12].

We will show the observability of the solution for large time, which
means its global existence in the Wiener space BSA(R). Local existence
results in the case of Dirichlet boundary conditions are known, however the
global existence results presented here are new and do not rely on semi-
group techniques, [7].

As we shall use spectral methods associated with the Dirichlet Lapla-
cian, denote its eigenvalues indexed in the ascending order and counting
their multiplicity, by A; and associate eigenfunctions by ¢;, i.e.

A(p](.%') - _)‘j@j(x)v in Q’ (4 2)
@j(x) =0, on 0. ’
It is known [10] that 0 < A; < Ap < A3 < -+ < A5 < - with

lim A\; = oo, and the set {¢;};>1, normalized by ||¢;|[z2() = 1, is an
J—00 -
orthonormal basis for L?(2). Moreover, ¢; € C*°(f2), and the smoothness

condition on the boundary guarantees that ¢; € C(f2) (see [10, Theorem
7, Section 2, Chapter IV]).
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First we can look for a particular solution of (4.1) in the form that can
be written as

u(z,t) = ¢j(t)p; (@),
where u(z,0) = ¢;(x), so ¢; satisfies the Caputo fractional integro-differential
equation, thanks to (4.1) and (4.2),

C@f‘cj(t) = —kXjc;(t) /0 g(t —s)cj(s) ds, with c;(0) =1. (4.3)

Equation (4.3) is a special case of (3.1), so from (3.5) we have its solution

Safl

Cj(s) = I WAL cj(t) = (E_le) (s). (4.4)

THEOREM 4.1. Let 3 < o < 1, ||g|ly < Mk. Then c¢;(t), defined by
(4.4), belongs to BSAY(R,).

Proof. Since \jk > Ak > ||g|li, Theorem 2.2 shows that c;(t) €
BSA(R,) for j =1,2,---.

We have
, s“ Nk + G(s)
(£6j) (s) =5 Cj(s) = e(0) = Nk + G(s) s+ Ak + G(s)

(4.5)

In (2.16) we have shown that

Safl

5%+ Nk + G(s)
Since Ajk + |G(s)| < (A1 + X))k, we have
)\jk‘ + G(S) M)\]
s + Nk + G(s) |s]e
Consequently, by Corollary 2.1 the Laplace inverse of sCj(s) — ¢;(0), or

c;(t) exists and belongs to BSA(R). Thus, ¢; € BSAY(R,). 0

M
< —, Res>0.
|s|

Res > 0.

If we take f(z) = ¢;(x), then u(x,t) defined by (4) with ¢;(0) = 1
satisfies (4.1). Thus we have proved

THEOREM 4.2. Let £ <a <1, ||g|l; < Ak, and f(z) = > aipi(z),
then the classical solution to the problem (4.1), exists for all t > 0, i.e. is
global.

Now we go to the general case. The Weyl law for the asymptotics of
the eigenvalues A; has the form [5, 6]
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SIS

9 —d
Aj 5j%, j— o0, where 6= [%Vol (Q)

r(5+1)

For the eigenfunctions ¢;(x) the following asymptotics formula holds uni-
formly on any compact subset K of €2, see [2],

Z gp?(x) =0 ()\d_l) ., A —00.
RVAYERLES!

(4.6)

In particular,
d—1 d—1
@j(x):0<)\j4 >:O<j2d), j—oo, zeKeEN (4.7)

By f; we denote the 4t Fourier coefficient of f € L?(Q) in the basis
{SOJ}JED namGIY)

f; = /Q F(@)p;(x) da.

Recall that if f € H{" (), the Sobolev space of functions with compact
supports in Q with generalized derivatives up to order m > 0, [10], then its
Fourier coefficient f; has the asymptotics ([2])

fj:0</\;%) :()(j—%), j = o0, (4.8)

and the following convergence result will be essential for studying solutions
of (4.1).

LeMMmA 4.1, Let f € H*(2).
a) [2] If m > %, then the series

> fiei(@) (4.9)
j=1

converges absolutely and uniformly to f(x) on any compact subset of ).
b) [10, Theorem 8, Chapter IV] If 92 € C™, then

> A < CllFlGm ) (4.10)
j=1

and the series (4.9) converges to f(x) in H™(Q).

