$\frac{\mathsf{De}}{\mathsf{G}}$

ractional Calculus VOLUME 23, NUMBER 5 (2020) (Print) ISSN 1311-0454 (Electronic) ISSN 1314-2224

RESEARCH PAPER

FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS IN WIENER SPACES

Vu Kim Tuan

Abstract

In this paper we study the global solvability of several ordinary and partial fractional integro-differential equations in the Wiener space of functions with bounded square averages.

MSC 2010: Primary: 44A10, 26A33, 45K05; Secondary: 35D35, 35R30

Key Words and Phrases: functions with bounded square averages; Laplace transform; Caputo fractional derivative; Riemann-Liouville fractional derivative; time fractional partial integro-differential equation

1. Introduction

Consider the time fractional integro-differential equation

$$\begin{cases} \partial_t^{\alpha} u(x,t) = kAu(x,t) - \int_0^t g(t-\tau)u(x,\tau)d\tau + h(x), \ (x,t) \in \Omega \times \mathbb{R}_+, \\ u(x,t) = 0, \qquad (x,t) \in \partial\Omega \times \mathbb{R}_+, \\ u(x,0) = f(x), \qquad x \in \Omega, \end{cases}$$

where ∂_t^{α} is either the Caputo or the Riemann-Liouville fractional derivatives of order $\alpha \in (0, 1]$ with respect to time variable t [9], and A is a selfadjoint differential operator acting in $L^2(\Omega)$, $\Omega \subset \mathbb{R}^d$ $(d \ge 1)$. Equation (1.1) is a well known model for heat distribution of a visco-elastic material with memory and has important applications in material science [1, 3, 4]. When $\alpha = 1$, the local and global existence of solutions is usually handled by semi-group theory, [7, 13]. However, when $0 < \alpha < 1$, the proof for the local existence of solutions by semi-group theory is not possible, because

DE GRUYTER

(1.1)

^{© 2020} Diogenes Co., Sofia

pp. 1300–1328, DOI: 10.1515/fca-2020-0065

 ∂_t^{α} is a non-local operator. Due to the presence of the convolution operator, Laplace transform becomes the tool of choice as it takes care of both the nonlocal operation ∂_t^{α} and the Laplace convolution $\int_0^t g(t-\tau)u(x,\tau)d\tau$. Until now it is not clear which function space (especially in time variable) does the solution u(x,t) belong to. Clearly L^p -spaces do not serve the purpose. The main contribution of this paper is to show that the Wiener space of functions with bounded square averages [17] is the right function space for (1.1).

In this paper we are interested in two objectives:

A: Characterize the Laplace transform of Wiener functions with bounded square averages and prove the global existence of solutions in direct problems in the Wiener space.

B: Given $A = \Delta = \frac{\partial^2}{\partial x_1^2} + \dots + \frac{\partial^2}{\partial x_d^2}$, the Laplace operator, solve the inverse problem of reconstructing the fractional order α , the parameter k, and the memory function g from a single observation of the solution at one point.

The outline of the paper is as follows: In Section 2 we introduce the Wiener space of functions with bounded square averages and characterize the Laplace transform of such functions. In Section 3 we solve Caputo and Riemann-Liouville fractional ordinary integro-differential equations, i.e. when A is the identity operator, while in Sections 4 and 5, $A = \Delta$, and we deal with time fractional partial integro-differential equations where we prove the global existence of solutions in the Wiener space and then solve inverse problems for such equations in Section 6.

2. Functions with bounded square averages

Denote by \mathcal{L} and \mathcal{L}^{-1} the Laplace transform and its inverse ([16])

$$F(s) = (\mathcal{L}f)(s) = \int_0^\infty e^{-st} f(t) dt, \qquad (2.1)$$

$$f(t) = (\mathcal{L}^{-1}F)(t) = \frac{1}{2\pi i} \int_{\operatorname{Re} s=d} F(s) e^{st} ds.$$

In practice given a function F, the crucial issue is to find conditions such that it is the Laplace transform of a certain function f? Characterizing the range of the Laplace transform has been investigated extensively and the first result in this direction is the celebrated Paley-Wiener theorem for the Fourier transform [11], which takes the following form for the Laplace transform [16].

PROPOSITION 2.1 (Paley-Wiener). $f \in L^2(\mathbb{R}_+)$ if and only if $F \in H^2(\mathbb{R}^2_+)$.

Here $H^p(\mathbb{R}^2_+)$ is the Hardy space of functions F(s) = F(x+iy), analytic in the *right* half-plane with

$$\sup_{x>0}\int_{-\infty}^{\infty}|F(x+iy)|^{p}dy<\infty.$$

For $f \in L^{\infty}(\mathbb{R}_+)$ Widder [16] proved the following result.

PROPOSITION 2.2 (Widder). A function F is the Laplace transform of $f \in L^{\infty}(\mathbb{R}_+)$ if and only if F is infinitely differentiable on \mathbb{R}_+ , and

$$\sup\left\{ \left| \frac{x^{n+1}}{n!} F^{(n)}(x) \right| : x > 0, n = 0, 1, \cdots \right\} < \infty.$$

In [14] it was shown that

$$\sup_{x>0} x \int_{-\infty}^{\infty} |F(x+iy)|^2 dy \qquad \Longleftrightarrow \qquad \sup_{T>0} \frac{1}{T} \int_0^T |f(t)|^2 dt < \infty.$$

It turns out that functions with bounded square averages on \mathbb{R}_+ , first defined on \mathbb{R} by N. Wiener in the celebrated paper [17], can play very important role in studying fractional integro-differential equations. Let us start with the definition of such functions.

DEFINITION 2.1. By $BSA(\mathbb{R}_+)$, the Wiener linear space of functions with bounded square averages on \mathbb{R}_+ , we denote the set of locally integrable functions f on \mathbb{R}_+ such that

$$\sup_{T>0} \frac{1}{T+1} \int_0^T |f(t)|^2 dt < \infty.$$
(2.2)

We say $f \in BSA^m(\mathbb{R}_+)$ if $f, f', \cdots, f^{(m)} \in BSA(\mathbb{R}_+)$.

It is readily seen that $L^2(\mathbb{R}_+) \cup L^{\infty}(\mathbb{R}_+) \subset BSA(\mathbb{R}_+)$ and by Hölder's inequality $L^p(\mathbb{R}_+) \subset BSA(\mathbb{R}_+)$ for $2 \leq p \leq \infty$. However, note that, for $-\frac{1}{2} \leq \beta \leq 0$, we have $f(t) = t^{\beta} \in BSA(\mathbb{R}_+)$, and yet $f(t) \notin L^p(\mathbb{R}_+)$, $2 \leq p \leq \infty$.

Now we characterize the Laplace transform of functions from $BSA(\mathbb{R}_+)$.

THEOREM 2.1. A function F(s) is the Laplace transform of $f \in BSA(\mathbb{R}_+)$ if and only if F(s) is analytic in the right-half plane $\operatorname{Re} s > 0$, and

$$\sup_{x>0} \frac{x}{x+1} \int_{-\infty}^{\infty} |F(x+iy)|^2 \, dy < \infty.$$
 (2.3)

P r o o f. The proof follows [14]. Let $f \in BSA(\mathbb{R}_+)$. Denote $\tilde{f}(T) =$ $\int_0^T f(t) dt$. Integration by parts gives

$$F(s) := \int_0^\infty e^{-st} f(t) \, dt = \left. e^{-sT} \tilde{f}(T) \right|_{T=0}^{T=\infty} + s \int_0^\infty e^{-st} \tilde{f}(t) \, dt, \quad \operatorname{Re} s > 0.$$
By Hölder's inequality we have, for $T > 0$

By Hölder's inequality we have, for T > 0,

$$\begin{split} |\tilde{f}(T)| &\leq \int_0^T 1.|f(t)|dt \leq \sqrt{\int_0^T dt \int_0^T |f(t)|^2 dt} \\ &= \sqrt{T} \sqrt{\int_0^T |f(t)|^2 dt} \leq M \sqrt{T} \sqrt{T+1}. \end{split}$$

Here and throughout the paper M denotes a universal constant that can be distinct in different places. Hence

$$e^{-sT}\tilde{f}(T)\Big|_{T=0}^{T=\infty} = 0, \quad \operatorname{Re} s > 0,$$

and

$$F(s) = s \int_0^\infty e^{-st} \tilde{f}(t) dt, \quad \operatorname{Re} s > 0.$$

Since $|\tilde{f}(t)| \leq M\sqrt{t(t+1)}$, the Laplace transform of $\tilde{f}(t)$, i.e. $\frac{F(s)}{s}$, exists and is analytic in the right half plane $\operatorname{Re} s > 0$.

Integration by parts yields

$$\int_{0}^{\infty} e^{-2xt} |f(t)|^{2} dt = e^{-2xT} \int_{0}^{T} |f(t)|^{2} dt \Big|_{T=0}^{T=\infty} +2x \int_{0}^{\infty} e^{-2xT} \int_{0}^{T} |f(t)|^{2} dt dT \le Mx \int_{0}^{\infty} (T+1)e^{-2xT} dT \le \frac{M(x+1)}{x}.$$
(2.4)

Hence, $e^{-xt}f(t) \in L^2(\mathbb{R}_+)$ for any x > 0. Consequently, F(s) with $\operatorname{Re} s > 0$ $x_0 > 0$ is the Laplace transform of $e^{-x_0 t} f(t) \in L^2(\mathbb{R}_+)$ at the point $s - x_0$. The Parseval formula for the Laplace transform in $L^2(\mathbb{R}_+)$, see [16], gives

$$\int_0^\infty e^{-2xt} |f(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^\infty |F(x+iy)|^2 \, dy, \quad x > x_0 > 0.$$
(2.5)

Since x_0 is an arbitrary positive constant, equality (2.5) holds for any x > 0. Combining formulas (2.4) and (2.5) we obtain

$$\int_{-\infty}^{\infty} |F(x+iy)|^2 \, dy \le \frac{M(x+1)}{x},$$

that yields (2.3).

