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Abstract

In this paper we study the global solvability of several ordinary and par-
tial fractional integro-differential equations in the Wiener space of functions
with bounded square averages.
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1. Introduction

Consider the time fractional integro-differential equation⎧⎨⎩ ∂α
t u(x, t) = kAu(x, t) −

∫ t
0 g(t− τ)u(x, τ)dτ + h(x), (x, t) ∈ Ω× R+,

u(x, t) = 0, (x, t) ∈ ∂Ω× R+,
u(x, 0) = f(x), x ∈ Ω,

(1.1)
where ∂α

t is either the Caputo or the Riemann-Liouville fractional deriva-
tives of order α ∈ (0, 1] with respect to time variable t [9], and A is a self-
adjoint differential operator acting in L2 (Ω) , Ω ⊂ Rd (d ≥ 1). Equation
(1.1) is a well known model for heat distribution of a visco-elastic material
with memory and has important applications in material science [1, 3, 4].
When α = 1, the local and global existence of solutions is usually handled
by semi-group theory, [7, 13]. However, when 0 < α < 1, the proof for the
local existence of solutions by semi-group theory is not possible, because
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∂α
t is a non-local operator. Due to the presence of the convolution opera-

tor, Laplace transform becomes the tool of choice as it takes care of both

the nonlocal operation ∂α
t and the Laplace convolution

∫ t
0 g(t−τ)u(x, τ)dτ .

Until now it is not clear which function space (especially in time variable)
does the solution u(x, t) belong to. Clearly Lp-spaces do not serve the pur-
pose. The main contribution of this paper is to show that the Wiener space
of functions with bounded square averages [17] is the right function space
for (1.1).

In this paper we are interested in two objectives:
A: Characterize the Laplace transform of Wiener functions with bounded

square averages and prove the global existence of solutions in direct prob-
lems in the Wiener space.

B: Given A = Δ = ∂2

∂x2
1
+ · · · + ∂2

∂x2
d
, the Laplace operator, solve the

inverse problem of reconstructing the fractional order α, the parameter k,
and the memory function g from a single observation of the solution at one
point.

The outline of the paper is as follows: In Section 2 we introduce the
Wiener space of functions with bounded square averages and characterize
the Laplace transform of such functions. In Section 3 we solve Caputo
and Riemann-Liouville fractional ordinary integro-differential equations,
i.e. when A is the identity operator, while in Sections 4 and 5, A = Δ, and
we deal with time fractional partial integro-differential equations where we
prove the global existence of solutions in the Wiener space and then solve
inverse problems for such equations in Section 6.

2. Functions with bounded square averages

Denote by L and L−1 the Laplace transform and its inverse ([16])

F (s) = (Lf) (s) =
∫ ∞

0
e−stf(t) dt, (2.1)

f(t) =
(
L−1F

)
(t) =

1

2πi

∫
Re s=d

F (s) est ds.

In practice given a function F , the crucial issue is to find conditions such
that it is the Laplace transform of a certain function f? Characterizing
the range of the Laplace transform has been investigated extensively and
the first result in this direction is the celebrated Paley-Wiener theorem for
the Fourier transform [11], which takes the following form for the Laplace
transform [16].

Proposition 2.1 (Paley-Wiener). f ∈ L2(R+) if and only if F ∈
H2(R2

+).
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Here Hp(R2
+) is the Hardy space of functions F (s) = F (x+iy), analytic

in the right half-plane with

sup
x>0

∫ ∞

−∞
|F (x+ iy)|pdy < ∞.

For f ∈ L∞(R+) Widder [16] proved the following result.

Proposition 2.2 (Widder). A function F is the Laplace transform of
f ∈ L∞(R+) if and only if F is infinitely differentiable on R+, and

sup

{∣∣∣∣xn+1

n!
F (n)(x)

∣∣∣∣ : x > 0, n = 0, 1, · · ·
}

< ∞.

In [14] it was shown that

sup
x>0

x

∫ ∞

−∞
|F (x+ iy)|2 dy ⇐⇒ sup

T>0

1

T

∫ T

0
|f(t)|2 dt < ∞.

It turns out that functions with bounded square averages on R+, first
defined on R by N. Wiener in the celebrated paper [17], can play very
important role in studying fractional integro-differential equations. Let us
start with the definition of such functions.

Definition 2.1. By BSA(R+), the Wiener linear space of functions
with bounded square averages on R+, we denote the set of locally integrable
functions f on R+ such that

sup
T>0

1

T + 1

∫ T

0
|f(t)|2 dt < ∞. (2.2)

We say f ∈ BSAm(R+) if f, f
′, · · · , f (m) ∈ BSA(R+).

It is readily seen that L2(R+) ∪ L∞(R+) ⊂ BSA(R+) and by Hölder’s
inequality Lp(R+) ⊂ BSA(R+) for 2 ≤ p ≤ ∞. However, note that, for
−1

2 ≤ β ≤ 0, we have f(t) = tβ ∈ BSA(R+), and yet f(t) 
∈ Lp(R+), 2 ≤
p ≤ ∞.

Now we characterize the Laplace transform of functions from BSA(R+).

Theorem 2.1. A function F (s) is the Laplace transform of f ∈
BSA(R+) if and only if F (s) is analytic in the right-half plane Re s > 0,
and

sup
x>0

x

x+ 1

∫ ∞

−∞
|F (x+ iy)|2 dy < ∞. (2.3)
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P r o o f. The proof follows [14]. Let f ∈ BSA(R+). Denote f̃(T ) =∫ T
0 f(t) dt. Integration by parts gives

F (s) :=

∫ ∞

0
e−stf(t) dt = e−sT f̃(T )

∣∣∣T=∞
T=0

+ s

∫ ∞

0
e−stf̃(t) dt, Re s > 0.

By Hölder’s inequality we have, for T > 0,

|f̃(T )| ≤
∫ T

0
1.|f(t)|dt ≤

√∫ T

0
dt

∫ T

0
|f(t)|2dt

=
√
T

√∫ T

0
|f(t)|2dt ≤ M

√
T
√
T + 1.

Here and throughout the paper M denotes a universal constant that can
be distinct in different places. Hence

e−sT f̃(T )
∣∣∣T=∞
T=0

= 0, Re s > 0,

and

F (s) = s

∫ ∞

0
e−stf̃(t) dt, Re s > 0.

Since |f̃(t)| ≤ M
√

t(t+ 1), the Laplace transform of f̃(t), i.e. F (s)
s , exists

and is analytic in the right half plane Re s > 0.
Integration by parts yields∫ ∞

0
e−2xt|f(t)|2dt = e−2xT

∫ T

0
|f(t)|2 dt

∣∣∣∣T=∞

T=0

+2x

∫ ∞

0
e−2xT

∫ T

0
|f(t)|2 dt dT ≤ Mx

∫ ∞

0
(T + 1)e−2xT dT ≤ M(x+ 1)

x
.

(2.4)

Hence, e−xtf(t) ∈ L2(R+) for any x > 0. Consequently, F (s) with Re s >
x0 > 0 is the Laplace transform of e−x0tf(t) ∈ L2(R+) at the point s− x0.
The Parseval formula for the Laplace transform in L2(R+), see [16], gives∫ ∞

0
e−2xt|f(t)|2dt = 1

2π

∫ ∞

−∞
|F (x+ iy)|2 dy, x > x0 > 0. (2.5)

Since x0 is an arbitrary positive constant, equality (2.5) holds for any x > 0.
Combining formulas (2.4) and (2.5) we obtain∫ ∞

−∞
|F (x+ iy)|2 dy ≤ M(x+ 1)

x
,

that yields (2.3).
Conversely, assume that F (s) is analytic in the right-half plane Re s > 0

and formula (2.3) holds. Then
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sup
x>x0

∫ ∞

−∞
|F (x+ iy)|2dy < ∞, x0 > 0.

