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ON A QUANTITATIVE THEORY OF LIMITS:

ESTIMATING THE SPEED OF CONVERGENCE

Renato Spigler

Abstract

The classical “ε-δ” definition of limits is of little use to quantitative
purposes, as is needed, for instance, for computational and applied mathe-
matics. Things change whenever a realistic and computable estimate of the
function δ(ε) is available. This may be the case for Lipschitz continuous
and Hölder continuous functions, or more generally for functions admit-
ting of a modulus of continuity. This, provided that estimates for first
derivatives, fractional derivatives, or the modulus of continuity might be
obtained. Some examples are given.
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1. Introduction

Stan Ulam [12, 19] was used to say that being able to discriminate be-
tween the smaller and the larger is more important than being able to solve
differential equations. This is definitely true for the applied mathematician
and for all scientists who use mathematics quantitatively. The existing
classical theory of limits provides an example of the opposite case.

The basic definition of limits given in any textbook, is in fact the so-
called ε-δ definition. Confining our attention, for simplicity, to finite lim-
its of real-valued functions of one real variable, say f(x), one says that
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limx→x0 f(x) = λ, with λ and x0 finite, when, for every given ε > 0 a δ > 0
exists such that |f(x) − λ| < ε for all x such that |x − x0| < δ. A special
case occurs when f(x) is continuous at x0, since then λ = f(x0). In higher
dimensions, the absolute values can be replaced by norms.

From the definition follows that δ depends on ε, but no hints are given,
however, about the function δ(ε), in particular, no estimate of it are pro-
vided. This definition is clearly qualitative rather than quantitative in na-
ture.

From Numerical Analysis point of view, this occurrence is rather disap-
pointing. In fact, if one wants to compute approximately the limiting value,
λ, of f(x), and would like to know how close to x0 the values of x should
be to infer that f(x) falls near λ within a prescribed (small) tolerance ε,
no answer exists. An estimate, but a realistic and computable one, for the
function δ(ε), if not the explicit form of it, is what is needed.

Similar observations could be made concerning the asymptotic (Lan-
dau) symbols, o and ∼, used in relations like f(x) = o(g(x)) and f(x) ∼
g(x), since they are formulated in terms of limits, and also about the O-
symbol (which does not involve a limit). One says that f(x) = O(g(x)) in
some neighborhood of a certain given x0 if an estimate like |f(x)| ≤ K |g(x)|
holds in that neighborhood, but the value of K is not specified. This does
not imply the existence of a limit, but, clearly, if one intends to approxi-
mate the value of f(x), the value of K definitely matters. In many cases,
one would like to know the smallest constant K implied by the O-symbol,
[15, 18].

2. Modulus of continuity, Lipschitz, Hölder

In this section, we consider some possible answers to the issue raised in
Introduction.

2.1. The modulus of continuity. The so called “modulus of continuity”
[4] might be sufficiently general to the purpose of assessing the relation
between increments of functions and of their argument. The local modulus
of continuity of the function f(x) at the given point t, is defined as

ωf (δ; t) := sup
x:|x−t|≤δ

|f(x)− f(t)|. (2.1)

The (global) modulus of continuity of f(x), continuous in a set K, is then
defined as

ωf (δ) := sup
t

ωf (δ; t) = sup
x,t:|x−t|≤δ

|f(x)− f(t)|. (2.2)

Clearly, |f(x)− f(t)| ≤ ωf (x− t) in this case.
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Some useful properties of the (global) modulus of continuity, well known
in the literature and that can be easily checked, are the following:

• ωf (δ) is a nondecreasing function for δ > 0; (hence if 0 < δ1 < δ2, then
ωf (δ1) ≤ ωf(δ2); and more, ωf (δ1 + δ2) ≤ ωf (δ1) + ωf (δ2).

• limδ→0+ ωf (δ) = 0 if and only if f is uniformly continuous;

• for every integer n ≥ 1, we have ωf (nδ) ≤ nωf (δ);

• for every λ > 0, we have ωf (λδ) ≤ (1 + λ)ωf (δ).

More generally, a monotone nondecreasing function ω(δ), defined and
continuous for δ ≥ 0, is [called] a modulus of continuity if ω(0) = 0 and
ω(δ1+ δ2) ≤ ω(δ1)+ω(δ2) for every δ1, δ2 ≥ 0 (note that ω(δ) ≥ 0 for every
δ ≥ 0).