¢) [10, Theorem 9, Chapter IV] If 9Q € C™ and m > [%] +1, then the sum
d _
2

(4.9) belongs to okl ]_I(Q).
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The absolute convergence of (4.9) should be understood in the following
unconventional way. With the presence of multiple eigenvalues, let us re-
group all eigenvalues into a strictly increasing sequence p; < pg < ... such
that the sets {\1, A2, ,Aj,---} and {1, 2, ,pu,- -} coincide. Then
the absolute convergence of (4.9) means the convergence of the series

DI fiwi@)|. (4.11)
=1 | Aj=m

THEOREM 4.3. Let g € LYRy) U L¥(Ry), f € HP(Q), gl <
kA1,1 < a <1, and ¢; be defined by (4.4).
a) If 0 € C™, then the series

u(z,t) == fic;(t)p;(x) (4.12)
j=1

converges in H™ () norm for each t > 0. If, moreover, m > [%} + 1, then
u(.,t) € cml2l-L @),
b) If m > &, then the series (4.12) converges absolutely on @ := Q x R.

c) If m > 3d2_ L then the series (4.12) converges uniformly on any compact

subset of Q. Moreover, if 02 € C[%]H, then u € C(Q2) x BSA(R,).

P r o o f. Consider the equation
Cofy(t) = —y(t) + f(t), y(0) =1, (4.13)
Its solution has the form [9]
t
y(t) = Ea(=At%) + / (t=7)* Eaa(-At—1)*)f(7)dr,  (4.14)

0
where E,(z), Eq (%) are the classical and two parametric Mittag-Leffler
functions ([8])

Eop(z) = nzo 1“(#1@ Ey(2) = Eai(2). (4.15)

Applying (4.13) and (4.14) to (4.3) with f(t) = —(g * ¢;)(t), and X being
replaced by kA;, we obtain

¢5(t) = Ea(—kA;t%)
- / (t = 7)Y B (— kN (t — 7)) / " g(r — m)e; () dn dr
0 0

:Ea(—mjta)—/o B(t,m)c;(n) dn,

where
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t
B(t,n) = / (t— T)O‘_lEma(fk‘)\j(t — 7)) g(T —n)dr. (4.16)
n
Since Eqy o(—z) is monotone decreasing and E, o(0) = ﬁ (see [8]), we
have
t t — ,',])Cv
<E ~ ety = = . 4.1
)] < Baa Ol | (67 dr = Pl (417

Consequently, the monotone decay of E,(—=z) and E,(0) = 1 (see [8]) yields

0] < Eal-int) + 5 22 [ el ldn

[191lo0 / '
<14+ —/—7—— t—n)%c; dn.
Applying the Gronwall inequality for fractional integral [18, Corollary 2]
and recalling that E,(x) is monotone increasing [8], we obtain

sot® co L™
¢j(0)] < Fa (M) < B, (M) — My, te0T).  (418)
o' o'
Thus, {c;(t)};>1 are uniformly bounded on any interval [0, 7].
a) Since f € H{'(2) and 0Q2 € C™, then by Lemma 4.1 (b) the inequal-
ity (4.10) holds. Together with the uniform boundedness of ¢;(t) on [0, 7]
it yields

> HEWA] < oo
j=1

In other words, the series (4.12) converges in H™(€2) norm, and u(.,t) €
H™(Q) for any t > 0. On the other hand, when m > [%] + 1, we have [10]
H™(Q) € c™ [2]71@), therefore, u(.,t) c ™~ [2]-1(@).

b) Combining Lemma 4.1 (a), formula (4.11), and noticing that ¢;(t) =
cjr(t) if A\j = Ay we arrive at

DI FieiWei)| < Mp Y | fiei(n)] < oo,
=1 | Xj=py =1 | Xj=py

i.e., the absolute convergence of (4.12).
c) From (4.7), (4.8), and (4.18) we have

ficj()pj(z) =0 (j H?fm) ,
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uniformly on K x [0,7], where K is any compact subset of €. Since
m > 3451 then 4=1-2m d=l=2m < —1, and therefore, the series (4.12) converges
uniformly on K x [0, 7.