Hence F (s+x0) is a Hardy functionH2(R2
+) in the right-half plane Re s > 0.

Therefore, by the Paley-Wiener Proposition 2.1 function F (x0 + s) is the
Laplace transform of a function, say, fx0(t) ∈ L2(R+)

F (x0 + s) =

∫ ∞

0
e−stfx0(t) dt, Re s > 0.

Thus

F (x0 + x1 + s) =

∫ ∞

0
e(−x1−s)tfx0(t)dt

=

∫ ∞

0
e(−x0−s)tfx1(t)dt, Re s, x0, x1 > 0.

Consequently, e−x1tfx0(t) = e−x0tfx1(t). Denote f(t) = ex0tfx0(t). It is
clear that f(t) is independent of x0 > 0 and F is the Laplace transform of
f ,

F (s) =

∫ ∞

0
e−stf(t) dt, Re s > x0 + x1.

As e−x0tf(t) = fx0(t) ∈ L2(R+), the Parseval formula for the Laplace
transform [16] yields∫ ∞

0
e−2x0t|f(t)|2 dt = 1

2π

∫ ∞

−∞
|F (x0 + iy)|2 dy ≤ M(x0 + 1)

x0
, x0 > 0.

Let g be a bounded function on R+. Then∫ ∞

0
e−2xtg(e−2xt)|f(t)|2 dt ≤ ‖g‖∞

∫ ∞

0
e−2xt|f(t)|2 dt ≤ M(x+ 1)

x
‖g‖∞,

(2.6)
for x > 0. Take

g(t) =

{
1
t , t > e−2

0, 0 < t ≤ e−2 .

Then ‖g‖∞ = e2, and (2.6) becomes∫ 1/x

0
|f(t)|2 dt ≤ M(x+ 1)

x
, x > 0.

Replacing x by 1
T we arrive at

1

T + 1

∫ T

0
|f(t)|2 dt ≤ M, T > 0.

Thus f ∈ BSA(R+) and Theorem 2.1 is proved. �
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Corollary 2.1. Let F (s) be analytic in the right half plane Re s > 0
and |F (s)| ≤ C|s|−α, 1

2 < α ≤ 1. Then F is the Laplace transform of a
function f ∈ BSA(R+).

P r o o f. Because α > 1
2 , F (x+ i•) ∈ L2(R), and for 1

2 < α ≤ 1,

x

x+ 1

∫ ∞

−∞
|F (x+ iy)|2dy ≤ Mx

x+ 1

∫ ∞

−∞
(x2 + y2)−αdy

=
M

√
πΓ

(
α− 1

2

)
Γ(α)

x2−2α

x+ 1
< ∞,

hence, formula (2.3) holds, i.e., f ∈ BSA(R+). �

The following result is very important in solving fractional integro-
differential equations in Sections 3-5.

Theorem 2.2. Let ‖g‖1 < k, 0 < α ≤ 1, then for the inverse Laplace
transform L−1

f := L−1

(
sα−1

sα + k +G(s)

)
∈ BSA(R+). (2.7)

P r o o f. Since g ∈ L1(R+), its Laplace transform G(s) is analytic in
the right half-plane, and from

|G(s)| ≤
∫ ∞

0
e−(Re s) t |g(t)| dt ≤ ‖g‖1 < k, for Re s ≥ 0,

we deduce that
sα−1

sα + k +G(s)
is also analytic in the right half-plane. Let

us denote by

h(s) = k +G(s),

then h(s) is clearly analytic in the right half-plane, and for Re s > 0,

0 < ε := k − ‖g‖1 ≤ Reh(s) and also ε ≤ |h(s)| < 2k. (2.8)

It is enough to show that
sα−1

sα + h(s)
satisfies (2.3). Put s = x+ iy, x > 0,

x

x+ 1

∫ ∞

−∞

|s|2α−2

|sα + h(s)|2
dy = I1(x) + I2(x)

:=
x

x+ 1

∫
y∈R, Re(sαh(s))≥0

|s|2α−2

|sα + h(s)|2
dy

+
x

x+ 1

∫
y∈R, Re(sαh(s))<0

|s|2α−2

|sα + h(s)|2
dy.
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We need to show that I1(x) and I2(x) are uniformly bounded.
For I1(x) we see first that

|sα + h(s)|2 = (sα + h(s))
(
sα + h(s)

)
= |s|2α + 2Re

(
sαh(s)

)
+ |h(s)|2 ,

and thus it follows that

Re
(
sαh(s)

)
≥ 0 =⇒ |sα + h(s)|2 ≥ |s|2α . (2.9)

Using (2.9) when Re
(
sα h(s)

)
≥ 0, we have

I1(x) ≤
x

x+ 1

∫
y∈R, Re(sαh(s))≥0

|s|2α−2

|s|2α
dy ≤ x

x+ 1

∫ ∞

−∞

1

|s|2
dy

=
x

x+ 1

∫ ∞

−∞

dy

x2 + y2
=

π

x+ 1
≤ π.

For Re
(
sα h(s)

)
< 0 write

h(s) = h1(s) + ih2(s),

where h1 = Reh and h2 = Imh. We then have for s = reiϕ, −π
2 < ϕ < π

2 ,

0 > Re
(
sα h(s)

)
= rα (h1 (s) cosαϕ+ h2 (s) sinαϕ) . (2.10)

Since αϕ ∈
(−π

2 , π
2

)
then cosαϕ > 0 and by (2.8)

h1(s) = Reh(s) ≥ ε > 0, (2.11)

which means that

h2 (s) sinαϕ < 0 when Re
(
sα h(s)

)
< 0

by (2.10). In other words h2(s) and sin (αϕ) have different signs, and
furthermore

0 < h1 (s) cosαϕ < |h2 (s) sinαϕ| . (2.12)

When Re
(
sα h(s)

)
< 0 we can write

|sα + h(s)|2 = |s|2α + 2Re
(
sαh(s)

)
+ |h(s)|2 (2.13)

=

⎛⎝|h(s)|+
Re

(
sαh(s)

)
|h(s)|

⎞⎠2

+

⎛⎜⎝|s|2α −

[
Re

(
sαh(s)

)]2
|h(s)|2

⎞⎟⎠
≥

∣∣∣sα h(s)
∣∣∣2 − [

Re
(
sα h(s)

)]2
|h(s)|2

=

[
Im

(
sα h(s)

)]2
|h(s)|2

.

Thus we have from (2.13)
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I2(x) ≤
x

x+ 1

∫
y∈R, Re(sαh(s))<0

|s|2α−2

|sα + h(s)|2
dy (2.14)

≤ x

x+ 1

∫
y∈R, Re(sαh(s))<0

|h(s)|2 |s|2α[
Im

(
sα h(s)

)]2
|s|2

dy.