Conversely, assume that F(s) is analytic in the right-half plane $\operatorname{Re} s > 0$ and formula (2.3) holds. Then

$$\sup_{x>x_0}\int_{-\infty}^{\infty}|F(x+iy)|^2dy<\infty,\quad x_0>0.$$

Hence $F(s+x_0)$ is a Hardy function $H^2(\mathbb{R}^2_+)$ in the right-half plane $\operatorname{Re} s > 0$. Therefore, by the Paley-Wiener Proposition 2.1 function $F(x_0 + s)$ is the Laplace transform of a function, say, $f_{x_0}(t) \in L^2(\mathbb{R}_+)$

$$F(x_0+s) = \int_0^\infty e^{-st} f_{x_0}(t) dt, \quad \text{Re}\, s > 0.$$

Thus

$$F(x_0 + x_1 + s) = \int_0^\infty e^{(-x_1 - s)t} f_{x_0}(t) dt$$

=
$$\int_0^\infty e^{(-x_0 - s)t} f_{x_1}(t) dt, \quad \text{Re}\, s, x_0, x_1 > 0.$$

Consequently, $e^{-x_1t}f_{x_0}(t) = e^{-x_0t}f_{x_1}(t)$. Denote $f(t) = e^{x_0t}f_{x_0}(t)$. It is clear that f(t) is independent of $x_0 > 0$ and F is the Laplace transform of f,

$$F(s) = \int_0^\infty e^{-st} f(t) dt, \quad \text{Re}\, s > x_0 + x_1.$$

As $e^{-x_0t}f(t) = f_{x_0}(t) \in L^2(\mathbb{R}_+)$, the Parseval formula for the Laplace transform [16] yields

$$\int_0^\infty e^{-2x_0 t} |f(t)|^2 \, dt = \frac{1}{2\pi} \int_{-\infty}^\infty |F(x_0 + iy)|^2 \, dy \le \frac{M(x_0 + 1)}{x_0}, \quad x_0 > 0.$$

Let g be a bounded function on \mathbb{R}_+ . Then

$$\int_0^\infty e^{-2xt} g(e^{-2xt}) |f(t)|^2 \, dt \le \|g\|_\infty \int_0^\infty e^{-2xt} |f(t)|^2 \, dt \le \frac{M(x+1)}{x} \|g\|_\infty,$$
(2.6)

for x > 0. Take

$$g(t) = \begin{cases} \frac{1}{t}, & t > e^{-2} \\ 0, & 0 < t \le e^{-2} \end{cases}.$$

Then $||g||_{\infty} = e^2$, and (2.6) becomes

$$\int_0^{1/x} |f(t)|^2 dt \le \frac{M(x+1)}{x}, \quad x > 0.$$

Replacing x by $\frac{1}{T}$ we arrive at

$$\frac{1}{T+1} \int_0^T |f(t)|^2 \, dt \le M, \quad T > 0.$$

Thus $f \in BSA(\mathbb{R}_+)$ and Theorem 2.1 is proved.

COROLLARY 2.1. Let F(s) be analytic in the right half plane $\operatorname{Re} s > 0$ and $|F(s)| \leq C|s|^{-\alpha}$, $\frac{1}{2} < \alpha \leq 1$. Then F is the Laplace transform of a function $f \in BSA(\mathbb{R}_+)$.

Proof. Because
$$\alpha > \frac{1}{2}$$
, $F(x+i\bullet) \in L^2(\mathbb{R})$, and for $\frac{1}{2} < \alpha \le 1$,

$$\frac{x}{x+1} \int_{-\infty}^{\infty} |F(x+iy)|^2 dy \le \frac{Mx}{x+1} \int_{-\infty}^{\infty} (x^2+y^2)^{-\alpha} dy$$

$$= \frac{M\sqrt{\pi}\Gamma\left(\alpha-\frac{1}{2}\right)}{\Gamma(\alpha)} \frac{x^{2-2\alpha}}{x+1} < \infty,$$

hence, formula (2.3) holds, i.e., $f \in BSA(\mathbb{R}_+)$.

The following result is very important in solving fractional integrodifferential equations in Sections 3-5.

Theorem 2.2. Let $\|g\|_1 < k, 0 < \alpha \leq 1$, then for the inverse Laplace transform \mathcal{L}^{-1}

$$f := \mathcal{L}^{-1}\left(\frac{s^{\alpha-1}}{s^{\alpha}+k+G(s)}\right) \in BSA(\mathbb{R}_+).$$
(2.7)

P r o o f. Since $g \in L^1(\mathbb{R}_+)$, its Laplace transform G(s) is analytic in the right half-plane, and from

$$|G(s)| \le \int_0^\infty e^{-(\operatorname{Re} s)t} |g(t)| dt \le ||g||_1 < k,$$
 for $\operatorname{Re} s \ge 0,$

we deduce that $\frac{s^{\alpha-1}}{s^{\alpha}+k+G(s)}$ is also analytic in the right half-plane. Let us denote by

$$h(s) = k + G(s)$$

then h(s) is clearly analytic in the right half-plane, and for $\operatorname{Re} s > 0$,

$$0 < \varepsilon := k - \|g\|_1 \le \operatorname{Re} h(s) \quad \text{and also} \quad \varepsilon \le |h(s)| < 2k.$$
(2.8)
$$s^{\alpha - 1}$$

It is enough to show that $\frac{s^{\alpha-1}}{s^{\alpha}+h(s)} \text{ satisfies (2.3). Put } s = x + iy, \ x > 0,$ $\frac{x}{x+1} \int_{-\infty}^{\infty} \frac{|s|^{2\alpha-2}}{|s^{\alpha}+h(s)|^{2}} dy = I_{1}(x) + I_{2}(x)$ $:= \frac{x}{x+1} \int_{y \in \mathbb{R}, \operatorname{Re}(s^{\alpha}\overline{h(s)}) \ge 0} \frac{|s|^{2\alpha-2}}{|s^{\alpha}+h(s)|^{2}} dy$ $+ \frac{x}{x+1} \int_{y \in \mathbb{R}, \operatorname{Re}(s^{\alpha}\overline{h(s)}) < 0} \frac{|s|^{2\alpha-2}}{|s^{\alpha}+h(s)|^{2}} dy.$

We need to show that $I_1(x)$ and $I_2(x)$ are uniformly bounded.

For $I_1(x)$ we see first that

$$|s^{\alpha} + h(s)|^{2} = (s^{\alpha} + h(s))\left(\overline{s}^{\alpha} + \overline{h(s)}\right) = |s|^{2\alpha} + 2\operatorname{Re}\left(s^{\alpha}\overline{h(s)}\right) + |h(s)|^{2},$$

and thus it follows that

$$\operatorname{Re}\left(s^{\alpha}\overline{h(s)}\right) \ge 0 \implies |s^{\alpha} + h(s)|^{2} \ge |s|^{2\alpha}.$$
(2.9)

Using (2.9) when $\operatorname{Re}\left(s^{\alpha} \overline{h(s)}\right) \geq 0$, we have

$$I_{1}(x) \leq \frac{x}{x+1} \int_{y \in \mathbb{R}, \operatorname{Re}(s^{\alpha}\overline{h(s)}) \geq 0} \frac{|s|^{2\alpha-2}}{|s|^{2\alpha}} dy \leq \frac{x}{x+1} \int_{-\infty}^{\infty} \frac{1}{|s|^{2}} dy$$
$$= \frac{x}{x+1} \int_{-\infty}^{\infty} \frac{dy}{x^{2}+y^{2}} = \frac{\pi}{x+1} \leq \pi.$$

For $\operatorname{Re}\left(s^{\alpha} \overline{h(s)}\right) < 0$ write h

$$(s) = h_1(s) + ih_2(s),$$

where $h_1 = \operatorname{Re} h$ and $h_2 = \operatorname{Im} h$. We then have for $s = re^{i\varphi}, -\frac{\pi}{2} < \varphi < \frac{\pi}{2}$,

$$0 > \operatorname{Re}\left(s^{\alpha} \ \overline{h(s)}\right) = r^{\alpha} \left(h_{1}\left(s\right) \cos \alpha \varphi + h_{2}\left(s\right) \sin \alpha \varphi\right).$$
(2.10)

Since $\alpha \varphi \in \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)$ then $\cos \alpha \varphi > 0$ and by (2.8)

$$h_1(s) = \operatorname{Re} h(s) \ge \varepsilon > 0, \qquad (2.11)$$

which means that

 $h_2(s)\sin\alpha\varphi < 0$ when $\operatorname{Re}\left(s^{\alpha} \overline{h(s)}\right) < 0$

by (2.10). In other words $h_2(s)$ and $\sin(\alpha \varphi)$ have different signs, and furthermore

$$0 < h_1(s) \cos \alpha \varphi < |h_2(s) \sin \alpha \varphi|.$$
(2.12)

When $\operatorname{Re}\left(s^{\alpha} \overline{h(s)}\right) < 0$ we can write

$$|s^{\alpha} + h(s)|^{2} = |s|^{2\alpha} + 2\operatorname{Re}\left(s^{\alpha}\overline{h(s)}\right) + |h(s)|^{2}$$

$$= \left(|h(s)| + \frac{\operatorname{Re}\left(s^{\alpha}\overline{h(s)}\right)}{|h(s)|}\right)^{2} + \left(|s|^{2\alpha} - \frac{\left[\operatorname{Re}\left(s^{\alpha}\overline{h(s)}\right)\right]^{2}}{|h(s)|^{2}}\right)$$

$$\geq \frac{\left|s^{\alpha}\overline{h(s)}\right|^{2} - \left[\operatorname{Re}\left(s^{\alpha}\overline{h(s)}\right)\right]^{2}}{|h(s)|^{2}} = \frac{\left[\operatorname{Im}\left(s^{\alpha}\overline{h(s)}\right)\right]^{2}}{|h(s)|^{2}}.$$
(2.13)

Thus we have from (2.13)

$$I_{2}(x) \leq \frac{x}{x+1} \int_{y \in \mathbb{R}, \operatorname{Re}\left(s^{\alpha}\overline{h(s)}\right) < 0} \frac{|s|^{2\alpha-2}}{|s^{\alpha}+h(s)|^{2}} dy \qquad (2.14)$$
$$\leq \frac{x}{x+1} \int_{y \in \mathbb{R}, \operatorname{Re}\left(s^{\alpha}\overline{h(s)}\right) < 0} \frac{|h(s)|^{2}}{\left[\operatorname{Im}\left(s^{\alpha}\overline{h(s)}\right)\right]^{2} |s|^{2}} dy.$$

To proceed further we shall need the following estimate: If $\operatorname{Re}\left(s^{\alpha} \ \overline{h(s)}\right) < 0$ then

$$\left|s^{\alpha} \ \overline{h(s)}\right|^{2} \leq \left(\frac{4k^{2}}{\varepsilon^{2}} + 1\right) \left[\operatorname{Im}\left(s^{\alpha} \ \overline{h(s)}\right)\right]^{2} \quad \text{for } \operatorname{Re} s > 0.$$
 (2.15)

In fact, from (2.12) and (2.8) we have

$$\left|\operatorname{Re}\left(s^{\alpha} h(s)\right)\right| < r^{\alpha} \left|h_{2}\left(s\right) \sin \alpha \varphi\right| < r^{\alpha} 2k \left|\sin \alpha \varphi\right| \le r^{\alpha} \frac{2k}{\varepsilon} \varepsilon \left|\sin \alpha \varphi\right|,$$

and by (2.11) we have

$$\begin{aligned} |\operatorname{Re} \left(s^{\alpha} h(s)\right)| &\leq r^{\alpha} \frac{2k}{\varepsilon} |h_{1}(s) \sin \alpha \varphi| \\ &\leq \frac{2k}{\varepsilon} \left(r^{\alpha} |h_{1}(s) \sin \alpha \varphi| + r^{\alpha} |h_{2}(s) \cos \alpha \varphi|\right) \\ &\leq \frac{2k}{\varepsilon} r^{\alpha} |h_{1}(s) \sin \alpha \varphi - h_{2}(s) \cos \alpha \varphi| \end{aligned}$$

as $h_1(s)\sinlpha \varphi$ and $-h_2(s)\coslpha \varphi$ have the same sign. Thus we deduce that

$$|\operatorname{Re}(s^{\alpha} h(s))| \leq \frac{2k}{\varepsilon} \left| \operatorname{Im}\left(s^{\alpha} \overline{h(s)}\right) \right|,$$

and it follows that

$$\begin{split} \left| s^{\alpha} \ \overline{h(s)} \right|^2 &= \left[\operatorname{Re} \left(s^a \overline{h(s)} \right) \right]^2 + \left[\operatorname{Im} \left(s^a \overline{h(s)} \right) \right]^2 \\ &\leq \left(\frac{4k^2}{\varepsilon^2} + 1 \right) \left[\operatorname{Im} \left(s^a \overline{h(s)} \right) \right]^2, \end{split}$$

which proves (2.15).