From (2.16) and (4.4) we have

M
IC;(s)] < 5[’ Res >0,

where M is independent of j. Hence, Holder’s inequality and formula (2.5)

give
o 2 o oo
[/ e“t|cj(t)|dt} g/ e“tdt/ e e;(t)|?dt
0 0 0
M [ 1 M
_ ‘c( +zy)‘ dy < —dy=—5, x>0
2mx 2z J_o |% + 2y| T
Consequently,

- ° . \/]\4oo Ld—1-2m
S lfses@l [ e elar < E S0 (57" <o, a0
Jj=1 j=1

Thus, we can apply Lebesgue’s dominated convergence theorem to obtain

(Lu Zf]goj )(Lcj)(s), Res>0.

In other words,

s) :ifjcj(s Zo( =)o <§) ZOG). (4.19)

By Corollary 2.1 we have u(z,.) € BSA(R4).

Now, m > 34=1 [2} + 1, therefore, combining with Part (a) we arrive
at u € C(Q) x BSA(R+).
Theorem 4.3 is proved. O

Now we are ready to prove the main theorem of this section about the
global existence of classical solutions of (4.1).

THEOREM 4.4. Let g € L'(R4)UL®(Ry), f € HY(Q), 02 € C™ with
m > 383 L < <1, and ||g|y < kM. Then u(z,t), defined by (4.12), is
the un1que c]abswa] solution of (4.1) in C?(Q2) x BSAY(R,).

Proof. Sincem—[4] —1> 34 — [4] — 1> 2 by Theorem 4.3 (a)

o d+3—2
we have u(.,t) € C*(€2). Moreover, from (4) and 5221 < —1,
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Z |ijj(t)A50] | = Z |)\ fJC] sp] Z ( d+3 zm) o,
J=1 st

uniformly on any compact subset of (). Hence,

Au( ijc] JAp;(x Z)\ fici(t)p;(x (4.20)
Jj=1
From (4.3) and (4.18) we get

t
Cope;(t)| < kA Mr+ My /0 gt — )lds < Mp(kX; + [lg]l)

- O(Aj):o(ﬁ), te0,7).
Consequently,

Z!f] Ipci(t)pj(z |_Zo<d+3 2m)

uniformly on [O T] for any T > 0, and it ylelds
el Zf] “OFe; (1) 5 (@). (421)

It is obvious that

t o0 t
/ gt — Ty, 7 dr = Y fis(a) / ot —T)ey(r)ydr.  (4.22)
0 = 0

Combining (4.20), (4.21), (4.22), and (4.3), we arrive at

Cofu(x,t)—kAu(z,t) +/0 g(t — Tu(x, 7)dr

> ¢
Z fivi(x [Cafcj(t)+k)\jcj(t)+/0 g(t —7)ci(r)dr| = 0.
Since ¢;(x ) =0 on 012, then

t) = Z fici(t)pj(x) =0, x €09

Because ¢;(0) = 1, by Lemma 4.1

0)=>_ fic;(0)p;(x) = fipj(x) = f(x), zeQ,
j=1 j=1

Thus, u(z,t), defined by (4.12), is a classical solution of (4.1).
Taking into account (4.19) and (4.5) we obtain
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(Lur(z,) (s) = sU(x,8) —u(z,0) =5 _ fi0;(x)C;(s) = D fips()
j=1

J=1

N fon () (O(8) 1) = S () JEHG)
= j;fj%()(cj() 1) ;JZ%( )Sa+)\jkj+G(5).

Using (2.16) and (4.6) we get

Ak + G(s) M), _Mji
s+ Ak +G(s)[ T [s|* T fs|e
Together with (4.7), (4.8), it yields
> Ajk + G(s) M R axs—2m M
ey N <
; fies ) v e | = ISIO‘;J BT

because 6”32% < —1. By Corollary 2.1 w(x,t) € BSA(Ry). Together
with u(x,t) € BSA(R,) by Theorem 4.3 (c) it yields u(z,t) € BSA'(R,)
for any x € Q. Thus, u € C?(Q) x BSA'(R}).