Moduli of continuity may be also measured in other norms, leading,
e.g., to the notion of “integral modulus of continuity”, but we will not
discuss these cases here.

It is advisable to confine to closed (or compact) sets for the functions
for which a modulus of continuity is wanted. In fact, on unbounded sets,
e.g., the function f(x) := sin(x2) has a “modulus of continuity” ωf (δ) = 2,
for every value of δ.

2.2. The special case of Lipschitz continuity. In order to gain some
insight on the issue we are considering, one needs to know more about the
function f(x). Suppose for instance that, instead of being merely contin-
uous at the point x0, the function f(x) is Lipschitz continuous in a neigh-
borhood of x0, with known or well-estimated constants. This means that
an estimate like

|f(x)− f(x0)| < L |x− x0| (2.3)

holds, for all x in some neighborhood of x0. Clearly, such a relation implies
continuity at x0, while differentiability implies the Lipschitz continuity.
Whenever f(x) is differentiable in some compact set, say K, e.g., a closed
interval, containing x0, f(x) turns out to be uniformly Lipschitz for all
x ∈ K.

In such occurrences, from |x − x0| < δ the precise estimate |f(x) −
f(x0)| < Lδ follows, and hence the explicit function δ(ε) := ε/L.

It is noteworthy that, also on compact sets, nice continuous functions
may be not Lipschitz continuous; see for instance f(x) :=

√
x on [0, 1].

The function f(x) := x sin(1/x) for x ∈ [0, 1] \ {0}, f(0) := 0, is
Lipschitz but not differentiable at x = 0.

If f(x) is Lipschitz continuous, then it has the modulus of continuity
ωf (δ) = C δ, for some C > 0.
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2.3. The special case of Hölder continuity. If two constants A and α,
with A > 0 and 0 < α < 1, exist, such that the function f(x) defined, e.g.,
in some interval [a, b], obeys

|f(x)− f(x0)| < A |x− x0|α, (2.4)

being x0 ∈ [a, b], for all x in some neighborhood of x0, the function is
termed locally Hölder continuous at x0. It a relation like (2.4) holds for all
x and x0 in [a, b], then f(x) is termed uniformly Hölder continuous in [a, b].

What is the relation between Hölder continuity, Lipschitz continuity,
and differentiability? Differentiability implies Lipschitz that implies Hölder,
but not conversely: for instance, the function f(x) := xα for x > 0, with
0 < α < 1, is Hölder but not Lipschitz.

For f Hölder continuous, sometimes denoted by Lipα with 0 < α < 1,
ωf (δ) = C δα, for some C > 0.

What is needed now, in practice, is a (realistic and computable) bound
for the Caputo (or the Riemann-Liouville) fractional derivative.

2.4. The special case of convex functions. Confining to real valued
functions of one real variable defined on an interval, we recall that f(x) is
convex if and only if the ratio

R(x1, x2) :=
f(x1)− f(x2)

x1 − x2
is a monotone nondecreasing function of x1 for every fixed x2 (x1 and x2 can
be interchanged). From this it follows that every convex function defined
on the open interval I is continuous on I and is Lipschitz-continuous on
every closed subinterval of I. We have the following results:

• If f(x) is convex in some domain D with nonempty interior, and m ≤
f(x) ≤ M in the ball B(x; r0), then it is locally Lipschitz there, and

|f(x1)− f(x2)| ≤ M −m

r − r0
|x1 − x2| (2.5)

in the closed ball B(x; r0) included in Do, with any r < r0, [5].

• If f(x) is convex in some domain, then a uniform Lipschitz estimate like
f(x1)− f(x2)| ≤ L |x1 − x2| holds with some L, for all x belonging to any
closed and bounded set, K (i.e., compact set, since we are in R), provided
that K is contained in the relative interior of the domain of f . For instance,
the previous result fails for:

(1) f(x) := 1/x in the domain D := (0,+∞), with K := (0, 1], since K
is not closed;

(2) f(x) := x2 in the domain D := R, with K := R, since K is not
bounded;

(3) f(x) := −√
x in the domain D := [0,+∞), with K := [0, 1], since

K is not contained in the interior of D,
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and in fact these functions are not Lipschitz, see [11].

3. Making useful the previous relations

In practice, it is important to be able to estimate the constants inherent
to the relations above, and moreover, to be practically useful, such estimates
should be both, realistic and easily computable.