Going back to (2.14) we get

$$I_{2}(x) \leq \frac{x}{x+1} \int_{-\infty}^{\infty} \frac{|h(s)|^{2} |s|^{2\alpha}}{\left[\operatorname{Im}\left(s^{\alpha} \overline{h(s)}\right)\right]^{2} |s|^{2}} dy$$
$$\leq \frac{x}{x+1} \left(\frac{4k^{2}}{\varepsilon^{2}} + 1\right) \int_{-\infty}^{\infty} \frac{1}{|s|^{2}} dy$$
$$\leq \frac{x}{x+1} \left(\frac{4k^{2}}{\varepsilon^{2}} + 1\right) \int_{-\infty}^{\infty} \frac{dy}{x^{2} + y^{2}}$$
$$\leq \pi \left(\frac{4k^{2}}{\varepsilon^{2}} + 1\right).$$

Consequently, $f \in BSA(\mathbb{R}_+)$.

REMARK 2.1. From the proof of Theorem 2.2 we have the following estimate

$$\left|\frac{s^{\alpha-1}}{s^{\alpha}+k+G(s)}\right| \le \sqrt{\left(\left(\frac{2k}{k-\|g\|_1}\right)^2 + 1\right)}\frac{1}{|s|}, \qquad \text{Re}\,s > 0.$$
(2.16)

Combining Corollary 2.1 and Remark 2.1, we arrive at

COROLLARY 2.2. Let $\|g\|_1 < k, \frac{1}{2} < \alpha \le 1$, then the inverse Laplace transform

$$f := \mathcal{L}^{-1}\left(\frac{1}{s^{\alpha} + k + G(s)}\right) \tag{2.17}$$

is from $BSA(\mathbb{R}_+)$.

LEMMA 2.1. Let $f \in BSA(\mathbb{R}_+)$ and $g \in L^1(\mathbb{R}_+)$. Then their Laplace convolution

$$h(t) = (f * g)(t) := \int_0^t f(t - \tau) g(\tau) d\tau$$
(2.18)

belongs to $BSA(\mathbb{R}_+)$.

P r o o f. In fact, by applying the Laplace transform to (2.18), we obtain H(s) = F(s)G(s), therefore, $|H(s)| \leq |F(s)| ||g||_1$, and thus

$$\sup_{x>0} \frac{x}{x+1} \int_{-\infty}^{\infty} |H(x+iy)|^2 \, dy \le \|g\|_1^2 \sup_{x>0} \frac{x}{x+1} \int_{-\infty}^{\infty} |F(x+iy)|^2 \, dy < \infty.$$

1308

3. Fractional integro-differential equations

3.1. Caputo fractional integro-differential equation. Now consider the following Caputo fractional integro-differential equation

$${}^{\mathcal{C}}\partial_t^{\alpha}f(t) + kf(t) + \int_0^t g(t-\tau)f(\tau)d\tau = h(t), \qquad f(0) = f_0, \qquad \frac{1}{2} < \alpha \le 1,$$
(3.1)

where $g, h \in L^1(\mathbb{R}_+)$ are given, and f is an unknown. Here ${}^{\mathcal{C}}\partial_t^{\alpha}$ is the Caputo fractional derivative defined by ([9])

$${}^{\mathcal{C}}\partial_t^{\alpha}f(t) = \int_0^t \frac{(t-\tau)^{n-\alpha-1}}{\Gamma(n-\alpha)} f^{(n)}(\tau) \, d\tau, \, n-1 < \alpha < n; \, {}^{\mathcal{C}}\partial_t^n f(t) = f^{(n)}(t).$$

$$(3.2)$$

It is well known [9] that

$$\mathcal{L}\left(^{\mathcal{C}}\partial_t^{\alpha}f\right)(s) = s^{\alpha}F(s) - \sum_{k=0}^{n-1}s^{\alpha-k-1}f^{(k)}(0), \quad n-1 < \alpha \le n.$$
(3.3)

THEOREM 3.1. Let k > 0, $f_0 \in \mathbb{R}$, $g, h \in L^1(\mathbb{R}_+)$, be given, and $\|g\|_1 < k$. Then the Caputo fractional integro-differential equation (3.1) has a unique solution f from $BSA(\mathbb{R}_+)$.

P r o o f. Applying the Laplace transform to equation (3.1) and taking into account (3.3) we obtain

$$s^{\alpha}F(s) - s^{\alpha-1}f_0 + kF(s) + G(s)F(s) = H(s).$$
(3.4)

Solving for F(s) yields

$$F(s) = \frac{s^{\alpha - 1} f_0 + H(s)}{s^{\alpha} + k + G(s)}.$$
(3.5)

Denote

$$L(s) = \frac{s^{\alpha - 1}}{s^{\alpha} + k + G(s)}, \quad M(s) = \frac{1}{s^{\alpha} + k + G(s)}, \quad (3.6)$$

then according to Theorem 2.2 and Corollary 2.2, their inverse Laplace transforms, namely l(t), m(t), belong to $BSA(\mathbb{R}_+)$, and

$$f(t) = f_0 \ l(t) + \int_0^t m(t-\tau)h(\tau) \ d\tau.$$
(3.7)

Since $m \in BSA(\mathbb{R}_+)$ and $h \in L^1(\mathbb{R}_+)$, by Lemma 2.1, their Laplace convolution m * h belongs to $BSA(\mathbb{R}_+)$. Hence, f, defined by (3.7), is from $BSA(\mathbb{R}_+)$. Using the Tauberian theorem for the Laplace transform ([16])

$$F(s) \sim \frac{A}{s^{\alpha}}, \quad s \to \infty \implies f(t) \sim \frac{At^{\alpha - 1}}{\Gamma(\alpha)}, \quad t \to 0+,$$
 (3.8)

we have

$$L(s) \sim \frac{1}{s}, \quad s \to \infty \implies l(t) \sim 1, \quad t \to 0 + .$$

Consequently, $f(0) = f_0$.

Conversely, let f be given by (3.7), where l, m are defined by (3.6). Then $f \in BSA(\mathbb{R}_+)$ and $f(0) = f_0$. Applying the Laplace transform to (3.7) and taking into account (3.6) we arrive at (3.5). Hence, (3.4) holds. The Laplace inverse of (3.4) yields (3.1).

3.2. Riemann-Liouville fractional integro-differential equation. Consider now the following Riemann-Liouville fractional integro-differential equation

$$D_{0+}^{\alpha}f(t) + kf(t) + \int_{0}^{t} g(t-\tau)f(\tau)d\tau = h(t), \quad I_{0+}^{1-\alpha}f(0+) = f_{0}, \quad \frac{1}{2} < \alpha \le 1,$$
(3.9)

where $g, h \in L^1(\mathbb{R}_+)$ are given, and f is an unknown. Here D_{0+}^{α} is the Riemann-Liouville fractional derivative ([9])

$$D_{0+}^{\alpha}f(t) = \frac{d^n}{dt^n} I_{0+}^{n-\alpha}f(t), \quad I_{0+}^{n-\alpha}f(t) = \int_0^t \frac{(t-\tau)^{n-\alpha-1}}{\Gamma(n-\alpha)} f(\tau) \, d\tau, \quad \alpha < n.$$
(3.10)

It is well known [9] that

$$\mathcal{L}\left(D_{0+}^{\alpha}f\right)(s) = s^{\alpha}F(s) - \sum_{k=0}^{n-1} s^{n-k-1} D_{0+}^{\alpha+k-n}f(0+), \quad n-1 < \alpha \le n.$$
(3.11)

THEOREM 3.2. Let $k > 0, f_0 \in \mathbb{R}, g, h \in L^1(\mathbb{R}_+)$, be given, and $||g||_1 < k$. Then the Riemann-Liouville fractional integro-differential equation (3.9) has a unique solution f from $BSA(\mathbb{R}_+)$.

P r o o f. Applying the Laplace transform to equation (3.9) and taking into account (3.11) we obtain

$$s^{\alpha}F(s) - f_0 + kF(s) + G(s)F(s) = H(s).$$
(3.12)

Solving for F(s) yields

$$F(s) = \frac{f_0 + H(s)}{s^{\alpha} + k + G(s)}.$$
(3.13)

Define again M(s) by (3.6), then according to Corollary 2.2, its inverse Laplace transform m(t) belongs to $BSA(\mathbb{R}_+)$, and

$$f(t) = f_0 m(t) + \int_0^t m(t-\tau)h(\tau) \, d\tau.$$
 (3.14)

Since $m \in BSA(\mathbb{R}_+)$ and $h \in L^1(\mathbb{R}_+)$, by Lemma 2.1, their Laplace convolution m * h belongs to $BSA(\mathbb{R}_+)$. Hence, f, defined by (3.14), is from $BSA(\mathbb{R}_+)$. Using the Tauberian theorem for the Laplace transform (3.8) we have

$$M(s) \sim \frac{1}{s^{\alpha}}, \quad s \to \infty \implies m(t) \sim \frac{t^{\alpha-1}}{\Gamma(\alpha)}, \quad t \to 0 + .$$

Consequently, $I_{0+}^{1-\alpha}m(t) \sim 1$, $t \to 0+$. Together with (3.14) it yields $I_{0+}^{1-\alpha}f(0+) = f_0$.

Conversely, let f be given by (3.14), where m is defined by (3.6). Then $f \in BSA(\mathbb{R}_+)$ and $I_{0+}^{1-\alpha}f(0+) = f_0$. Applying the Laplace transform to (3.14) and taking into account (3.6) we arrive at (3.13). Hence, (3.12) holds. The Laplace inverse of (3.12) yields (3.9).

4. Partial Caputo fractional integro-differential equation

In this section we study the following partial Caputo fractional integrodifferential equation

$$\begin{cases} {}^{\mathcal{C}}\partial_t^{\alpha}u(x,t) = k\Delta u(x,t) - \int_0^t g(t-\tau)u(x,\tau)d\tau, \quad (x,t) \in Q := \Omega \times \mathbb{R}^+, \\ u(x,t) = 0, \qquad (x,t) \in \partial\Omega \times \mathbb{R}^+, \\ u(x,0) = f(x), \qquad x \in \Omega, \end{cases}$$

$$(4.1)$$

with $\frac{1}{2} < \alpha \leq 1$, where $\Omega \subset \mathbb{R}^d$ $(d \geq 1)$ is a bounded domain with smooth boundary $\partial \Omega \in C^{\left[\frac{d}{2}\right]+1}$. Here [a] denotes the integer part of a. The model in (4.1) appears in many modeling situations of new viscoelastic materials such as polymers [1, 3, 4, 12].