Let u,i € C?(Q) x BSAY(R,) be two solutions of (4.1). Then w =
u—1a € C?(Q) x BSA'(R,) is a solution of

Cofw(x,t) =kAw(z,t) — fg gt — Nw(z,7)dr, (z,t) € Q xR,
w(x,t) =0, (z,t) € 0Q x RT,
w(z,0) =0, x €.

(4.23)
Taking the Laplace transform of (4.23) we get

AW(SC,S):WW(CC,S), z €N 200
{ Wi(z.s) =0, e , W(x,s) € C*(Q2), Res > 0.

(4.24)
1 a

If s € (Hng‘, oo), then —% < 0 cannot be an eigenvalue of the

Dirichlet Laplacian (4.1), therefore the Schrédinger equation with Dirich-

let’s boundary condition (4.24) has only trivial solution W (x,s) =0, z € €,
[10], for such s. But for a fixed parameter x € Q, W(x,s), as a function

1
of s, is analytic in Res > 0. As W(z,s) = 0 on s € <Hng, oo>, the

interior uniqueness theorem for holomorphic functions yields W(z, s) = 0,
Res > 0. Hence, w(z,t) = 0, and we obtain the uniqueness of u. The
theorem is proved. O



FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS ...1319

5. Partial Riemann-Liouville fractional
integro-differential equation

In this section we will study the global solvability of the following partial
Riemann-Liouville fractional integro-differential equation

Dg u(x,t) = kAu(z,t) — fgg(t — Tu(x,7)dr, (2,t) €Q=Q xR,
u(z,t) =0, (z,t) € 0Q x RT,
Ié;au(x,O) = f(z), T e,

(5.1)
with 2 < a <1, where @ C R? (d > 1) is a bounded domain with smooth
boundary 0f) € clzl+1,

First we look for a particular solution of (5.1) in the form

u(z,t) = ¢j(t)pj(@), (5:2)

where I&;O‘u(ac, 0) = ¢;j(x), so c;(t) satisfies the fractional integro-differential
equation, thanks to (5.1) and (4.2),

t
Dy, cj(t) = —kXjc;(t) — / g(t — s)cj(s) ds, with Iotacj(O) =1
0
(5.3)
Equation (5.3) is a special case of (3.9), so from (3.13) we have its solution
1 -
Cy(s) = G0 = (£7C) (). G4

s+ Nk + G(s)’

According to Corollary 2.2 we have the following theorem.

THEOREM 5.1. Let £ < a <1 and ||g||i < Atk. Then c;(t), defined by
(5.4), belongs to BSA(R,).

If we take f(z) = ¢;(z), then u(z,t), defined by (5.2) with I&;O‘cj(O) =
1, satisfies (5.1). Thus we have proved the following theorems.

THEOREM 5.2. Let 1 < a <1, |g|l; < Mk, and f(z) = >y aipi(w),
then the classical solution to the problem (5.1), exists for all t > 0, i.e. is
global.

THEOREM 5.3. Let g € L*(Ry) U L®(Ry), f € HFY(Q), |lgll1 < kX,
1 <a <1, and ¢; be defined by (5.4).
a) If 0 € C™, then the series

u(a,t) = fic;(t)p;(z) (5.5)
j=1
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converges in H™ () norm for each t > 0. If, moreover, m > [%] + 1, then
u(.,t) € cm 271 @),

b) If m > &, then the series (5.5) converges absolutely on Q.

c) If m > :SdQ;l, then the series (5.5) converges uniformly on any compact

subset of ). Moreover, if O) € C[%]H, then u € C(Q) x BSA(R,).