To proceed further we shall need the following estimate:

If Re
(
sα h(s)

)
< 0 then

∣∣∣sα h(s)
∣∣∣2 ≤ (

4k2

ε2
+ 1

)[
Im

(
sα h(s)

)]2
for Re s > 0. (2.15)

In fact, from (2.12) and (2.8) we have

|Re (sα h(s))| < rα |h2 (s) sinαϕ| < rα2k |sinαϕ| ≤ rα
2k

ε
ε |sinαϕ| ,

and by (2.11) we have

|Re (sα h(s))| ≤ rα
2k

ε
|h1(s) sinαϕ|

≤ 2k

ε
(rα |h1(s) sinαϕ| + rα |h2(s) cosαϕ|)

≤ 2k

ε
rα | h1(s) sinαϕ− h2(s) cosαϕ|

as h1(s) sinαϕ and −h2(s) cosαϕ have the same sign. Thus we deduce
that

|Re (sα h(s))| ≤ 2k

ε

∣∣∣Im(
sα h(s)

)∣∣∣ ,
and it follows that∣∣∣sα h(s)

∣∣∣2 = [
Re

(
sah(s)

)]2
+

[
Im

(
sah(s)

)]2
≤

(
4k2

ε2
+ 1

)[
Im

(
sah(s)

)]2
,

which proves (2.15).
Going back to (2.14) we get



1308 Vu Kim Tuan

I2(x) ≤
x

x+ 1

∫ ∞

−∞

|h(s)|2 |s|2α[
Im

(
sα h(s)

)]2
|s|2

dy

≤ x

x+ 1

(
4k2

ε2
+ 1

)∫ ∞

−∞

1

|s|2
dy

≤ x

x+ 1

(
4k2

ε2
+ 1

)∫ ∞

−∞

dy

x2 + y2

≤ π

(
4k2

ε2
+ 1

)
.

Consequently, f ∈ BSA(R+). �

Remark 2.1. From the proof of Theorem 2.2 we have the following
estimate∣∣∣∣ sα−1

sα + k +G(s)

∣∣∣∣ ≤
√√√√((

2k

k − ‖g‖1

)2

+ 1

)
1

|s| , Re s > 0. (2.16)

Combining Corollary 2.1 and Remark 2.1, we arrive at

Corollary 2.2. Let ‖g‖1 < k, 1
2 < α ≤ 1, then the inverse Laplace

transform

f := L−1

(
1

sα + k +G(s)

)
(2.17)

is from BSA(R+).

Lemma 2.1. Let f ∈ BSA(R+) and g ∈ L1(R+). Then their Laplace
convolution

h(t) = (f ∗ g)(t) :=
∫ t

0
f(t− τ) g(τ) dτ (2.18)

belongs to BSA(R+).

P r o o f. In fact, by applying the Laplace transform to (2.18), we
obtain H(s) = F (s)G(s), therefore, |H(s)| ≤ |F (s)| ‖g‖1, and thus

sup
x>0

x

x+ 1

∫ ∞

−∞
|H(x+ iy)|2 dy ≤ ‖g‖21 sup

x>0

x

x+ 1

∫ ∞

−∞
|F (x+ iy)|2 dy < ∞.

�
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3. Fractional integro-differential equations

3.1. Caputo fractional integro-differential equation. Now consider
the following Caputo fractional integro-differential equation

C∂α
t f(t)+ kf(t) +

∫ t

0
g(t− τ)f(τ)dτ = h(t), f(0) = f0,

1

2
< α ≤ 1,

(3.1)
where g, h ∈ L1(R+) are given, and f is an unknown. Here C∂α

t is the
Caputo fractional derivative defined by ([9])

C∂α
t f(t) =

∫ t

0

(t− τ)n−α−1

Γ(n− α)
f (n)(τ) dτ, n− 1 < α < n; C∂n

t f(t) = f (n)(t).

(3.2)
It is well known [9] that

L
(C∂α

t f
)
(s) = sαF (s)−

n−1∑
k=0

sα−k−1f (k)(0), n− 1 < α ≤ n. (3.3)

Theorem 3.1. Let k > 0, f0 ∈ R, g, h ∈ L1(R+), be given, and
‖g‖1 < k. Then the Caputo fractional integro-differential equation (3.1)
has a unique solution f from BSA(R+).

P r o o f. Applying the Laplace transform to equation (3.1) and taking
into account (3.3) we obtain

sαF (s)− sα−1f0 + kF (s) +G(s)F (s) = H(s). (3.4)

Solving for F (s) yields

F (s) =
sα−1f0 +H(s)

sα + k +G(s)
. (3.5)

Denote

L(s) =
sα−1

sα + k +G(s)
, M(s) =

1

sα + k +G(s)
, (3.6)

then according to Theorem 2.2 and Corollary 2.2, their inverse Laplace
transforms, namely l(t),m(t), belong to BSA(R+), and

f(t) = f0 l(t) +

∫ t

0
m(t− τ)h(τ) dτ. (3.7)

Since m ∈ BSA(R+) and h ∈ L1(R+), by Lemma 2.1, their Laplace con-
volution m ∗ h belongs to BSA(R+). Hence, f , defined by (3.7), is from
BSA(R+). Using the Tauberian theorem for the Laplace transform ([16])

F (s) ∼ A

sα
, s → ∞ =⇒ f(t) ∼ Atα−1

Γ(α)
, t → 0+, (3.8)

we have
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L(s) ∼ 1

s
, s → ∞ =⇒ l(t) ∼ 1, t → 0 + .

Consequently, f(0) = f0.
Conversely, let f be given by (3.7), where l,m are defined by (3.6).

Then f ∈ BSA(R+) and f(0) = f0. Applying the Laplace transform to
(3.7) and taking into account (3.6) we arrive at (3.5). Hence, (3.4) holds.
The Laplace inverse of (3.4) yields (3.1). �

3.2. Riemann-Liouville fractional integro-differential equation. Con-
sider now the following Riemann-Liouville fractional integro-differential
equation

Dα
0+f(t)+kf(t)+

∫ t

0
g(t−τ)f(τ)dτ = h(t), I1−α

0+ f(0+) = f0,
1

2
< α ≤ 1,

(3.9)
where g, h ∈ L1(R+) are given, and f is an unknown. Here Dα

0+ is the
Riemann-Liouville fractional derivative ([9])

Dα
0+f(t) =

dn

dtn
In−α
0+ f(t), In−α

0+ f(t) =

∫ t

0

(t− τ)n−α−1

Γ(n− α)
f(τ) dτ, α < n.

(3.10)
It is well known [9] that

L
(
Dα

0+f
)
(s) = sαF (s)−

n−1∑
k=0

sn−k−1Dα+k−n
0+ f(0+), n− 1 < α ≤ n.

(3.11)

Theorem 3.2. Let k > 0, f0 ∈ R, g, h ∈ L1(R+), be given, and
‖g‖1 < k. Then the Riemann-Liouville fractional integro-differential equa-
tion (3.9) has a unique solution f from BSA(R+).

P r o o f. Applying the Laplace transform to equation (3.9) and taking
into account (3.11) we obtain

sαF (s)− f0 + kF (s) +G(s)F (s) = H(s). (3.12)

Solving for F (s) yields

F (s) =
f0 +H(s)

sα + k +G(s)
. (3.13)

Define again M(s) by (3.6), then according to Corollary 2.2, its inverse
Laplace transform m(t) belongs to BSA(R+), and

f(t) = f0m(t) +

∫ t

0
m(t− τ)h(τ) dτ. (3.14)
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Since m ∈ BSA(R+) and h ∈ L1(R+), by Lemma 2.1, their Laplace con-
volution m ∗ h belongs to BSA(R+). Hence, f , defined by (3.14), is from
BSA(R+). Using the Tauberian theorem for the Laplace transform (3.8)
we have

M(s) ∼ 1

sα
, s → ∞ =⇒ m(t) ∼ tα−1

Γ(α)
, t → 0 + .

Consequently, I1−α
0+ m(t) ∼ 1, t → 0+. Together with (3.14) it yields

I1−α
0+ f(0+) = f0.