We will show the observability of the solution for large time, which means its global existence in the Wiener space $BSA(\mathbb{R}_+)$. Local existence results in the case of Dirichlet boundary conditions are known, however the global existence results presented here are new and do not rely on semigroup techniques, [7].

As we shall use spectral methods associated with the Dirichlet Laplacian, denote its eigenvalues indexed in the ascending order and counting their multiplicity, by λ_j and associate eigenfunctions by φ_j , i.e.

$$\begin{cases} \Delta \varphi_j(x) = -\lambda_j \varphi_j(x), & \text{in } \Omega, \\ \varphi_j(x) = 0, & \text{on } \partial\Omega. \end{cases}$$
(4.2)

It is known [10] that $0 < \lambda_1 < \lambda_2 \leq \lambda_3 \leq \cdots \leq \lambda_j \leq \cdots$, with $\lim_{j\to\infty} \lambda_j = \infty$, and the set $\{\varphi_j\}_{j\geq 1}$, normalized by $||\varphi_j||_{L^2(\Omega)} = 1$, is an orthonormal basis for $L^2(\Omega)$. Moreover, $\varphi_j \in C^{\infty}(\Omega)$, and the smoothness condition on the boundary guarantees that $\varphi_j \in C(\overline{\Omega})$ (see [10, Theorem 7, Section 2, Chapter IV]).

First we can look for a particular solution of (4.1) in the form that can be written as

$$u(x,t) = c_j(t)\varphi_j(x),$$

where $u(x,0) = \varphi_j(x)$, so c_j satisfies the Caputo fractional integro-differential equation, thanks to (4.1) and (4.2),

$${}^{\mathcal{C}}\partial_t^{\alpha}c_j(t) = -k\lambda_j c_j(t) - \int_0^t g(t-s)c_j(s) \, ds, \qquad \text{with} \qquad c_j(0) = 1.$$
(4.3)

Equation (4.3) is a special case of (3.1), so from (3.5) we have its solution

$$C_{j}(s) = \frac{s^{\alpha - 1}}{s^{\alpha} + \lambda_{j}k + G(s)}, \quad c_{j}(t) = \left(\mathcal{L}^{-1}C_{j}\right)(s).$$
(4.4)

THEOREM 4.1. Let $\frac{1}{2} < \alpha \leq 1$, $||g||_1 < \lambda_1 k$. Then $c_j(t)$, defined by (4.4), belongs to $BSA^1(\mathbb{R}_+)$.

P r o o f. Since $\lambda_j k \geq \lambda_1 k > ||g||_1$, Theorem 2.2 shows that $c_j(t) \in BSA(\mathbb{R}_+)$ for $j = 1, 2, \cdots$.

We have

$$\left(\mathcal{L}c_{j}'\right)(s) = s C_{j}(s) - c_{j}(0) = \frac{s^{\alpha}}{s^{\alpha} + \lambda_{j}k + G(s)} - 1 = \frac{\lambda_{j}k + G(s)}{s^{\alpha} + \lambda_{j}k + G(s)}.$$

$$(4.5)$$

In (2.16) we have shown that

$$\left|\frac{s^{\alpha-1}}{s^{\alpha}+\lambda_jk+G(s)}\right| \le \frac{M}{|s|}, \quad \operatorname{Re} s > 0.$$

Since $\lambda_j k + |G(s)| < (\lambda_1 + \lambda_j)k$, we have

$$\left|\frac{\lambda_j k + G(s)}{s^{\alpha} + \lambda_j k + G(s)}\right| < \frac{M\lambda_j}{|s|^{\alpha}}, \quad \operatorname{Re} s > 0.$$

Consequently, by Corollary 2.1 the Laplace inverse of $s C_j(s) - c_j(0)$, or $c'_j(t)$ exists and belongs to $BSA(\mathbb{R}_+)$. Thus, $c_j \in BSA^1(\mathbb{R}_+)$. \Box

If we take $f(x) = \varphi_j(x)$, then u(x,t) defined by (4) with $c_j(0) = 1$ satisfies (4.1). Thus we have proved

THEOREM 4.2. Let $\frac{1}{2} < \alpha \leq 1$, $||g||_1 < \lambda_1 k$, and $f(x) = \sum_{j=1}^m a_j \varphi_j(x)$, then the classical solution to the problem (4.1), exists for all t > 0, i.e. is global.

Now we go to the general case. The Weyl law for the asymptotics of the eigenvalues λ_j has the form [5, 6]

$$\lambda_j \simeq \delta j^{\frac{2}{d}}, \qquad j \to \infty, \quad \text{where} \quad \delta = \left[\frac{(2\sqrt{\pi})^{-d}}{\Gamma\left(\frac{d}{2}+1\right)} \text{Vol}\left(\Omega\right)\right]^{-\frac{2}{d}}.$$
 (4.6)

For the eigenfunctions $\varphi_j(x)$ the following asymptotics formula holds uniformly on any compact subset K of Ω , see [2],

$$\sum_{|\sqrt{\lambda_j} - \lambda| \le 1} \varphi_j^2(x) = O\left(\lambda^{d-1}\right), \quad \lambda \to \infty.$$

In particular,

$$\varphi_j(x) = O\left(\lambda_j^{\frac{d-1}{4}}\right) = O\left(j^{\frac{d-1}{2d}}\right), \qquad j \to \infty, \quad x \in K \Subset \Omega.$$
 (4.7)

By f_j we denote the j^{th} Fourier coefficient of $f \in L^2(\Omega)$ in the basis $\{\varphi_j\}_{j\geq 1}$, namely,

$$f_j = \int_{\Omega} f(x)\varphi_j(x) \ dx.$$

Recall that if $f \in H_0^m(\Omega)$, the Sobolev space of functions with compact supports in Ω with generalized derivatives up to order $m \ge 0$, [10], then its Fourier coefficient f_j has the asymptotics ([2])

$$f_j = O\left(\lambda_j^{-\frac{m}{2}}\right) = O\left(j^{-\frac{m}{d}}\right), \quad j \to \infty, \tag{4.8}$$

and the following convergence result will be essential for studying solutions of (4.1).

LEMMA 4.1. Let $f \in H_0^m(\Omega)$. a) [2] If $m > \frac{d}{2}$, then the series

$$\sum_{j=1}^{\infty} f_j \varphi_j(x) \tag{4.9}$$

converges absolutely and uniformly to f(x) on any compact subset of Ω . b) [10, Theorem 8, Chapter IV] If $\partial \Omega \in C^m$, then

$$\sum_{j=1}^{\infty} f_j^2 \lambda_j^m \le C \|f\|_{H^m(\Omega)}^2, \tag{4.10}$$

and the series (4.9) converges to f(x) in $H^m(\Omega)$. c) [10, Theorem 9, Chapter IV] If $\partial \Omega \in C^m$ and $m \geq \left[\frac{d}{2}\right] + 1$, then the sum (4.9) belongs to $C^{m-\left[\frac{d}{2}\right]-1}(\overline{\Omega})$.

The absolute convergence of (4.9) should be understood in the following unconventional way. With the presence of multiple eigenvalues, let us regroup all eigenvalues into a strictly increasing sequence $\mu_1 < \mu_2 < \ldots$ such that the sets $\{\lambda_1, \lambda_2, \cdots, \lambda_j, \cdots\}$ and $\{\mu_1, \mu_2, \cdots, \mu_l, \cdots\}$ coincide. Then the absolute convergence of (4.9) means the convergence of the series

$$\sum_{l=1}^{\infty} \left| \sum_{\lambda_j = \mu_l} f_j \varphi_j(x) \right|.$$
(4.11)

THEOREM 4.3. Let $g \in L^1(\mathbb{R}_+) \cup L^{\infty}(\mathbb{R}_+), f \in H^m_0(\Omega), ||g||_1 < k\lambda_1, \frac{1}{2} < \alpha \leq 1$, and c_j be defined by (4.4). a) If $\partial \Omega \in C^m$, then the series

$$u(x,t) := \sum_{j=1}^{\infty} f_j c_j(t) \varphi_j(x)$$
(4.12)

converges in $H^m(\Omega)$ norm for each $t \ge 0$. If, moreover, $m \ge \left[\frac{d}{2}\right] + 1$, then $u(.,t) \in C^{m-\left[\frac{d}{2}\right]-1}(\overline{\Omega})$.

b) If $m > \frac{d}{2}$, then the series (4.12) converges absolutely on $Q := \Omega \times \mathbb{R}_+$. c) If $m > \frac{3d-1}{2}$, then the series (4.12) converges uniformly on any compact subset of Q. Moreover, if $\partial \Omega \in C^{\left[\frac{d}{2}\right]+1}$, then $u \in C(\overline{\Omega}) \times BSA(\mathbb{R}_+)$.

P r o o f. Consider the equation

$$^{\mathcal{C}}\partial_{t}^{\alpha}y(t) = -\lambda y(t) + f(t), \quad y(0) = 1.$$
 (4.13)

Its solution has the form [9]

$$y(t) = E_{\alpha}(-\lambda t^{\alpha}) + \int_{0}^{t} (t-\tau)^{\alpha-1} E_{\alpha,\alpha}(-\lambda (t-\tau)^{\alpha}) f(\tau) d\tau, \qquad (4.14)$$

where $E_{\alpha}(z), E_{\alpha,\beta}(z)$ are the classical and two parametric Mittag-Leffler functions ([8])

$$E_{\alpha,\beta}(z) = \sum_{n=0}^{\infty} \frac{z^n}{\Gamma(\alpha n + \beta)}, \quad E_{\alpha}(z) = E_{\alpha,1}(z).$$
(4.15)

Applying (4.13) and (4.14) to (4.3) with $f(t) = -(g * c_j)(t)$, and λ being replaced by $k\lambda_j$, we obtain

$$c_j(t) = E_\alpha(-k\lambda_j t^\alpha)$$

- $\int_0^t (t-\tau)^{\alpha-1} E_{\alpha,\alpha}(-k\lambda_j (t-\tau)^\alpha) \int_0^\tau g(\tau-\eta) c_j(\eta) \, d\eta \, d\tau$
= $E_\alpha(-k\lambda_j t^\alpha) - \int_0^t \beta(t,\eta) c_j(\eta) \, d\eta,$

where

$$\beta(t,\eta) = \int_{\eta}^{t} (t-\tau)^{\alpha-1} E_{\alpha,\alpha}(-k\lambda_j(t-\tau)^{\alpha})g(\tau-\eta)\,d\tau.$$
(4.16)

Since $E_{\alpha,\alpha}(-x)$ is monotone decreasing and $E_{\alpha,\alpha}(0) = \frac{1}{\Gamma(\alpha)}$ (see [8]), we have

$$|\beta(t,\eta)| \le E_{\alpha,\alpha}(0) ||g||_{\infty} \int_{\eta}^{t} (t-\tau)^{\alpha-1} d\tau = \frac{(t-\eta)^{\alpha}}{\Gamma(\alpha+1)} ||g||_{\infty}.$$
 (4.17)