P r o o f. Consider the equation

Dy y(t) = —dy(t) + f(B),  1j;°y(0) = 1. (5.6)
Its solution has the form [9]

y(t):ta1Ea,a(_)‘ta)+/0(t_7—)alEa,a(_)‘(t_T)a)f(T)dT' (5.7)

Applying (5.6) and (5.7) to (5.3) with f(t) = —(g * ¢;)(t), and A being
replaced by kA;, we obtain

cj(t) = t* T Ey o (—kAt*)
- / (t — 1) B a(—kAi(t — 7)) /Tg(f —n)cj(n) dndr
0 0

t
= 197 Ega(—kNjt®) — /0 B(t,m)ej(n) dn,

where 5(t,n) is defined by (4.16). Using (4.17) we get
- [l9lo /t
(8)] <t By o(—kNt® t — )% ci(n)|dn.
(O] < 7 B () + 5 2255 [ (=)l )l

The complete monotonicity property of Eq o(—t) , 0 < o < 1, [8], yields
the monotone decay and positivity of Ey o(—t) , 0 < a <1,

Ea,a(—k)\lta) > ana(—k?)\jta) > 0.
Consequently,

0] < 7 Bnn(-kae) + 5225 [ el (58)

Since t* 1B, o(—t%),0 < a < 1, is complete monotone [8], then
t By o (—kMtY), 0<a<l,

is monotone decreasing. Applying the Gronwall inequality for fractional in-
tegral [18, Corollary 2] and monotone decreasing of t* 1 E, o (—kA1t%),0 <
a <1, to (5.8), we obtain

oot®
l¢; (1) <t By o(—kAt®) Eq <%) = M(t), t>0. (59
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Thus, {c;(t)};>1 are uniformly bounded for any ¢ > 0.
a) Since f € H{'(2) and 0Q2 € C™, then by Lemma 4.1 (b) the inequal-
ity (4.10) holds. Together with the uniform boundedness of {c;(t)};>1 for

t > 0 it yields
Z AT < oo.

In other words, the series (5 5) converges in H™(Q) norm, and u(.,t) €
H™(Q) for any t > 0. On the other hand, when m > [4] + 1, we have [10]
H™(Q)eCc™ [2]- 1(Q), therefore, u(.,t) C C™ [2)- L@Q).

b) Combining Lemma 4.1 (a), formula (4.11), and noticing that ¢;(t) =
cjr(t) if Aj = Ajr, we arrive at

MY fieit)ps(x)| < M(t Z > fiwj(@)| < oo,

=1 |Xj=w =1 | Nj=py

i.e., the absolute convergence of (5.5).
c) From (4.7), (4.8), and (5.9) we have

fiei(Ops(x) = 0 (775, (5.10)

uniformly on K x [T1,T], where K is any compact subset of Q, and 0 <
Ty < T < oco. Since m > :SdQ;l, then dig% < —1, and therefore, the series
(5.5) converges uniformly on K x [Ty, T].

From (2.16) and (5.4) we have

|Cj(s )\<H Res >0,
where M is independent of j. Hence, Holder’s inequality and formula (2.5)
give
oo 2 oo o
[/ e”\cj(t)\dt} < / ”dt/ e e (1) Pt
0 0
- — | o ( Ty < 2L
2mx ‘ +1y v= 2rx J_o ‘_+1y‘20‘
M2%72T (o — 3
(a 2), z > 0.
2 /ml(«)
Consequently,

Z|fJSOJ |/ e (t |dt<—ZO<d12 )<oo, x> 0.

Thus, we can apply Lebesgue’s dominated convergence theorem to obtain
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(Lu ij% )(Lecj)(s), Res>0.

In other words,

s)zgfjcj(s Zo(d”m) <8ia>:o<sia>

(5.11)
By Corollary 2.1 we have u(z,.) € BSA(R4).

Now, m > 34=1 [ | +1, therefore, combining with Part (a) we arrive
at u € C(Q) x BSA(R+).
Theorem 5.3 is proved. O

Now we prove the main theorem of this section about the global exis-
tence of classical solutions of (5.1).

THEOREM 5.4. Let g € LY(Ry)UL®(Ry), f € HF(Q), 02 € C™ with
m > 343 L <o <1, and ||g|ly < kAi. Then u(z,t), defined by (5.5), is
the un1que c]ass1ca1 solution of (5.1) in C?(Q) x BSA%(R,).