Conversely, let f be given by (3.14), where m is defined by (3.6). Then
f ∈ BSA(R+) and I1−α

0+ f(0+) = f0. Applying the Laplace transform to
(3.14) and taking into account (3.6) we arrive at (3.13). Hence, (3.12)
holds. The Laplace inverse of (3.12) yields (3.9). �

4. Partial Caputo fractional integro-differential equation

In this section we study the following partial Caputo fractional integro-
differential equation⎧⎨⎩

C∂α
t u(x, t) =kΔu(x, t)−

∫ t
0 g(t− τ)u(x, τ)dτ, (x, t) ∈ Q := Ω× R+,

u(x, t) = 0, (x, t) ∈ ∂Ω× R+,
u(x, 0) = f(x), x ∈ Ω,

(4.1)
with 1

2 < α ≤ 1, where Ω ⊂ Rd (d ≥ 1) is a bounded domain with smooth

boundary ∂Ω ∈ C[ d2 ]+1. Here [a] denotes the integer part of a. The model
in (4.1) appears in many modeling situations of new viscoelastic materials
such as polymers [1, 3, 4, 12].

We will show the observability of the solution for large time, which
means its global existence in the Wiener space BSA(R+). Local existence
results in the case of Dirichlet boundary conditions are known, however the
global existence results presented here are new and do not rely on semi-
group techniques, [7].

As we shall use spectral methods associated with the Dirichlet Lapla-
cian, denote its eigenvalues indexed in the ascending order and counting
their multiplicity, by λj and associate eigenfunctions by ϕj , i.e.{

Δϕj(x) = −λjϕj(x), in Ω,
ϕj(x) = 0, on ∂Ω.

(4.2)

It is known [10] that 0 < λ1 < λ2 ≤ λ3 ≤ · · · ≤ λj ≤ · · · , with
lim
j→∞

λj = ∞, and the set {ϕj}j≥1, normalized by ||ϕj ||L2(Ω) = 1, is an

orthonormal basis for L2(Ω). Moreover, ϕj ∈ C∞(Ω), and the smoothness

condition on the boundary guarantees that ϕj ∈ C(Ω) (see [10, Theorem
7, Section 2, Chapter IV]).
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First we can look for a particular solution of (4.1) in the form that can
be written as

u(x, t) = cj(t)ϕj(x),

where u(x, 0) = ϕj(x), so cj satisfies the Caputo fractional integro-differential
equation, thanks to (4.1) and (4.2),

C∂α
t cj(t) = −kλjcj(t)−

∫ t

0
g(t− s)cj(s) ds, with cj(0) = 1. (4.3)

Equation (4.3) is a special case of (3.1), so from (3.5) we have its solution

Cj(s) =
sα−1

sα + λjk +G(s)
, cj(t) =

(
L−1Cj

)
(s). (4.4)

Theorem 4.1. Let 1
2 < α ≤ 1, ‖g‖1 < λ1k. Then cj(t), defined by

(4.4), belongs to BSA1(R+).

P r o o f. Since λjk ≥ λ1k > ‖g‖1, Theorem 2.2 shows that cj(t) ∈
BSA(R+) for j = 1, 2, · · · .

We have(
Lc′j

)
(s) = sCj(s)− cj(0) =

sα

sα + λjk +G(s)
− 1 =

λjk +G(s)

sα + λjk +G(s)
.

(4.5)
In (2.16) we have shown that∣∣∣∣ sα−1

sα + λjk +G(s)

∣∣∣∣ ≤ M

|s| , Re s > 0.

Since λjk + |G(s)| < (λ1 + λj)k, we have∣∣∣∣ λjk +G(s)

sα + λjk +G(s)

∣∣∣∣ < Mλj

|s|α , Re s > 0.

Consequently, by Corollary 2.1 the Laplace inverse of sCj(s) − cj(0), or
c′j(t) exists and belongs to BSA(R+). Thus, cj ∈ BSA1(R+). �

If we take f(x) = ϕj(x), then u(x, t) defined by (4) with cj(0) = 1
satisfies (4.1). Thus we have proved

Theorem 4.2. Let 1
2 < α ≤ 1, ‖g‖1 < λ1k, and f(x) =

∑m
j=1 ajϕj(x),

then the classical solution to the problem (4.1), exists for all t > 0, i.e. is
global.

Now we go to the general case. The Weyl law for the asymptotics of
the eigenvalues λj has the form [5, 6]
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λj � δj
2
d , j → ∞, where δ =

[
(2
√
π)−d

Γ
(
d
2 + 1

)Vol (Ω)]− 2
d

. (4.6)

For the eigenfunctions ϕj(x) the following asymptotics formula holds uni-
formly on any compact subset K of Ω, see [2],∑

|
√

λj−λ|≤1

ϕ2
j (x) = O

(
λd−1

)
, λ → ∞.

In particular,

ϕj(x) = O

(
λ

d−1
4

j

)
= O

(
j

d−1
2d

)
, j → ∞, x ∈ K � Ω. (4.7)

By fj we denote the jth Fourier coefficient of f ∈ L2(Ω) in the basis
{ϕj}j≥1, namely,

fj =

∫
Ω
f(x)ϕj(x) dx.

Recall that if f ∈ Hm
0 (Ω), the Sobolev space of functions with compact

supports in Ω with generalized derivatives up to order m ≥ 0, [10], then its
Fourier coefficient fj has the asymptotics ([2])

fj = O
(
λ
−m

2
j

)
= O

(
j−

m
d

)
, j → ∞, (4.8)

and the following convergence result will be essential for studying solutions
of (4.1).

Lemma 4.1. Let f ∈ Hm
0 (Ω).

a) [2] If m > d
2 , then the series

∞∑
j=1

fjϕj(x) (4.9)

converges absolutely and uniformly to f(x) on any compact subset of Ω.
b) [10, Theorem 8, Chapter IV] If ∂Ω ∈ Cm, then

∞∑
j=1

f2
j λ

m
j ≤ C‖f‖2Hm(Ω), (4.10)

and the series (4.9) converges to f(x) in Hm(Ω).
c) [10, Theorem 9, Chapter IV] If ∂Ω ∈ Cm and m ≥

[
d
2

]
+1, then the sum

(4.9) belongs to Cm−[ d2 ]−1(Ω).
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The absolute convergence of (4.9) should be understood in the following
unconventional way. With the presence of multiple eigenvalues, let us re-
group all eigenvalues into a strictly increasing sequence μ1 < μ2 < . . . such
that the sets {λ1, λ2, · · · , λj , · · · } and {μ1, μ2, · · · , μl, · · · } coincide. Then
the absolute convergence of (4.9) means the convergence of the series

∞∑
l=1

∣∣∣∣∣∣
∑
λj=μl

fjϕj(x)

∣∣∣∣∣∣ . (4.11)

Theorem 4.3. Let g ∈ L1(R+) ∪ L∞(R+), f ∈ Hm
0 (Ω), ‖g‖1 <

kλ1,
1
2 < α ≤ 1, and cj be defined by (4.4).

a) If ∂Ω ∈ Cm, then the series

u(x, t) :=
∞∑
j=1

fjcj(t)ϕj(x) (4.12)

converges in Hm(Ω) norm for each t ≥ 0. If, moreover, m ≥
[
d
2

]
+ 1, then

u(., t) ∈ Cm−[ d2 ]−1(Ω).
b) If m > d

2 , then the series (4.12) converges absolutely on Q := Ω× R+.

c) If m > 3d−1
2 , then the series (4.12) converges uniformly on any compact

subset of Q. Moreover, if ∂Ω ∈ C[ d2 ]+1, then u ∈ C(Ω)×BSA(R+).