Consequently, the monotone decay of $E_{\alpha}(-x)$ and $E_{\alpha}(0) = 1$ (see [8]) yields

$$\begin{aligned} |c_j(t)| &\leq E_\alpha(-k\lambda_j t^\alpha) + \frac{\|g\|_\infty}{\Gamma(\alpha+1)} \int_0^t (t-\eta)^\alpha |c_j(\eta)| d\eta \\ &\leq 1 + \frac{\|g\|_\infty}{\Gamma(\alpha+1)} \int_0^t (t-\eta)^\alpha |c_j(\eta)| d\eta. \end{aligned}$$

Applying the Gronwall inequality for fractional integral [18, Corollary 2] and recalling that $E_{\alpha}(x)$ is monotone increasing [8], we obtain

$$|c_j(t)| \le E_\alpha \left(\frac{\|g\|_\infty t^\alpha}{\alpha}\right) \le E_\alpha \left(\frac{\|g\|_\infty T^\alpha}{\alpha}\right) =: M_T, \quad t \in [0, T].$$
(4.18)

Thus, $\{c_j(t)\}_{j\geq 1}$ are uniformly bounded on any interval [0, T].

a) Since $f \in H_0^m(\Omega)$ and $\partial \Omega \in C^m$, then by Lemma 4.1 (b) the inequality (4.10) holds. Together with the uniform boundedness of $c_j(t)$ on [0, T] it yields

$$\sum_{j=1}^{\infty} f_j^2 c_j^2(t) \lambda_j^m < \infty.$$

In other words, the series (4.12) converges in $H^m(\Omega)$ norm, and $u(.,t) \in H^m(\Omega)$ for any $t \ge 0$. On the other hand, when $m \ge \left[\frac{d}{2}\right] + 1$, we have [10] $H^m(\Omega) \Subset C^{m-\left[\frac{d}{2}\right]-1}(\overline{\Omega})$, therefore, $u(.,t) \subset C^{m-\left[\frac{d}{2}\right]-1}(\overline{\Omega})$.

b) Combining Lemma 4.1 (a), formula (4.11), and noticing that $c_j(t) = c_{j'}(t)$ if $\lambda_j = \lambda_{j'}$ we arrive at

$$\sum_{l=1}^{\infty} \left| \sum_{\lambda_j = \mu_l} f_j c_j(t) \varphi_j(x) \right| \le M_T \sum_{l=1}^{\infty} \left| \sum_{\lambda_j = \mu_l} f_j \varphi_j(x) \right| < \infty,$$

i.e., the absolute convergence of (4.12).

c) From (4.7), (4.8), and (4.18) we have

$$f_j c_j(t) \varphi_j(x) = O\left(j^{\frac{d-1-2m}{2d}}\right),$$

uniformly on $K \times [0, T]$, where K is any compact subset of Ω . Since $m > \frac{3d-1}{2}$, then $\frac{d-1-2m}{2d} < -1$, and therefore, the series (4.12) converges uniformly on $K \times [0, T]$.

From (2.16) and (4.4) we have

$$|C_j(s)| \le \frac{M}{|s|}, \quad \operatorname{Re} s > 0,$$

where M is independent of j. Hence, Hölder's inequality and formula (2.5) give

$$\left[\int_{0}^{\infty} e^{-xt} |c_{j}(t)| dt\right]^{2} \leq \int_{0}^{\infty} e^{-xt} dt \int_{0}^{\infty} e^{-xt} |c_{j}(t)|^{2} dt$$
$$= \frac{1}{2\pi x} \int_{-\infty}^{\infty} \left|C_{j}\left(\frac{x}{2} + iy\right)\right|^{2} dy \leq \frac{M}{2\pi x} \int_{-\infty}^{\infty} \frac{1}{\left|\frac{x}{2} + iy\right|^{2}} dy = \frac{M}{x^{2}}, \quad x > 0.$$

Consequently,

$$\sum_{j=1}^{\infty} |f_j \varphi_j(x)| \int_0^{\infty} e^{-xt} |c_j(t)| dt \le \frac{\sqrt{M}}{x} \sum_{j=1}^{\infty} O\left(j^{\frac{d-1-2m}{2d}}\right) < \infty, \quad x > 0.$$

Thus, we can apply Lebesgue's dominated convergence theorem to obtain

$$(\mathcal{L}u(x,.))(s) = \sum_{j=1}^{\infty} f_j \varphi_j(x) (\mathcal{L}c_j)(s), \quad \operatorname{Re} s > 0.$$

In other words,

$$U(x,s) = \sum_{j=1}^{\infty} f_j C_j(s) \varphi_j(x) = \sum_{j=1}^{\infty} O\left(j^{\frac{d-1-2m}{2d}}\right) O\left(\frac{1}{s}\right) = O\left(\frac{1}{s}\right). \quad (4.19)$$

By Corollary 2.1 we have $u(x, .) \in BSA(\mathbb{R}_+)$.

Now, $m > \frac{3d-1}{2} > \left[\frac{d}{2}\right] + 1$, therefore, combining with Part (a) we arrive at $u \in C(\overline{\Omega}) \times BSA(\mathbb{R}_+)$.

Theorem 4.3 is proved.

Now we are ready to prove the main theorem of this section about the global existence of classical solutions of (4.1).

THEOREM 4.4. Let $g \in L^1(\mathbb{R}_+) \cup L^{\infty}(\mathbb{R}_+)$, $f \in H_0^m(\Omega)$, $\partial \Omega \in C^m$ with $m > \frac{3d+3}{2}, \frac{1}{2} < \alpha \leq 1$, and $\|g\|_1 < k\lambda_1$. Then u(x,t), defined by (4.12), is the unique classical solution of (4.1) in $C^2(\overline{\Omega}) \times BSA^1(\mathbb{R}_+)$.

P r o o f. Since $m - \left[\frac{d}{2}\right] - 1 > \frac{3d+3}{2} - \left[\frac{d}{2}\right] - 1 \ge 2$, by Theorem 4.3 (a) we have $u(.,t) \in C^2(\overline{\Omega})$. Moreover, from (4) and $\frac{d+3-2m}{2d} < -1$,

$$\sum_{j=1}^{\infty} |f_j c_j(t) \Delta \varphi_j(x)| = \sum_{j=1}^{\infty} |\lambda_j f_j c_j(t) \varphi_j(x)| = \sum_{j=1}^{\infty} O\left(j^{\frac{d+3-2m}{2d}}\right) < \infty,$$

uniformly on any compact subset of Q. Hence,

$$\Delta u(x,t) = \sum_{j=1}^{\infty} f_j c_j(t) \Delta \varphi_j(x) = -\sum_{j=1}^{\infty} \lambda_j f_j c_j(t) \varphi_j(x).$$
(4.20)

From (4.3) and (4.18) we get

$$\begin{aligned} \left| {}^{\mathcal{C}} \partial_t^{\alpha} c_j(t) \right| &\leq k \lambda_j M_T + M_T \int_0^t |g(t-s)| ds \leq M_T(k \lambda_j + \|g\|_1) \\ &= O\left(\lambda_j\right) = O\left(j^{\frac{2}{d}}\right), \quad t \in [0,T]. \end{aligned}$$

Consequently,

$$\sum_{j=1}^{\infty} \left| f_j^{\ \mathcal{C}} \partial_t^{\alpha} c_j(t) \varphi_j(x) \right| = \sum_{j=1}^{\infty} O\left(j^{\frac{d+3-2m}{2d}} \right) < \infty,$$
[0, T] for any $T > 0$, and it yields

uniformly on [0, T] for any T > 0, and it yields

$${}^{\mathcal{C}}\partial_t^{\alpha}u(x,t) = \sum_{j=1}^{\infty} f_j \,\, {}^{\mathcal{C}}\partial_t^{\alpha}c_j(t)\,\varphi_j(x). \tag{4.21}$$

It is obvious that

$$\int_{0}^{t} g(t-\tau)u(x,\tau) \, d\tau = \sum_{j=1}^{\infty} f_{j}\varphi_{j}(x) \, \int_{0}^{t} g(t-\tau) \, c_{j}(\tau) \, d\tau.$$
(4.22)

Combining (4.20), (4.21), (4.22), and (4.3), we arrive at

$${}^{\mathcal{C}}\partial_t^{\alpha}u(x,t) - k\Delta u(x,t) + \int_0^t g(t-\tau)u(x,\tau)d\tau$$
$$= \sum_{j=1}^{\infty} f_j\varphi_j(x) \left[{}^{\mathcal{C}}\partial_t^{\alpha}c_j(t) + k\lambda_jc_j(t) + \int_0^t g(t-\tau)c_j(\tau)\,d\tau \right] = 0.$$

Since $\varphi_j(x) = 0$ on $\partial \Omega$, then

$$u(x,t) = \sum_{j=1}^{\infty} f_j c_j(t) \varphi_j(x) = 0, \quad x \in \partial \Omega.$$

Because $c_j(0) = 1$, by Lemma 4.1

$$u(x,0) = \sum_{j=1}^{\infty} f_j c_j(0)\varphi_j(x) = \sum_{j=1}^{\infty} f_j \varphi_j(x) = f(x), \quad x \in \Omega.$$

Thus, u(x,t), defined by (4.12), is a classical solution of (4.1).

Taking into account (4.19) and (4.5) we obtain

$$\begin{aligned} \left(\mathcal{L}u_t(x,t)\right)(s) &= sU(x,s) - u(x,0) = s\sum_{j=1}^{\infty} f_j\varphi_j(x)C_j(s) - \sum_{j=1}^{\infty} f_j\varphi_j(x) \\ &= \sum_{j=1}^{\infty} f_j\varphi_j(x)\left(sC_j(s) - 1\right) = \sum_{j=1}^{\infty} f_j\varphi_j(x)\frac{\lambda_jk + G(s)}{s^{\alpha} + \lambda_jk + G(s)} \end{aligned}$$

Using (2.16) and (4.6) we get

$$\left|\frac{\lambda_j k + G(s)}{s^{\alpha} + \lambda_j k + G(s)}\right| \le \frac{M\lambda_j}{|s|^{\alpha}} \le \frac{Mj^{\frac{2}{d}}}{|s|^{\alpha}}.$$

Together with (4.7), (4.8), it yields

$$\sum_{j=1}^{\infty} \left| f_j \varphi_j(x) \frac{\lambda_j k + G(s)}{s^{\alpha} + \lambda_j k + G(s)} \right| \le \frac{M}{|s|^{\alpha}} \sum_{j=1}^{\infty} j^{\frac{d+3-2m}{2d}} \le \frac{M}{|s|^{\alpha}},$$

because $\frac{d+3-2m}{2d} < -1$. By Corollary 2.1 $u_t(x,t) \in BSA(\mathbb{R}_+)$. Together with $u(x,t) \in BSA(\mathbb{R}_+)$ by Theorem 4.3 (c) it yields $u(x,t) \in BSA^1(\mathbb{R}_+)$ for any $x \in \Omega$. Thus, $u \in C^2(\overline{\Omega}) \times BSA^1(\mathbb{R}_+)$.