By f(t) € BSA*(R4) we mean both f(t),D§. f(t) € BSA(R,).
1> 38 |

P roof. Since m— [—] — 1> 2, by Theorem 5.3 (a)
we have u(.,t) € C?(Q). Moreover, from (5.10) and d+3d2m < -1,

> Ifici®)Ag; @) =D INifici(t)ps(@)| = ZO ( d+32d2m> =0
j=1

j=1
uniformly on any compact subset K x [T, T]. Hence,
Au Zf]cj JApj(z Z)\ fici(t)pj(x (5.12)
J=1

From (5.3) and (5.9) we get

DG, ei(t)] < kAM(E) + Mt /|gts>|ds<M< Y(kA; + llglh)

Q.ll\D

= O(\) :O< ) te [T, 1)

Consequently,

Z‘fJDO-i—CJ )ej(@ ‘_ZO(d+3 2m><oo’

uniformly on [T 1,T] for any 0 < T3 < T < 00, and it yields



FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS ...1323

D, u(x,t) Zf] Dg. ci(t) pj(x). (5.13)

It is obvious that
t

/0 g(t — T)u(x,7)dr = jzl fipj(x) /0 g(t —71)c;(r)dr. (5.14)
Combining (5.12), (5.13), (5.14), and (5.3), we arrive at

Dy, u(x,t) — kAu(x,t) + /0 g(t — T)u(x, 7)dr

Z fivj(@) [Dg‘_i_cj(t) +kXjci(t) + / g(t —7)¢;(r)dr| = 0.
j=1 0

Since ¢;(x) = 0 on 012, then

Zf] ci(t)pj(x x € oS
Because I&;O‘cj( ) =1, by Lemma 4.1 (a)
Iy Zf] 137 (0)pi(x) = Y fipj(x) = f@), z€Q
j=1

(5.15)
Thus, u(zx,t), defined by (5.5), is a classical solution of (5.1).

Taking into account (5.11), (3.11), and (5.15) we obtain
(£D8‘+u(x t)) (s) =s*U(z,s) — Ié_o‘u(x,O)

= S ZfJ‘PJ ZfJ‘PJ

Ajk 4+ G(s)
- s acr(s) — 1) = s J _
;fﬂ,@](ﬂﬂ) (s“Cj(s) ) j;fﬂpj(x)sa + Nk + G(s)
Using (2.16) and (4.6) we get
)\jkﬁ + G(S)
5%+ Nk + G(s)
Together Wlth (4.7), (4.8), it yields

Ak + G(s) M X aisom M
< — < —
; f] ]( )Sa+)\ k+G( ) - ‘S‘azlj 2d -~ 3‘0"

because d+3252m —1. By Corollary 2.1 D§, u(z,t) € BSA(R,). Together
with u(z,t) € BSA(R4) by Theorem 5.3 (c) it yields u(x,t) € BSA*(Ry)
for any x € Q. Thus, u € C?(Q) x BSA*(R4).

.2
M)\j < M]d.
— sl T sl
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Let u, @ € C%(Q) x BSA%(Ry) be two solutions of (5.1). Then w =
u—1a € C?(Q) x BSA%(R,) is a solution of

D§, w(x,t) = kAw(z,t) — fg gt — Nw(z,7)dr, (z,t) € QxRT,

w(x,t) =0, (z,t) € 00 x RT,
Iy “w(x,0) =0, z €.
(5.16)
Taking the Laplace transform of (5.16) we get the Dirichlet Schrodinger
problem (4.24), and the uniqueness of u follows. O

6. Inverse problems

We consider now an inverse problem of finding an initial function u(zx, 0)
= f(x), so that we can reconstruct the order of fractional derivative «, the
constant k, and the memory function g uniquely from a single observation
of the solution {u(z,t)};~o of (4.1) at one arbitrary point x = b € . For
an one-dimensional case see [15].

The initial condition we choose is f(z) = ¢1(z). Then the observation
u(b,t) is given by

u(b,t) = c1(t)p1(b), ¢1(0) =1, where b€ Q.

Recall that ¢;(b) # 0, as the principal eigenfunction of the Dirichlet Lapla-
cian never vanishes inside 2, [10], and so the observation is not trivial.