3.1. Estimating the modulus of continuity. In [6], the following result,
may be one of the the most useful one, was established.

A) If f ∈ C0([a, b]) is nonconcave and monotone on [a, b], then, for any
δ ∈ (0, b− a), we have that:

• ω(f, δ) = f(b)− f(b− δ) if f is nondecreasing on [a, b];
• ω(f, δ) = f(a)− f(a+ δ) if f is nonincreasing on [a, b].

B) If f ∈ C0([a, b]) is nonconcave on [a, b], then

ω(f, δ) = max{|f(a+ δ)− f(a)|, |f(b− δ)− f(b)|},
for δ sufficiently small.

The functions in the following examples are clearly not Hölder contin-
uous at x = 0, but have a modulus of continuity.

Example 3.1. Consider for instance the continuous, nonincreasing,
nonconcave (actually decreasing and convex) function

f(x) :=

{ 1
log x , 0 < x ≤ e−2,

0, x = 0,
(3.1)

where log denotes the natural logarithm, hence, by (B), we infer that it has
the modulus of continuity

ωf(δ) = f(0)− f(δ) = − 1

log δ
, 0 < δ < e−2. (3.2)

Note that this function is neither Lipschitz nor Hölder continuous in the
interval we considered. In [6, p. 200] the moduli of continuity for a few
nonconcave or nonconvex elementary functions are also given.

Example 3.2. The function

f(x) :=

{
1

log1/2( 1
x)
, 0 < x ≤ e−2,

0, x = 0,
(3.3)

is continuous, nondecreasing, nonconcave (actually increasing and convex),
and hence, by (A), it has the modulus of continuity

ωf (δ) = 2−1/2 − log−1/2((e−2 − δ)−1). (3.4)
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Another result established in [6] reads:

C) Any function, f(x), continuous and nonconcave on [a, b] has the modulus
of continuity

ωf (δ) = max{f(a)− f(a+ δ), f(b) − f(b− δ)}, for 0 < δ < ϕ(m), (3.5)

where ϕ(x) := min{b− x, x− a}, for x ∈ (a, b) and m is the point of global
minimum of f(x) in [a, b].

Note that not only the definition (3.5) holds for “δ sufficiently small”,
but its smallness is estimated precisely by the quantity ϕ(m).

Thus we can take ε = ωf (δ), and hence, being ω(δ) monotone for all δ ≥
0 (by definition), we obtain the function, of ε, δ = ω−1

f (ε). Unfortunately,

generally speaking, estimates for the moduli of continuity are not always
available, as it would be desirable.

3.2. Estimating the Lipschitz constant. Recall that ωf (δ) = C δ. For
differentiable functions, one can use (first) derivatives to estimate Lipschitz
constants, L (also called modulus of uniform continuity). In fact, if f(x) is
defined in some neighborhood of x0 and differentiable at x0, a relation like

|f(x)− f(x0)| < L |x− x0| (3.6)

holds with L = |f ′(x0)| + δ, for some δ > 0. This is called local Lipschitz
continuity. If f(x) is differentiable in some interval, (a, b), then the estimate
(3.6) holds for all x, x0 belonging to any compact subset K of (a, b), and
L = maxx∈K |f ′(x)| (uniform Lipschitz continuity).

3.3. Estimating the Hölder constants. Similarly, fractional derivatives
can be used to estimate Hölder constants.

Let us give here the definitions of the Riemann-Liouville, Caputo, and
Grünwald-Letnikov fractional derivatives [8]:

• ([8, Definition 2]). If 0 < α < 1 and x0 ∈ R, the Riemann-Liouville
fractional derivative of f(x) ∈ L1([x0, x1]), of order α and with starting
point x0, at the point x, is defined as

RLDα
x0
f(x) :=

1

Γ(1− α)

d

dx

∫ x

x0

f(t)

(x− t)α
dt, x0 < x0 < x− 1. (3.7)

• ([8, Definition 3]). If 0 < α < 1 and x0 ∈ R, the Caputo fractional
derivative of f(x) ∈ AC([x0, x1]), of order α and with starting point x0, at
the point x, is defined as

CDα
x0
f(x) :=

1

Γ(1− α)

∫ x

x0

f ′(t)
(x− t)α

dt, x > x0. (3.8)

Here AC(I) denotes the set of the functions absolute continuous in I.
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• ([8, Definition 5]). If α > 0 and x0 ∈ R, the (truncated) Grünwald-
Letnikov fractional derivative of f(x), of order α and with starting point
x0, at the point x, is defined as

GLDα
x0
f(x) := lim

h→0+

1

hα

N∑
j=0

(−1)j
(
α

j

)
f(x− jh), x > x0, N :=

⌈
x− x0

h

⌉
.