P r o o f. Consider the equation
C∂α

t y(t) = −λy(t) + f(t), y(0) = 1. (4.13)

Its solution has the form [9]

y(t) = Eα(−λtα) +

∫ t

0
(t− τ)α−1Eα,α(−λ(t− τ)α)f(τ) dτ, (4.14)

where Eα(z), Eα,β(z) are the classical and two parametric Mittag-Leffler
functions ([8])

Eα,β(z) =

∞∑
n=0

zn

Γ(αn + β)
, Eα(z) = Eα,1(z). (4.15)

Applying (4.13) and (4.14) to (4.3) with f(t) = −(g ∗ cj)(t), and λ being
replaced by kλj , we obtain

cj(t) = Eα(−kλjt
α)

−
∫ t

0
(t− τ)α−1Eα,α(−kλj(t− τ)α)

∫ τ

0
g(τ − η)cj(η) dη dτ

= Eα(−kλjt
α)−

∫ t

0
β(t, η)cj(η) dη,

where
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β(t, η) =

∫ t

η
(t− τ)α−1Eα,α(−kλj(t− τ)α)g(τ − η) dτ. (4.16)

Since Eα,α(−x) is monotone decreasing and Eα,α(0) = 1
Γ(α) (see [8]), we

have

|β(t, η)| ≤ Eα,α(0)‖g‖∞
∫ t

η
(t− τ)α−1dτ =

(t− η)α

Γ(α+ 1)
‖g‖∞. (4.17)

Consequently, the monotone decay of Eα(−x) and Eα(0) = 1 (see [8]) yields

|cj(t)| ≤ Eα(−kλjt
α) +

‖g‖∞
Γ(α+ 1)

∫ t

0
(t− η)α|cj(η)|dη

≤ 1 +
‖g‖∞

Γ(α+ 1)

∫ t

0
(t− η)α|cj(η)|dη.

Applying the Gronwall inequality for fractional integral [18, Corollary 2]
and recalling that Eα(x) is monotone increasing [8], we obtain

|cj(t)| ≤ Eα

(
‖g‖∞tα

α

)
≤ Eα

(
‖g‖∞Tα

α

)
=: MT , t ∈ [0, T ]. (4.18)

Thus, {cj(t)}j≥1 are uniformly bounded on any interval [0, T ].
a) Since f ∈ Hm

0 (Ω) and ∂Ω ∈ Cm, then by Lemma 4.1 (b) the inequal-
ity (4.10) holds. Together with the uniform boundedness of cj(t) on [0, T ]
it yields

∞∑
j=1

f2
j c

2
j(t)λ

m
j < ∞.

In other words, the series (4.12) converges in Hm(Ω) norm, and u(., t) ∈
Hm(Ω) for any t ≥ 0. On the other hand, when m ≥

[
d
2

]
+ 1, we have [10]

Hm(Ω) � Cm−[ d2 ]−1(Ω), therefore, u(., t) ⊂ Cm−[ d2 ]−1(Ω).
b) Combining Lemma 4.1 (a), formula (4.11), and noticing that cj(t) =

cj′(t) if λj = λj′ we arrive at

∞∑
l=1

∣∣∣∣∣∣
∑
λj=μl

fjcj(t)ϕj(x)

∣∣∣∣∣∣ ≤ MT

∞∑
l=1

∣∣∣∣∣∣
∑
λj=μl

fjϕj(x)

∣∣∣∣∣∣ < ∞,

i.e., the absolute convergence of (4.12).
c) From (4.7), (4.8), and (4.18) we have

fjcj(t)ϕj(x) = O
(
j

d−1−2m
2d

)
,
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uniformly on K × [0, T ], where K is any compact subset of Ω. Since
m > 3d−1

2 , then d−1−2m
2d < −1, and therefore, the series (4.12) converges

uniformly on K × [0, T ].
From (2.16) and (4.4) we have

|Cj(s)| ≤
M

|s| , Re s > 0,

where M is independent of j. Hence, Hölder’s inequality and formula (2.5)
give [∫ ∞

0
e−xt|cj(t)|dt

]2
≤

∫ ∞

0
e−xtdt

∫ ∞

0
e−xt|cj(t)|2dt

=
1

2πx

∫ ∞

−∞

∣∣∣Cj

(x
2
+ iy

)∣∣∣2 dy ≤ M

2πx

∫ ∞

−∞

1∣∣x
2 + iy

∣∣2 dy =
M

x2
, x > 0.

Consequently,

∞∑
j=1

|fjϕj(x)|
∫ ∞

0
e−xt|cj(t)|dt ≤

√
M

x

∞∑
j=1

O
(
j

d−1−2m
2d

)
< ∞, x > 0.

Thus, we can apply Lebesgue’s dominated convergence theorem to obtain

(Lu(x, .)) (s) =
∞∑
j=1

fjϕj(x)(Lcj)(s), Re s > 0.

In other words,

U(x, s) =

∞∑
j=1

fjCj(s)ϕj(x) =

∞∑
j=1

O
(
j

d−1−2m
2d

)
O

(
1

s

)
= O

(
1

s

)
. (4.19)

By Corollary 2.1 we have u(x, .) ∈ BSA(R+).
Now, m > 3d−1

2 >
[
d
2

]
+1, therefore, combining with Part (a) we arrive

at u ∈ C(Ω)×BSA(R+).
Theorem 4.3 is proved. �

Now we are ready to prove the main theorem of this section about the
global existence of classical solutions of (4.1).

Theorem 4.4. Let g ∈ L1(R+)∪L∞(R+), f ∈ Hm
0 (Ω), ∂Ω ∈ Cm with

m > 3d+3
2 , 12 < α ≤ 1, and ‖g‖1 < kλ1. Then u(x, t), defined by (4.12), is

the unique classical solution of (4.1) in C2(Ω)×BSA1(R+).

P r o o f. Since m−
[
d
2

]
− 1 > 3d+3

2 −
[
d
2

]
− 1 ≥ 2, by Theorem 4.3 (a)

we have u(., t) ∈ C2(Ω). Moreover, from (4) and d+3−2m
2d < −1,
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∞∑
j=1

|fjcj(t)Δϕj(x)| =
∞∑
j=1

|λjfjcj(t)ϕj(x)| =
∞∑
j=1

O
(
j

d+3−2m
2d

)
< ∞,

uniformly on any compact subset of Q. Hence,

Δu(x, t) =
∞∑
j=1

fjcj(t)Δϕj(x) = −
∞∑
j=1

λjfjcj(t)ϕj(x). (4.20)

From (4.3) and (4.18) we get∣∣C∂α
t cj(t)

∣∣ ≤ kλjMT +MT

∫ t

0
|g(t− s)|ds ≤ MT (kλj + ‖g‖1)

= O (λj) = O
(
j

2
d

)
, t ∈ [0, T ].

Consequently,
∞∑
j=1

∣∣fj C∂α
t cj(t)ϕj(x)

∣∣ = ∞∑
j=1

O
(
j

d+3−2m
2d

)
< ∞,

uniformly on [0, T ] for any T > 0, and it yields

C∂α
t u(x, t) =

∞∑
j=1

fj
C∂α

t cj(t)ϕj(x). (4.21)

It is obvious that∫ t

0
g(t− τ)u(x, τ) dτ =

∞∑
j=1

fjϕj(x)

∫ t

0
g(t− τ) cj(τ) dτ. (4.22)

Combining (4.20), (4.21), (4.22), and (4.3), we arrive at

C∂α
t u(x, t)−kΔu(x, t) +

∫ t

0
g(t− τ)u(x, τ)dτ

=

∞∑
j=1

fjϕj(x)

[
C∂α

t cj(t) + kλjcj(t) +

∫ t

0
g(t− τ) cj(τ) dτ

]
= 0.

Since ϕj(x) = 0 on ∂Ω, then

u(x, t) =

∞∑
j=1

fj cj(t)ϕj(x) = 0, x ∈ ∂Ω.