Let $u, \tilde{u} \in C^2(\overline{\Omega}) \times BSA^1(\mathbb{R}_+)$ be two solutions of (4.1). Then $w = u - \tilde{u} \in C^2(\overline{\Omega}) \times BSA^1(\mathbb{R}_+)$ is a solution of

$$\begin{cases} {}^{\mathcal{C}}\partial_t^{\alpha}w(x,t) = k\Delta w(x,t) - \int_0^t g(t-\tau)w(x,\tau)d\tau, \quad (x,t) \in \Omega \times \mathbb{R}^+, \\ w(x,t) = 0, \qquad (x,t) \in \partial\Omega \times \mathbb{R}^+, \\ w(x,0) = 0, \qquad x \in \Omega. \end{cases}$$

$$(4.23)$$

Taking the Laplace transform of (4.23) we get

$$\begin{cases} \Delta W(x,s) = \frac{G(s)+s^{\alpha}}{k} W(x,s), & x \in \Omega \\ W(x,s) = 0, & x \in \partial \Omega \end{cases}, \quad W(x,s) \in C^{2}(\overline{\Omega}), \text{ Re } s > 0. \end{cases}$$
(4.24)

If $s \in \left(\|g\|_{1}^{\frac{1}{\alpha}}, \infty \right)$, then $-\frac{G(s)+s^{\alpha}}{k} < 0$ cannot be an eigenvalue of the Dirichlet Laplacian (4.1), therefore the Schrödinger equation with Dirichlet's boundary condition (4.24) has only trivial solution $W(x,s) = 0, x \in \Omega$, [10], for such s. But for a fixed parameter $x \in \Omega$, W(x,s), as a function of s, is analytic in $\operatorname{Re} s > 0$. As W(x,s) = 0 on $s \in \left(\|g\|_{1}^{\frac{1}{\alpha}}, \infty \right)$, the interior uniqueness theorem for holomorphic functions yields W(x,s) = 0, $\operatorname{Re} s > 0$. Hence, w(x,t) = 0, and we obtain the uniqueness of u. The theorem is proved.

5. Partial Riemann-Liouville fractional integro-differential equation

In this section we will study the global solvability of the following partial Riemann-Liouville fractional integro-differential equation

$$\begin{cases} D_{0+}^{\alpha}u(x,t) = k\Delta u(x,t) - \int_{0}^{t}g(t-\tau)u(x,\tau)d\tau, & (x,t) \in Q = \Omega \times \mathbb{R}^{+}, \\ u(x,t) = 0, & (x,t) \in \partial\Omega \times \mathbb{R}^{+}, \\ I_{0+}^{1-\alpha}u(x,0) = f(x), & x \in \Omega, \end{cases}$$
(5.1)

with $\frac{1}{2} < \alpha \leq 1$, where $\Omega \subset \mathbb{R}^d$ $(d \geq 1)$ is a bounded domain with smooth boundary $\partial \Omega \in C^{\left[\frac{d}{2}\right]+1}$.

First we look for a particular solution of (5.1) in the form

$$u(x,t) = c_j(t)\varphi_j(x), \tag{5.2}$$

where $I_{0+}^{1-\alpha}u(x,0) = \varphi_j(x)$, so $c_j(t)$ satisfies the fractional integro-differential equation, thanks to (5.1) and (4.2),

$$D_{0+}^{\alpha}c_j(t) = -k\lambda_j c_j(t) - \int_0^t g(t-s)c_j(s) \, ds, \qquad \text{with} \qquad I_{0+}^{1-\alpha}c_j(0) = 1.$$
(5.3)

Equation (5.3) is a special case of (3.9), so from (3.13) we have its solution

$$C_j(s) = \frac{1}{s^{\alpha} + \lambda_j k + G(s)}, \quad c_j(t) = (\mathcal{L}^{-1}C_j)(s).$$
 (5.4)

According to Corollary 2.2 we have the following theorem.

THEOREM 5.1. Let $\frac{1}{2} < \alpha \leq 1$ and $||g||_1 < \lambda_1 k$. Then $c_j(t)$, defined by (5.4), belongs to $BSA(\mathbb{R}_+)$.

If we take $f(x) = \varphi_j(x)$, then u(x,t), defined by (5.2) with $I_{0+}^{1-\alpha}c_j(0) = 1$, satisfies (5.1). Thus we have proved the following theorems.

THEOREM 5.2. Let $\frac{1}{2} < \alpha \leq 1$, $||g||_1 < \lambda_1 k$, and $f(x) = \sum_{j=1}^m a_j \varphi_j(x)$, then the classical solution to the problem (5.1), exists for all t > 0, i.e. is global.

THEOREM 5.3. Let $g \in L^1(\mathbb{R}_+) \cup L^{\infty}(\mathbb{R}_+)$, $f \in H_0^m(\Omega)$, $||g||_1 < k\lambda_1$, $\frac{1}{2} < \alpha \leq 1$, and c_j be defined by (5.4). a) If $\partial \Omega \in C^m$, then the series

$$u(x,t) := \sum_{j=1}^{\infty} f_j c_j(t) \varphi_j(x)$$
(5.5)

converges in $H^m(\Omega)$ norm for each t > 0. If, moreover, $m \ge \left\lfloor \frac{d}{2} \right\rfloor + 1$, then $u(.,t) \in C^{m-\left\lfloor \frac{d}{2} \right\rfloor - 1}(\overline{\Omega}).$

b) If $m > \frac{d}{2}$, then the series (5.5) converges absolutely on Q.

c) If $m > \frac{2d-1}{2}$, then the series (5.5) converges uniformly on any compact subset of Q. Moreover, if $\partial \Omega \in C^{\left[\frac{d}{2}\right]+1}$, then $u \in C(\overline{\Omega}) \times BSA(\mathbb{R}_+)$.

P r o o f. Consider the equation

$$D_{0+}^{\alpha}y(t) = -\lambda y(t) + f(t), \quad I_{0+}^{1-\alpha}y(0) = 1.$$
(5.6)

Its solution has the form [9]

$$y(t) = t^{\alpha - 1} E_{\alpha, \alpha}(-\lambda t^{\alpha}) + \int_0^t (t - \tau)^{\alpha - 1} E_{\alpha, \alpha}(-\lambda (t - \tau)^{\alpha}) f(\tau) d\tau.$$
 (5.7)

Applying (5.6) and (5.7) to (5.3) with $f(t) = -(g * c_j)(t)$, and λ being replaced by $k\lambda_j$, we obtain

$$c_{j}(t) = t^{\alpha-1} E_{\alpha,\alpha}(-k\lambda_{j}t^{\alpha})$$
$$-\int_{0}^{t} (t-\tau)^{\alpha-1} E_{\alpha,\alpha}(-k\lambda_{j}(t-\tau)^{\alpha}) \int_{0}^{\tau} g(\tau-\eta)c_{j}(\eta) \, d\eta \, d\tau$$
$$= t^{\alpha-1} E_{\alpha,\alpha}(-k\lambda_{j}t^{\alpha}) - \int_{0}^{t} \beta(t,\eta)c_{j}(\eta) \, d\eta,$$

where $\beta(t, \eta)$ is defined by (4.16). Using (4.17) we get

$$|c_j(t)| \le t^{\alpha-1} |E_{\alpha,\alpha}(-k\lambda_j t^{\alpha})| + \frac{\|g\|_{\infty}}{\Gamma(\alpha+1)} \int_0^t (t-\eta)^{\alpha} |c_j(\eta)| d\eta.$$

The complete monotonicity property of $E_{\alpha,\alpha}(-t)$, $0 < \alpha \leq 1$, [8], yields the monotone decay and positivity of $E_{\alpha,\alpha}(-t)$, $0 < \alpha \leq 1$,

$$E_{\alpha,\alpha}(-k\lambda_1 t^{\alpha}) \ge E_{\alpha,\alpha}(-k\lambda_j t^{\alpha}) > 0.$$

Consequently,

$$|c_j(t)| \le t^{\alpha - 1} E_{\alpha, \alpha}(-k\lambda_1 t^{\alpha}) + \frac{\|g\|_{\infty}}{\Gamma(\alpha + 1)} \int_0^t (t - \eta)^{\alpha} |c_j(\eta)| d\eta.$$
(5.8)

Since $t^{\alpha-1}E_{\alpha,\alpha}(-t^{\alpha}), 0 < \alpha \leq 1$, is complete monotone [8], then

$$t^{\alpha-1}E_{\alpha,\alpha}(-k\lambda_1t^{\alpha}), \qquad 0 < \alpha \le 1,$$

is monotone decreasing. Applying the Gronwall inequality for fractional integral [18, Corollary 2] and monotone decreasing of $t^{\alpha-1}E_{\alpha,\alpha}(-k\lambda_1t^{\alpha}), 0 < \alpha \leq 1$, to (5.8), we obtain

$$|c_j(t)| \le t^{\alpha - 1} E_{\alpha, \alpha}(-k\lambda_1 t^{\alpha}) E_{\alpha}\left(\frac{\|g\|_{\infty} t^{\alpha}}{\alpha}\right) =: M(t), \quad t > 0.$$
 (5.9)

Thus, $\{c_j(t)\}_{j\geq 1}$ are uniformly bounded for any t > 0.

a) Since $f \in H_0^m(\Omega)$ and $\partial \Omega \in C^m$, then by Lemma 4.1 (b) the inequality (4.10) holds. Together with the uniform boundedness of $\{c_j(t)\}_{j\geq 1}$ for t > 0 it yields

$$\sum_{j=1}^{\infty} f_j^2 c_j^2(t) \lambda_j^m < \infty.$$

In other words, the series (5.5) converges in $H^m(\Omega)$ norm, and $u(.,t) \in H^m(\Omega)$ for any t > 0. On the other hand, when $m \ge \left\lfloor \frac{d}{2} \right\rfloor + 1$, we have [10] $H^m(\Omega) \in C^{m-\left\lfloor \frac{d}{2} \right\rfloor - 1}(\overline{\Omega})$, therefore, $u(.,t) \subset C^{m-\left\lfloor \frac{d}{2} \right\rfloor - 1}(\overline{\Omega})$.

b) Combining Lemma 4.1 (a), formula (4.11), and noticing that $c_j(t) = c_{j'}(t)$ if $\lambda_j = \lambda_{j'}$, we arrive at

$$\sum_{l=1}^{\infty} \left| \sum_{\lambda_j = \mu_l} f_j c_j(t) \varphi_j(x) \right| \le M(t) \sum_{l=1}^{\infty} \left| \sum_{\lambda_j = \mu_l} f_j \varphi_j(x) \right| < \infty,$$

i.e., the absolute convergence of (5.5).

c) From (4.7), (4.8), and (5.9) we have

$$f_j c_j(t) \varphi_j(x) = O\left(j^{\frac{d-1-2m}{2d}}\right), \qquad (5.10)$$

uniformly on $K \times [T_1, T]$, where K is any compact subset of Ω , and $0 < T_1 < T < \infty$. Since $m > \frac{3d-1}{2}$, then $\frac{d-1-2m}{2d} < -1$, and therefore, the series (5.5) converges uniformly on $K \times [T_1, T]$.