Taking the Laplace transform of the observation wu(b,t) with respect to
t, and recalling (4.4), we have

804—1
U(b’ 5) T ga + Mk + G(S) 301(b)'
Consequently,
@1(b) 1 o
SUb.5) 1=s"%M\k+ G(s)),
and
In L(b) -1
sU(b,s) In(A1k + G(9))
a=— + :
Ins Ins

Using the fact that G(s) — 0 as s — oo, it yields

o«=- - <%_1> o)

. 80‘[ ¢1(0) 1]%

TN UG, s) N

For k£ we have
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Therefore, once « is known, k£ can be obtained as

o 8% (b
= 5 ) .
and G(s) as
G(s) = s [% — 1] — kA1, Res>0. (6.3)

The memory kernel g(t) can be recovered by taking the Laplace inverse
transform of G(s). Thus we have proved

THEOREM 6.1. Let 3 < a <1, g€ LY (Ry) with |glli < A\ik. Taking
f(x) = p1(x) then using one observation u(b,t) of (4.1) at a single point
b € Q we can reconstruct uniquely the fractional order o by (6.1), the

parameter k by (6.2), and the function g by taking the Laplace inverse of
G(s) from (6.3).

Assume now that the observation point b is on the boundary 0€). Since
u(b,t) = 0 when b € 99, so instead of u(b,t) we should observe w, the
outer normal derivative of the solution u at the boundary point . With
the initial condition u(x,0) = ¢i(x) the solution u(x,t) = c1(t)p1(x) €
C1(Q) for each t > 0 when 9Q € C[%]H, [10]. Since 8%;1,(1’) # 0, [10], the

. dubt) - .
observation —; = is meaningful.
Taking the Laplace transform of the observation w with respect to

t, and recalling (4.4), we have

oU(b,s) so1 dp1(b)
o s+ Mk+G(s) ov
Consequently,
3%1(1))
In < s 1)
= — lim 5 o (6 4)
@ $—00 Ins ’ ’
P 8%1(1))
k= sli{go )\_1 s oU (b,s) -1 ’ (65)
ov
and
dp1(b)
G(s) = s° [ o 1] — kA1, Res>0. (6.6)
s s
ov

THEOREM 6.2. Let 3 < a < 1, 0Q € C[%]“, g € LY(R,) with
llglli < Mk. Taking f(x) = ¢i(x), then using one observation %g’t) of

(4.1) at a single point b € 02 we can reconstruct uniquely the fractional
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order o by (6.4), the parameter k by (6.5), and the function g by taking
the Laplace inverse of G(s) from (6.6).

Similarly, consider now an inverse problem of reconstructing the order of
fractional derivative o, the constant k, and the memory function g uniquely
from a single observation of the solution {u(x,t)}:~0 of (5.1) at one point
xr=0be.

Choose the initial condition f(x) = ¢1(x). Then the observation u(b, t)
is given by

u(b,t) = c1 ()1 (b), Iy;%1(0) =1, where b€ Q.

Taking the Laplace transform of the observation u(b,t) with respect to t,
and recalling (5.4), we have

1
U(b,s) = b).
b9 = e o Y
Consequently,
901( ) _ o« e
U(b,s)_s + Mk +G(s) ~sY,  s— 00,

and therefore

o=t %?i)) (00

Once « is known, k can be obtained as

T 1 Q)Ol(b) «a
k= lim - [ U ° } (68)
and G(s) as
G(S):L(b)*sa*k‘)\ Res > 0 (6.9)
U(b, s) b ‘ ‘

The memory kernel g(t) can be recovered by taking the Laplace inverse
transform of G(s). Thus we have proved the following thorem.

THEOREM 6.3. Let 3 < a <1, g€ LY(Ry) with |g|l1 < Mk. Taking
f(z) = ¢1(x), then using one observation u(b,t) of (5.1) at a single point
b € Q we can reconstruct uniquely the fractional order o by (6.7), the
parameter k by (6.8), and the function g by taking the Laplace inverse of
G(s) from (6.9).

If, moreover, 0S) € C[%]H, and b € 012, then from the observation

8“53’” of (5.1) one can find
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< 8%1(1)) )
In| —&
oU(b,s
2

a = lim )

§—00 Ins

1 Bs%l(b)

CTRN e )
and '
8%1(1)) 1
G(s) = BU(I;),S) — 5% —kM, Res>0, g(t) = (L7G)(1).
ov
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