Because cj(0) = 1, by Lemma 4.1

u(x, 0) =
∞∑
j=1

fj cj(0)ϕj(x) =
∞∑
j=1

fjϕj(x) = f(x), x ∈ Ω.

Thus, u(x, t), defined by (4.12), is a classical solution of (4.1).
Taking into account (4.19) and (4.5) we obtain
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(Lut(x, t)) (s) = sU(x, s)− u(x, 0) = s

∞∑
j=1

fjϕj(x)Cj(s)−
∞∑
j=1

fjϕj(x)

=
∞∑
j=1

fjϕj(x) (sCj(s)− 1) =
∞∑
j=1

fjϕj(x)
λjk +G(s)

sα + λjk +G(s)
.

Using (2.16) and (4.6) we get∣∣∣∣ λjk +G(s)

sα + λjk +G(s)

∣∣∣∣ ≤ Mλj

|s|α ≤ M j
2
d

|s|α .

Together with (4.7), (4.8), it yields

∞∑
j=1

∣∣∣∣fjϕj(x)
λjk +G(s)

sα + λjk +G(s)

∣∣∣∣ ≤ M

|s|α
∞∑
j=1

j
d+3−2m

2d ≤ M

|s|α ,

because d+3−2m
2d < −1. By Corollary 2.1 ut(x, t) ∈ BSA(R+). Together

with u(x, t) ∈ BSA(R+) by Theorem 4.3 (c) it yields u(x, t) ∈ BSA1(R+)
for any x ∈ Ω. Thus, u ∈ C2(Ω)×BSA1(R+).

Let u, ũ ∈ C2(Ω) × BSA1(R+) be two solutions of (4.1). Then w =
u− ũ ∈ C2(Ω)×BSA1(R+) is a solution of⎧⎨⎩

C∂α
t w(x, t) =kΔw(x, t) −

∫ t
0 g(t− τ)w(x, τ)dτ, (x, t) ∈ Ω×R+,

w(x, t) = 0, (x, t) ∈ ∂Ω× R+,
w(x, 0) = 0, x ∈ Ω.

(4.23)
Taking the Laplace transform of (4.23) we get{

ΔW (x, s) = G(s)+sα

k W (x, s), x ∈ Ω
W (x, s) = 0, x ∈ ∂Ω

, W (x, s) ∈ C2(Ω), Re s > 0.

(4.24)

If s ∈
(
‖g‖

1
α
1 , ∞

)
, then −G(s)+sα

k < 0 cannot be an eigenvalue of the

Dirichlet Laplacian (4.1), therefore the Schrödinger equation with Dirich-
let’s boundary condition (4.24) has only trivial solution W (x, s) = 0, x ∈ Ω,
[10], for such s. But for a fixed parameter x ∈ Ω, W (x, s), as a function

of s, is analytic in Re s > 0. As W (x, s) = 0 on s ∈
(
‖g‖

1
α
1 , ∞

)
, the

interior uniqueness theorem for holomorphic functions yields W (x, s) = 0,
Re s > 0. Hence, w(x, t) = 0, and we obtain the uniqueness of u. The
theorem is proved. �
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5. Partial Riemann-Liouville fractional
integro-differential equation

In this section we will study the global solvability of the following partial
Riemann-Liouville fractional integro-differential equation⎧⎨⎩ Dα

0+u(x, t) = kΔu(x, t)−
∫ t
0 g(t− τ)u(x, τ)dτ, (x, t) ∈ Q = Ω× R+,

u(x, t) = 0, (x, t) ∈ ∂Ω× R+,

I1−α
0+ u(x, 0) = f(x), x ∈ Ω,

(5.1)
with 1

2 < α ≤ 1, where Ω ⊂ Rd (d ≥ 1) is a bounded domain with smooth

boundary ∂Ω ∈ C[ d2 ]+1.
First we look for a particular solution of (5.1) in the form

u(x, t) = cj(t)ϕj(x), (5.2)

where I1−α
0+ u(x, 0) = ϕj(x), so cj(t) satisfies the fractional integro-differential

equation, thanks to (5.1) and (4.2),

Dα
0+cj(t) = −kλjcj(t)−

∫ t

0
g(t− s)cj(s) ds, with I1−α

0+ cj(0) = 1.

(5.3)
Equation (5.3) is a special case of (3.9), so from (3.13) we have its solution

Cj(s) =
1

sα + λjk +G(s)
, cj(t) =

(
L−1Cj

)
(s). (5.4)

According to Corollary 2.2 we have the following theorem.

Theorem 5.1. Let 1
2 < α ≤ 1 and ‖g‖1 < λ1k. Then cj(t), defined by

(5.4), belongs to BSA(R+).

If we take f(x) = ϕj(x), then u(x, t), defined by (5.2) with I1−α
0+ cj(0) =

1, satisfies (5.1). Thus we have proved the following theorems.

Theorem 5.2. Let 1
2 < α ≤ 1, ‖g‖1 < λ1k, and f(x) =

∑m
j=1 ajϕj(x),

then the classical solution to the problem (5.1), exists for all t > 0, i.e. is
global.

Theorem 5.3. Let g ∈ L1(R+) ∪ L∞(R+), f ∈ Hm
0 (Ω), ‖g‖1 < kλ1,

1
2 < α ≤ 1, and cj be defined by (5.4).
a) If ∂Ω ∈ Cm, then the series

u(x, t) :=

∞∑
j=1

fjcj(t)ϕj(x) (5.5)



1320 Vu Kim Tuan

converges in Hm(Ω) norm for each t > 0. If, moreover, m ≥
[
d
2

]
+ 1, then

u(., t) ∈ Cm−[ d2 ]−1(Ω).
b) If m > d

2 , then the series (5.5) converges absolutely on Q.

c) If m > 3d−1
2 , then the series (5.5) converges uniformly on any compact

subset of Q. Moreover, if ∂Ω ∈ C[ d2 ]+1, then u ∈ C(Ω)×BSA(R+).

P r o o f. Consider the equation

Dα
0+y(t) = −λy(t) + f(t), I1−α

0+ y(0) = 1. (5.6)

Its solution has the form [9]

y(t) = tα−1Eα,α(−λtα) +

∫ t

0
(t− τ)α−1Eα,α(−λ(t− τ)α)f(τ) dτ. (5.7)

Applying (5.6) and (5.7) to (5.3) with f(t) = −(g ∗ cj)(t), and λ being
replaced by kλj , we obtain

cj(t) = tα−1Eα,α(−kλjt
α)

−
∫ t

0
(t− τ)α−1Eα,α(−kλj(t− τ)α)

∫ τ

0
g(τ − η)cj(η) dη dτ

= tα−1Eα,α(−kλjt
α)−

∫ t

0
β(t, η)cj(η) dη,

where β(t, η) is defined by (4.16). Using (4.17) we get

|cj(t)| ≤ tα−1 |Eα,α(−kλjt
α)|+ ‖g‖∞

Γ(α+ 1)

∫ t

0
(t− η)α|cj(η)|dη.

The complete monotonicity property of Eα,α(−t) , 0 < α ≤ 1, [8], yields
the monotone decay and positivity of Eα,α(−t) , 0 < α ≤ 1,

Eα,α(−kλ1t
α) ≥ Eα,α(−kλjt

α) > 0.