From (2.16) and (5.4) we have

$$|C_j(s)| \le \frac{M}{|s|^{\alpha}}, \quad \operatorname{Re} s > 0,$$

where M is independent of j. Hence, Hölder's inequality and formula (2.5) give

$$\begin{split} &\left[\int_0^\infty e^{-xt} |c_j(t)| dt\right]^2 \le \int_0^\infty e^{-xt} dt \int_0^\infty e^{-xt} |c_j(t)|^2 dt \\ = & \frac{1}{2\pi x} \int_{-\infty}^\infty \left| C_j\left(\frac{x}{2} + iy\right) \right|^2 dy \le \frac{M}{2\pi x} \int_{-\infty}^\infty \frac{1}{\left|\frac{x}{2} + iy\right|^{2\alpha}} dy \\ = & \frac{M 2^{2\alpha - 2} \Gamma\left(\alpha - \frac{1}{2}\right)}{x^{2\alpha} \sqrt{\pi} \Gamma(\alpha)}, \quad x > 0. \end{split}$$

Consequently,

$$\sum_{j=1}^{\infty} |f_j \varphi_j(x)| \int_0^{\infty} e^{-xt} |c_j(t)| dt \le \frac{1}{x^{\alpha}} \sum_{j=1}^{\infty} O\left(j^{\frac{d-1-2m}{2d}}\right) < \infty, \quad x > 0.$$

Thus, we can apply Lebesgue's dominated convergence theorem to obtain

$$(\mathcal{L}u(x,.))(s) = \sum_{j=1}^{\infty} f_j \varphi_j(x) (\mathcal{L}c_j)(s), \quad \operatorname{Re} s > 0.$$

In other words,

$$U(x,s) = \sum_{j=1}^{\infty} f_j C_j(s) \varphi_j(x) = \sum_{j=1}^{\infty} O\left(j^{\frac{d-1-2m}{2d}}\right) O\left(\frac{1}{s^{\alpha}}\right) = O\left(\frac{1}{s^{\alpha}}\right).$$
(5.11)

By Corollary 2.1 we have $u(x, .) \in BSA(\mathbb{R}_+)$.

Now, $m > \frac{3d-1}{2} > \left[\frac{d}{2}\right] + 1$, therefore, combining with Part (a) we arrive at $u \in C(\overline{\Omega}) \times BSA(\mathbb{R}_+)$.

Theorem 5.3 is proved.

Now we prove the main theorem of this section about the global existence of classical solutions of (5.1).

THEOREM 5.4. Let $g \in L^1(\mathbb{R}_+) \cup L^{\infty}(\mathbb{R}_+)$, $f \in H_0^m(\Omega)$, $\partial \Omega \in C^m$ with $m > \frac{3d+3}{2}, \frac{1}{2} < \alpha \leq 1$, and $\|g\|_1 < k\lambda_1$. Then u(x,t), defined by (5.5), is the unique classical solution of (5.1) in $C^2(\overline{\Omega}) \times BSA^{\alpha}(\mathbb{R}_+)$.

By $f(t) \in BSA^{\alpha}(\mathbb{R}_+)$ we mean both $f(t), D_{0+}^{\alpha}f(t) \in BSA(\mathbb{R}_+)$.

P r o o f. Since $m - \left[\frac{d}{2}\right] - 1 > \frac{3d+3}{2} - \left[\frac{d}{2}\right] - 1 \ge 2$, by Theorem 5.3 (a) we have $u(.,t) \in C^2(\overline{\Omega})$. Moreover, from (5.10) and $\frac{d+3-2m}{2d} < -1$,

$$\sum_{j=1}^{\infty} |f_j c_j(t) \Delta \varphi_j(x)| = \sum_{j=1}^{\infty} |\lambda_j f_j c_j(t) \varphi_j(x)| = \sum_{j=1}^{\infty} O\left(j^{\frac{d+3-2m}{2d}}\right) < \infty,$$

uniformly on any compact subset $K \times [T_1, T]$. Hence,

$$\Delta u(x,t) = \sum_{j=1}^{\infty} f_j c_j(t) \Delta \varphi_j(x) = -\sum_{j=1}^{\infty} \lambda_j f_j c_j(t) \varphi_j(x).$$
(5.12)

From (5.3) and (5.9) we get

$$\begin{aligned} \left| D_{0+}^{\alpha} c_{j}(t) \right| &\leq k\lambda_{j} M(t) + M(t) \int_{0}^{t} |g(t-s)| ds \leq M(t) (k\lambda_{j} + \|g\|_{1}) \\ &= O(\lambda_{j}) = O\left(j^{\frac{2}{d}}\right), \quad t \in [T_{1}, T]. \end{aligned}$$

Consequently,

$$\sum_{j=1}^{\infty} \left| f_j D_{0+}^{\alpha} c_j(t) \varphi_j(x) \right| = \sum_{j=1}^{\infty} O\left(j^{\frac{d+3-2m}{2d}} \right) < \infty,$$

uniformly on $[T_1, T]$ for any $0 < T_1 < T < \infty$, and it yields

$$D_{0+}^{\alpha}u(x,t) = \sum_{j=1}^{\infty} f_j \ D_{0+}^{\alpha}c_j(t) \varphi_j(x).$$
 (5.13)

It is obvious that

$$\int_{0}^{t} g(t-\tau)u(x,\tau) \, d\tau = \sum_{j=1}^{\infty} f_{j}\varphi_{j}(x) \, \int_{0}^{t} g(t-\tau) \, c_{j}(\tau) \, d\tau.$$
(5.14)

Combining (5.12), (5.13), (5.14), and (5.3), we arrive at

$$D_{0+}^{\alpha} u(x,t) - k\Delta u(x,t) + \int_{0}^{t} g(t-\tau)u(x,\tau)d\tau$$

= $\sum_{j=1}^{\infty} f_{j}\varphi_{j}(x) \left[D_{0+}^{\alpha}c_{j}(t) + k\lambda_{j}c_{j}(t) + \int_{0}^{t} g(t-\tau)c_{j}(\tau)d\tau \right] = 0.$

Since $\varphi_j(x) = 0$ on $\partial \Omega$, then

$$u(x,t) = \sum_{j=1}^{\infty} f_j c_j(t) \varphi_j(x) = 0, \quad x \in \partial\Omega.$$

Because $I_{0+}^{1-\alpha}c_j(0) = 1$, by Lemma 4.1 (a)

$$I_{0+}^{1-\alpha}u(x,0) = \sum_{j=1}^{\infty} f_j I_{0+}^{1-\alpha}c_j(0)\varphi_j(x) = \sum_{j=1}^{\infty} f_j\varphi_j(x) = f(x), \quad x \in \Omega.$$
(5.15)

Thus, u(x,t), defined by (5.5), is a classical solution of (5.1).

Taking into account (5.11), (3.11), and (5.15) we obtain

$$\left(\mathcal{L}D_{0+}^{\alpha}u(x,t)\right)(s) = s^{\alpha}U(x,s) - I_{0+}^{1-\alpha}u(x,0)$$

$$= s^{\alpha}\sum_{j=1}^{\infty}f_{j}\varphi_{j}(x)C_{j}(s) - \sum_{j=1}^{\infty}f_{j}\varphi_{j}(x)$$

$$= \sum_{j=1}^{\infty}f_{j}\varphi_{j}(x)\left(s^{\alpha}C_{j}(s) - 1\right) = \sum_{j=1}^{\infty}f_{j}\varphi_{j}(x)\frac{\lambda_{j}k + G(s)}{s^{\alpha} + \lambda_{j}k + G(s)}.$$

Using (2.16) and (4.6) we get

$$\left|\frac{\lambda_j k + G(s)}{s^{\alpha} + \lambda_j k + G(s)}\right| \le \frac{M\lambda_j}{|s|^{\alpha}} \le \frac{Mj^{\frac{2}{d}}}{|s|^{\alpha}}.$$

Together with (4.7), (4.8), it yields

$$\sum_{j=1}^{\infty} \left| f_j \varphi_j(x) \frac{\lambda_j k + G(s)}{s^{\alpha} + \lambda_j k + G(s)} \right| \le \frac{M}{|s|^{\alpha}} \sum_{j=1}^{\infty} j^{\frac{d+3-2m}{2d}} \le \frac{M}{|s|^{\alpha}},$$

because $\frac{d+3-2m}{2d} < -1$. By Corollary 2.1 $D_{0+}^{\alpha}u(x,t) \in BSA(\mathbb{R}_+)$. Together with $u(x,t) \in BSA(\mathbb{R}_+)$ by Theorem 5.3 (c) it yields $u(x,t) \in BSA^{\alpha}(\mathbb{R}_+)$ for any $x \in \Omega$. Thus, $u \in C^2(\overline{\Omega}) \times BSA^{\alpha}(\mathbb{R}_+)$.

Let $u, \tilde{u} \in C^2(\overline{\Omega}) \times BSA^{\alpha}(\mathbb{R}_+)$ be two solutions of (5.1). Then $w = u - \tilde{u} \in C^2(\overline{\Omega}) \times BSA^{\alpha}(\mathbb{R}_+)$ is a solution of

$$\begin{cases} D_{0+}^{\alpha}w(x,t) = k\Delta w(x,t) - \int_{0}^{t}g(t-\tau)w(x,\tau)d\tau, & (x,t) \in \Omega \times \mathbb{R}^{+}, \\ w(x,t) = 0, & (x,t) \in \partial\Omega \times \mathbb{R}^{+}, \\ I_{0+}^{1-\alpha}w(x,0) = 0, & x \in \Omega. \end{cases}$$
(5.16)

Taking the Laplace transform of (5.16) we get the Dirichlet Schrödinger problem (4.24), and the uniqueness of u follows.

6. Inverse problems

We consider now an inverse problem of finding an initial function u(x,0) = f(x), so that we can reconstruct the order of fractional derivative α , the constant k, and the memory function g uniquely from a single observation of the solution $\{u(x,t)\}_{t>0}$ of (4.1) at one arbitrary point $x = b \in \Omega$. For an one-dimensional case see [15].

The initial condition we choose is $f(x) = \varphi_1(x)$. Then the observation u(b,t) is given by

$$u(b,t) = c_1(t)\varphi_1(b), \quad c_1(0) = 1, \text{ where } b \in \Omega.$$

Recall that $\varphi_1(b) \neq 0$, as the principal eigenfunction of the Dirichlet Laplacian never vanishes inside Ω , [10], and so the observation is not trivial.