Consequently,

|cj(t)| ≤ tα−1Eα,α(−kλ1t
α) +

‖g‖∞
Γ(α+ 1)

∫ t

0
(t− η)α|cj(η)|dη. (5.8)

Since tα−1Eα,α(−tα), 0 < α ≤ 1, is complete monotone [8], then

tα−1Eα,α(−kλ1t
α), 0 < α ≤ 1,

is monotone decreasing. Applying the Gronwall inequality for fractional in-
tegral [18, Corollary 2] and monotone decreasing of tα−1Eα,α(−kλ1t

α), 0 <
α ≤ 1, to (5.8), we obtain

|cj(t)| ≤ tα−1Eα,α(−kλ1t
α)Eα

(
‖g‖∞tα

α

)
=: M(t), t > 0. (5.9)
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Thus, {cj(t)}j≥1 are uniformly bounded for any t > 0.
a) Since f ∈ Hm

0 (Ω) and ∂Ω ∈ Cm, then by Lemma 4.1 (b) the inequal-
ity (4.10) holds. Together with the uniform boundedness of {cj(t)}j≥1 for
t > 0 it yields ∞∑

j=1

f2
j c

2
j(t)λ

m
j < ∞.

In other words, the series (5.5) converges in Hm(Ω) norm, and u(., t) ∈
Hm(Ω) for any t > 0. On the other hand, when m ≥

[
d
2

]
+ 1, we have [10]

Hm(Ω) � Cm−[ d2 ]−1(Ω), therefore, u(., t) ⊂ Cm−[ d2 ]−1(Ω).
b) Combining Lemma 4.1 (a), formula (4.11), and noticing that cj(t) =

cj′(t) if λj = λj′ , we arrive at

∞∑
l=1

∣∣∣∣∣∣
∑
λj=μl

fjcj(t)ϕj(x)

∣∣∣∣∣∣ ≤ M(t)
∞∑
l=1

∣∣∣∣∣∣
∑
λj=μl

fjϕj(x)

∣∣∣∣∣∣ < ∞,

i.e., the absolute convergence of (5.5).
c) From (4.7), (4.8), and (5.9) we have

fjcj(t)ϕj(x) = O
(
j

d−1−2m
2d

)
, (5.10)

uniformly on K × [T1, T ], where K is any compact subset of Ω, and 0 <
T1 < T < ∞. Since m > 3d−1

2 , then d−1−2m
2d < −1, and therefore, the series

(5.5) converges uniformly on K × [T1, T ].
From (2.16) and (5.4) we have

|Cj(s)| ≤
M

|s|α , Re s > 0,

where M is independent of j. Hence, Hölder’s inequality and formula (2.5)
give [∫ ∞

0
e−xt|cj(t)|dt

]2
≤

∫ ∞

0
e−xtdt

∫ ∞

0
e−xt|cj(t)|2dt

=
1

2πx

∫ ∞

−∞

∣∣∣Cj

(x
2
+ iy

)∣∣∣2 dy ≤ M

2πx

∫ ∞

−∞

1∣∣x
2 + iy

∣∣2α dy

=
M22α−2Γ

(
α− 1

2

)
x2α

√
πΓ(α)

, x > 0.

Consequently,

∞∑
j=1

|fjϕj(x)|
∫ ∞

0
e−xt|cj(t)|dt ≤

1

xα

∞∑
j=1

O
(
j

d−1−2m
2d

)
< ∞, x > 0.

Thus, we can apply Lebesgue’s dominated convergence theorem to obtain
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(Lu(x, .)) (s) =
∞∑
j=1

fjϕj(x)(Lcj)(s), Re s > 0.

In other words,

U(x, s) =
∞∑
j=1

fjCj(s)ϕj(x) =
∞∑
j=1

O
(
j

d−1−2m
2d

)
O

(
1

sα

)
= O

(
1

sα

)
.

(5.11)
By Corollary 2.1 we have u(x, .) ∈ BSA(R+).

Now, m > 3d−1
2 >

[
d
2

]
+1, therefore, combining with Part (a) we arrive

at u ∈ C(Ω)×BSA(R+).
Theorem 5.3 is proved. �

Now we prove the main theorem of this section about the global exis-
tence of classical solutions of (5.1).

Theorem 5.4. Let g ∈ L1(R+)∪L∞(R+), f ∈ Hm
0 (Ω), ∂Ω ∈ Cm with

m > 3d+3
2 , 12 < α ≤ 1, and ‖g‖1 < kλ1. Then u(x, t), defined by (5.5), is

the unique classical solution of (5.1) in C2(Ω)×BSAα(R+).

By f(t) ∈ BSAα(R+) we mean both f(t),Dα
0+f(t) ∈ BSA(R+).

P r o o f. Since m−
[
d
2

]
− 1 > 3d+3

2 −
[
d
2

]
− 1 ≥ 2, by Theorem 5.3 (a)

we have u(., t) ∈ C2(Ω). Moreover, from (5.10) and d+3−2m
2d < −1,

∞∑
j=1

|fjcj(t)Δϕj(x)| =
∞∑
j=1

|λjfjcj(t)ϕj(x)| =
∞∑
j=1

O
(
j

d+3−2m
2d

)
< ∞,

uniformly on any compact subset K × [T1, T ]. Hence,

Δu(x, t) =

∞∑
j=1

fjcj(t)Δϕj(x) = −
∞∑
j=1

λjfjcj(t)ϕj(x). (5.12)

From (5.3) and (5.9) we get∣∣Dα
0+ cj(t)

∣∣ ≤ kλjM(t) +M(t)

∫ t

0
|g(t− s)|ds ≤ M(t)(kλj + ‖g‖1)

= O (λj) = O
(
j

2
d

)
, t ∈ [T1, T ].

Consequently,
∞∑
j=1

∣∣fj Dα
0+cj(t)ϕj(x)

∣∣ = ∞∑
j=1

O
(
j

d+3−2m
2d

)
< ∞,

uniformly on [T1, T ] for any 0 < T1 < T < ∞, and it yields
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Dα
0+u(x, t) =

∞∑
j=1

fj Dα
0+cj(t)ϕj(x). (5.13)

It is obvious that∫ t

0
g(t− τ)u(x, τ) dτ =

∞∑
j=1

fjϕj(x)

∫ t

0
g(t− τ) cj(τ) dτ. (5.14)

Combining (5.12), (5.13), (5.14), and (5.3), we arrive at

Dα
0+u(x, t)− kΔu(x, t) +

∫ t

0
g(t− τ)u(x, τ)dτ

=

∞∑
j=1

fjϕj(x)

[
Dα

0+cj(t) + kλjcj(t) +

∫ t

0
g(t− τ) cj(τ) dτ

]
= 0.

Since ϕj(x) = 0 on ∂Ω, then

u(x, t) =

∞∑
j=1

fj cj(t)ϕj(x) = 0, x ∈ ∂Ω.

Because I1−α
0+ cj(0) = 1, by Lemma 4.1 (a)

I1−α
0+ u(x, 0) =

∞∑
j=1

fj I
1−α
0+ cj(0)ϕj(x) =

∞∑
j=1

fjϕj(x) = f(x), x ∈ Ω.

(5.15)
Thus, u(x, t), defined by (5.5), is a classical solution of (5.1).

Taking into account (5.11), (3.11), and (5.15) we obtain(
LDα

0+u(x, t)
)
(s) = sα U(x, s)− I1−α

0+ u(x, 0)

= sα
∞∑
j=1

fjϕj(x)Cj(s)−
∞∑
j=1

fjϕj(x)

=

∞∑
j=1

fjϕj(x) (s
αCj(s)− 1) =

∞∑
j=1

fjϕj(x)
λjk +G(s)

sα + λjk +G(s)
.

Using (2.16) and (4.6) we get∣∣∣∣ λjk +G(s)

sα + λjk +G(s)

∣∣∣∣ ≤ Mλj

|s|α ≤ M j
2
d

|s|α .

Together with (4.7), (4.8), it yields
∞∑
j=1

∣∣∣∣fjϕj(x)
λjk +G(s)

sα + λjk +G(s)

∣∣∣∣ ≤ M

|s|α
∞∑
j=1

j
d+3−2m

2d ≤ M

|s|α ,

because d+3−2m
2d < −1. By Corollary 2.1 Dα

0+u(x, t) ∈ BSA(R+). Together
with u(x, t) ∈ BSA(R+) by Theorem 5.3 (c) it yields u(x, t) ∈ BSAα(R+)
for any x ∈ Ω. Thus, u ∈ C2(Ω)×BSAα(R+).
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Let u, ũ ∈ C2(Ω) × BSAα(R+) be two solutions of (5.1). Then w =
u− ũ ∈ C2(Ω)×BSAα(R+) is a solution of⎧⎨⎩ Dα

0+w(x, t) = kΔw(x, t)−
∫ t
0 g(t− τ)w(x, τ)dτ, (x, t) ∈ Ω× R+,

w(x, t) = 0, (x, t) ∈ ∂Ω× R+,
I1−α
0+ w(x, 0) = 0, x ∈ Ω.

(5.16)
Taking the Laplace transform of (5.16) we get the Dirichlet Schrödinger
problem (4.24), and the uniqueness of u follows. �

6. Inverse problems

We consider now an inverse problem of finding an initial function u(x, 0)
= f(x), so that we can reconstruct the order of fractional derivative α, the
constant k, and the memory function g uniquely from a single observation
of the solution {u(x, t)}t>0 of (4.1) at one arbitrary point x = b ∈ Ω. For
an one-dimensional case see [15].

The initial condition we choose is f(x) = ϕ1(x). Then the observation
u(b, t) is given by

u(b, t) = c1(t)ϕ1(b), c1(0) = 1, where b ∈ Ω.

Recall that ϕ1(b) 
= 0, as the principal eigenfunction of the Dirichlet Lapla-
cian never vanishes inside Ω, [10], and so the observation is not trivial.

Taking the Laplace transform of the observation u(b, t) with respect to
t, and recalling (4.4), we have

U(b, s) =
sα−1

sα + λ1k +G(s)
ϕ1(b).

Consequently,
ϕ1(b)

s U(b, s)
− 1 = s−α(λ1k +G(s)),

and

α = −
ln

(
ϕ1(b)

s U(b, s)
− 1

)
ln s

+
ln(λ1k +G(s))

ln s
.

Using the fact that G(s) → 0 as s → ∞, it yields

α = − lim
s→∞

ln

(
ϕ1(b)

s U(b, s)
− 1

)
ln s

. (6.1)

For k we have

k =
sα

λ1

[
ϕ1(b)

s U(b, s)
− 1

]
− G(s)

λ1
.
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Therefore, once α is known, k can be obtained as

k = lim
s→∞

sα

λ1

[
ϕ1(b)

s U(b, s)
− 1

]
, (6.2)

and G(s) as

G(s) = sα
[

ϕ1(b)

sU(b, s)
− 1

]
− kλ1, Re s > 0. (6.3)

The memory kernel g(t) can be recovered by taking the Laplace inverse
transform of G(s). Thus we have proved

Theorem 6.1. Let 1
2 < α ≤ 1, g ∈ L1(R+) with ‖g‖1 < λ1k. Taking

f(x) = ϕ1(x) then using one observation u(b, t) of (4.1) at a single point
b ∈ Ω we can reconstruct uniquely the fractional order α by (6.1), the
parameter k by (6.2), and the function g by taking the Laplace inverse of
G(s) from (6.3).

Assume now that the observation point b is on the boundary ∂Ω. Since

u(b, t) = 0 when b ∈ ∂Ω, so instead of u(b, t) we should observe ∂u(b,t)
∂ν , the

outer normal derivative of the solution u at the boundary point b. With
the initial condition u(x, 0) = ϕ1(x) the solution u(x, t) = c1(t)ϕ1(x) ∈
C1(Ω) for each t ≥ 0 when ∂Ω ∈ C[ d2 ]+2, [10]. Since ∂ϕ1(b)

∂ν 
= 0, [10], the

observation ∂u(b,t)
∂ν is meaningful.

Taking the Laplace transform of the observation ∂u(b,t)
∂ν with respect to

t, and recalling (4.4), we have
∂U(b, s)

∂ν
=

sα−1

sα + λ1k +G(s)

∂ϕ1(b)

∂ν
.

Consequently,

α = − lim
s→∞

ln

(
∂ϕ1(b)
∂ν

s ∂U(b,s)
∂ν

− 1

)
ln s

, (6.4)

k = lim
s→∞

sα

λ1

[
∂ϕ1(b)
∂ν

s ∂U(b,s)
∂ν

− 1

]
, (6.5)

and

G(s) = sα

[
∂ϕ1(b)
∂ν

s ∂U(b,s)
∂ν

− 1

]
− kλ1, Re s > 0. (6.6)

Theorem 6.2. Let 1
2 < α ≤ 1, ∂Ω ∈ C[ d2 ]+2, g ∈ L1(R+) with

‖g‖1 < λ1k. Taking f(x) = ϕ1(x), then using one observation ∂u(b,t)
∂ν of

(4.1) at a single point b ∈ ∂Ω we can reconstruct uniquely the fractional
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order α by (6.4), the parameter k by (6.5), and the function g by taking
the Laplace inverse of G(s) from (6.6).

Similarly, consider now an inverse problem of reconstructing the order of
fractional derivative α, the constant k, and the memory function g uniquely
from a single observation of the solution {u(x, t)}t>0 of (5.1) at one point
x = b ∈ Ω.

Choose the initial condition f(x) = ϕ1(x). Then the observation u(b, t)
is given by

u(b, t) = c1(t)ϕ1(b), I1−α
0+ c1(0) = 1, where b ∈ Ω.

Taking the Laplace transform of the observation u(b, t) with respect to t,
and recalling (5.4), we have

U(b, s) =
1

sα + λ1k +G(s)
ϕ1(b).

Consequently,

ϕ1(b)

U(b, s)
= sα + λ1k +G(s) ∼ sα, s → ∞,

and therefore

α = lim
s→∞

ln

(
ϕ1(b)

s U(b, s)

)
ln s

. (6.7)

Once α is known, k can be obtained as

k = lim
s→∞

1

λ1

[
ϕ1(b)

U(b, s)
− sα

]
, (6.8)

and G(s) as

G(s) =
ϕ1(b)

U(b, s)
− sα − kλ1, Re s > 0. (6.9)

The memory kernel g(t) can be recovered by taking the Laplace inverse
transform of G(s). Thus we have proved the following thorem.

Theorem 6.3. Let 1
2 < α ≤ 1, g ∈ L1(R+) with ‖g‖1 < λ1k. Taking

f(x) = ϕ1(x), then using one observation u(b, t) of (5.1) at a single point
b ∈ Ω we can reconstruct uniquely the fractional order α by (6.7), the
parameter k by (6.8), and the function g by taking the Laplace inverse of
G(s) from (6.9).

If, moreover, ∂Ω ∈ C[ d2 ]+2, and b ∈ ∂Ω, then from the observation
∂u(b,t)
∂ν of (5.1) one can find



FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS ...1327

α = lim
s→∞

ln

(
∂ϕ1(b)
∂ν

s ∂U(b,s)
∂ν

)
ln s

,

k = lim
s→∞

1

λ1

[
∂ϕ1(b)
∂ν

∂U(b,s)
∂ν

− sα

]
,

and

G(s) =
∂ϕ1(b)
∂ν

∂U(b,s)
∂ν

− sα − kλ1, Re s > 0, g(t) = (L−1G)(t).
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