Taking the Laplace transform of the observation u(b, t) with respect to t, and recalling (4.4), we have

$$U(b,s) = \frac{s^{\alpha-1}}{s^{\alpha} + \lambda_1 k + G(s)} \varphi_1(b).$$

Consequently,

$$\frac{\varphi_1(b)}{s \ U(b,s)} - 1 = s^{-\alpha} (\lambda_1 k + G(s)),$$

and

$$\alpha = -\frac{\ln\left(\frac{\varphi_1(b)}{s \ U(b,s)} - 1\right)}{\ln s} + \frac{\ln(\lambda_1 k + G(s))}{\ln s}.$$

Using the fact that $G(s) \to 0$ as $s \to \infty$, it yields

$$\alpha = -\lim_{s \to \infty} \frac{\ln\left(\frac{\varphi_1(b)}{s \ U(b,s)} - 1\right)}{\ln s}.$$
(6.1)

For k we have

$$k = \frac{s^{\alpha}}{\lambda_1} \left[\frac{\varphi_1(b)}{s \ U(b,s)} - 1 \right] - \frac{G(s)}{\lambda_1}.$$

Therefore, once α is known, k can be obtained as

$$k = \lim_{s \to \infty} \frac{s^{\alpha}}{\lambda_1} \left[\frac{\varphi_1(b)}{s \ U(b,s)} - 1 \right], \tag{6.2}$$

and G(s) as

$$G(s) = s^{\alpha} \left[\frac{\varphi_1(b)}{s U(b,s)} - 1 \right] - k\lambda_1, \quad \text{Re}\, s > 0.$$
(6.3)

The memory kernel g(t) can be recovered by taking the Laplace inverse transform of G(s). Thus we have proved

THEOREM 6.1. Let $\frac{1}{2} < \alpha \leq 1$, $g \in L^1(\mathbb{R}_+)$ with $||g||_1 < \lambda_1 k$. Taking $f(x) = \varphi_1(x)$ then using one observation u(b,t) of (4.1) at a single point $b \in \Omega$ we can reconstruct uniquely the fractional order α by (6.1), the parameter k by (6.2), and the function g by taking the Laplace inverse of G(s) from (6.3).

Assume now that the observation point b is on the boundary $\partial\Omega$. Since u(b,t) = 0 when $b \in \partial\Omega$, so instead of u(b,t) we should observe $\frac{\partial u(b,t)}{\partial\nu}$, the outer normal derivative of the solution u at the boundary point b. With the initial condition $u(x,0) = \varphi_1(x)$ the solution $u(x,t) = c_1(t)\varphi_1(x) \in C^1(\overline{\Omega})$ for each $t \ge 0$ when $\partial\Omega \in C^{\left[\frac{d}{2}\right]+2}$, [10]. Since $\frac{\partial\varphi_1(b)}{\partial\nu} \ne 0$, [10], the observation $\frac{\partial u(b,t)}{\partial\nu}$ is meaningful.

Taking the Laplace transform of the observation $\frac{\partial u(b,t)}{\partial \nu}$ with respect to t, and recalling (4.4), we have

$$\frac{\partial U(b,s)}{\partial \nu} = \frac{s^{\alpha-1}}{s^{\alpha} + \lambda_1 k + G(s)} \frac{\partial \varphi_1(b)}{\partial \nu}.$$

Consequently,

$$\alpha = -\lim_{s \to \infty} \frac{\ln\left(\frac{\frac{\partial \varphi_1(b)}{\partial \nu}}{s \frac{\partial U(b,s)}{\partial \nu}} - 1\right)}{\ln s},\tag{6.4}$$

$$k = \lim_{s \to \infty} \frac{s^{\alpha}}{\lambda_1} \left[\frac{\frac{\partial \varphi_1(b)}{\partial \nu}}{s \frac{\partial U(b,s)}{\partial \nu}} - 1 \right], \tag{6.5}$$

and

$$G(s) = s^{\alpha} \left[\frac{\frac{\partial \varphi_1(b)}{\partial \nu}}{s \frac{\partial U(b,s)}{\partial \nu}} - 1 \right] - k\lambda_1, \quad \text{Re}\, s > 0.$$
(6.6)

THEOREM 6.2. Let $\frac{1}{2} < \alpha \leq 1$, $\partial \Omega \in C^{\left[\frac{d}{2}\right]+2}$, $g \in L^1(\mathbb{R}_+)$ with $\|g\|_1 < \lambda_1 k$. Taking $f(x) = \varphi_1(x)$, then using one observation $\frac{\partial u(b,t)}{\partial \nu}$ of (4.1) at a single point $b \in \partial \Omega$ we can reconstruct uniquely the fractional

order α by (6.4), the parameter k by (6.5), and the function g by taking the Laplace inverse of G(s) from (6.6).

Similarly, consider now an inverse problem of reconstructing the order of fractional derivative α , the constant k, and the memory function g uniquely from a single observation of the solution $\{u(x,t)\}_{t>0}$ of (5.1) at one point $x = b \in \Omega$.

Choose the initial condition $f(x) = \varphi_1(x)$. Then the observation u(b, t) is given by

$$u(b,t) = c_1(t)\varphi_1(b), \quad I_{0+}^{1-\alpha}c_1(0) = 1, \text{ where } b \in \Omega.$$

Taking the Laplace transform of the observation u(b,t) with respect to t, and recalling (5.4), we have

$$U(b,s) = \frac{1}{s^{\alpha} + \lambda_1 k + G(s)} \varphi_1(b).$$

Consequently,

$$\frac{\varphi_1(b)}{U(b,s)} = s^{\alpha} + \lambda_1 k + G(s) \sim s^{\alpha}, \quad s \to \infty,$$

and therefore

$$\alpha = \lim_{s \to \infty} \frac{\ln\left(\frac{\varphi_1(b)}{s \ U(b,s)}\right)}{\ln s}.$$
(6.7)

Once α is known, k can be obtained as

$$k = \lim_{s \to \infty} \frac{1}{\lambda_1} \left[\frac{\varphi_1(b)}{U(b,s)} - s^{\alpha} \right], \tag{6.8}$$

and G(s) as

$$G(s) = \frac{\varphi_1(b)}{U(b,s)} - s^{\alpha} - k\lambda_1, \quad \operatorname{Re} s > 0.$$
(6.9)

The memory kernel g(t) can be recovered by taking the Laplace inverse transform of G(s). Thus we have proved the following thorem.

THEOREM 6.3. Let $\frac{1}{2} < \alpha \leq 1$, $g \in L^1(\mathbb{R}_+)$ with $||g||_1 < \lambda_1 k$. Taking $f(x) = \varphi_1(x)$, then using one observation u(b,t) of (5.1) at a single point $b \in \Omega$ we can reconstruct uniquely the fractional order α by (6.7), the parameter k by (6.8), and the function g by taking the Laplace inverse of G(s) from (6.9).

If, moreover, $\partial \Omega \in C^{\left[\frac{d}{2}\right]+2}$, and $b \in \partial \Omega$, then from the observation $\frac{\partial u(b,t)}{\partial \nu}$ of (5.1) one can find

$$\begin{split} \alpha &= \lim_{s \to \infty} \frac{\ln \left(\frac{\frac{\partial \varphi_1(b)}{\partial \nu}}{s \frac{\partial U(b,s)}{\partial \nu}} \right)}{\ln s}, \\ k &= \lim_{s \to \infty} \frac{1}{\lambda_1} \left[\frac{\frac{\partial \varphi_1(b)}{\partial \nu}}{\frac{\partial U(b,s)}{\partial \nu}} - s^{\alpha} \right], \end{split}$$

and

$$G(s) = \frac{\frac{\partial \varphi_1(b)}{\partial \nu}}{\frac{\partial U(b,s)}{\partial \nu}} - s^{\alpha} - k\lambda_1, \quad \text{Re}\, s > 0, \qquad g(t) = (\mathcal{L}^{-1}G)(t).$$

Acknowledgement

The author would like to thank Dr. Amin Boumenir for fruitful discussions.

References

- A. Akilandeeswari, K. Balachandran, and N. Annapoorani, On fractional partial differential equations of diffusion type with integral kernel. In: *Mathematical Modelling, Optimization, Analytic and Numerical Solutions*, Eds: P. Manchanda, R.P. Lozi, and A.H. Siddiqi, Springer, Singapore, 2020, 333–349.
- [2] Sh.A. Alimov, V.A. Ilyin, and E.M. Nikishin, Convergence problems of multiple Fourier series and spectral decompositions, II (In Russian). Uspekhi Mat. Nauk **32** (1977), 107–130; Engl. transl. in: Russian Math. Surveys **32** (1977), 115–139.
- [3] R.L. Bagley and P.J. Torvik, Fractional calculus, a different approach to the analysis of viscoelastically damped structures. AIAA J. 21(1983), 741–748.
- [4] R.L. Bagley and P.J. Torvik, On the fractional calculus model of viscoelastic behavior, J. Rheol. 30 (1986), 133–155.
- [5] M.Sh. Birman and M.Z. Solomyak, The principal term of the spectral asymptotics for non-smooth elliptic problems (In Russian). *Funktsional. Anal. i Prilozhen.* 4, No 4 (1970), 1–13; Engl. transl. in *Functional Analysis Appl.* 4 (1971), 265–275.
- [6] M.Sh. Birman and M.Z. Solomyak, Spectral asymptotics of nonsmooth elliptic operators, I (In Russian). *Trudy Moskov. Mat. Obshch.* 27 (1972), 3–52; Engl. transl. in *Trans. Moscow Math. Soc.* 27 (1972/ 1975), 1–52.
- [7] M.M. El-Borai and A. Debbouche, On some fractional integrodifferential equations with analytic semigroups. *Intern. J. of Contemp. Math. Sci.* 4, No 25-28 (2009), 1361–1371.

- [8] R. Gorenflo, A.A. Kilbas, F. Mainardi, and S.V. Rogosin, *Mittag-Leffler Functions, Related Topics and Applications.* Springer, Berlin, 2014.
- [9] A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, *Theory and Applica*tions of Fractional Differential Equations. North-Holland Math. Studies, Vol. 204, Elsevier, New York, 2006.
- [10] V.P. Mikhailov, *Partial Differential Equations*. Mir, Moscow, 1978.
- [11] R.E.A.C. Paley and N. Wiener, Fourier Transforms in the Complex Domain. Amer. Math. Soc. Coll. Publ. 19, 1934.
- [12] Y.A. Rossikhin and M.V. Shitikova, Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. *Appl. Mech. Rev.* **50** (1997), 15–67.
- [13] F. Saedpanah, Existence and Uniqueness of the Solution of an Integro-Differential Equation with Weakly Singular Kernel. Dept. of Math. Sciences, Chalmers University of Technology, 2009.
- [14] Vu Kim Tuan, Laplace transform of functions with bounded averages. Intern. J. of Evolution Equations 1, No 4 (2005), 429–433.
- [15] Vu Kim Tuan, Inverse problem for fractional diffusion equation. Fract. Calc. Appl. Anal. 14, No 1 (2011), 31–55; DOI:10.2478/s13540-011-0004-x; https://www.degruyter.com/view/journals/fca/14/1/

- [16] D. V. Widder, *The Laplace Transform*. Princeton Univ. Press, Princeton, 1946.
- [17] N. Wiener, Generalized harmonic analysis. Acta Math. 55 (1930), 117– 258.
- [18] H. Ye, J. Gao, and Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 328 (2007), 1075–1081.

Department of Mathematics, University of West Georgia Carrollton, GA 30118 – USA

e-mail: vu@westga.edu

Received: March 22, 2020, Revised: May 6, 2020

Please cite to this paper as published in:

Fract. Calc. Appl. Anal., Vol. **23**, No 5 (2020), pp. 1300–1328, DOI: 10.1515/fca-2020-0065

fca.14.issue-1.xml.