(3.9)

Sometimes the point x0 above is taken at −∞. It can be shown that
letting x0 → −∞, the Grünwald-Letnikov derivative becomes [8, Defini-
tion 4]

GLDα
−∞f(x) :=GL Dαf(x) := lim

h→0+

1

hα

∞∑
j=0

(−1)j
(
α

j

)
f(x− jh), x ∈ R.

(3.10)

One can show that for smooth functions, more precisely for f ∈ C1([x0, x1]),
it turns out that

GLDα
x0
f(x) =RL Dα

x0
f(x) (3.11)

for any x ∈ (x0, x1], [8, eq. 17], [2, Theorem 2.25].

All these derivatives are linear but nonlocal operators. The GL deriva-
tives may be convenient for numerical work.

It is also useful to observe that truncating f(x) at x = x0, so to define
the truncated function fR(x) := f(x) for x < x0 and fR(x) = 0 for x ≥ x0
leads to the result

GLDαfR(x) =GL Dα
x0
f(x) =RL Dα

x0
f(x) (3.12)

for all α > 0 and f ∈ C1([x0, x1]), and for each x ∈ (x0, x1], [8, Proposi-
tion 4], while for the function fC(x) defined as equal to f(x) for x < x0
and as its Taylor polynomial, centered at x = x0 and such that fC(x) will
be a C1 smooth function over all R, we obtain [8, Proposition 5]

GLDαfC(x) =C Dα
x0
f(x). (3.13)

Roughly speaking, RL, C, and GL fractional derivative of f(x) coincide
for every smooth function, f(x).

Then, recall the following results:

• ([10, § 5.7, p. 591, Theorem 20], [16]) If 0 < α < β ≤ 1 and
f ∈ Lipβ, then the Riemann-Liouville derivative RLDαf(x) exists
and is continuous, actually belongs to Lipβ−α.

Conversely, any function, f , possessing, e.g., a fractional Caputo
derivative of order α, with 0 < α < 1, is α-Hölder continuous [7].
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Actually, if f is in L1(a, b) and its Caputo derivative of order α is
bounded, then f is α-Hölder continuous and the estimate

|f(x)− f(y)| ≤ M |x− y|α, ∀x, y ∈ (a, b), (3.14)

M :=
1

Γ(α+ 1)
sup
x

|CDαf(x)| (3.15)

holds. This result can be derived, e.g., from [7, Proposition 1],
where however there is an extra factor 2.

• ([3, Corollary 2.4, p. 308], [14, Theorem 1, p. 288]) If 0 < α ≤ 1
and f(x) ∈ C0([a, b]) is such that CDγf(x) ∈ C0([a, b]), the there
exists some ξ ∈ (a, b) such that

f(b)− f(a) =
1

Γ(α)
CDα

af(ξ) (b− a), (3.16)

where Γ(α) is the Euler gamma function, that is, a mean-value
theorem exists for the Caputo derivative. Note that, being 0 < α ≤
1, we have 1/Γ(α) ≤ 1, hence, a fortiori (3.16) holds omitting the
factor 1/Γ(α).

Similarly to the case of Lipschitz continuous functions, in practice what
is now needed is a (realistic and computable) bound for the fractional deriv-
ative derivative above. This can be obtained, apart from some elementary
instances, by the so-called Grünwald-Letnikov fractional derivative, since
this can approximate Riemann-Liouville and Caputo derivatives by means
of finite differences [2, 8].

Explicit expressions exist for the RL, C, and GL fractional derivatives
of several simple functions. For instance,

RLDα
0x

β =C Dα
0x

β =
Γ(β + 1)

β − α+ 1
xβ−α, (3.17)

for x > 0 and any 0 < β �= α− 1;
GLDαeωx = ωαeωx, (3.18)

for ω > 0 and x ∈ R;
GLDα sin(ωx) = ωα sin

(
ωx+ α

π

2

)
, (3.19)

for α > 0 and x ∈ R.

Other fractional derivatives (RL, C, or GL) of exponentials and sinu-
soidal functions can be expressed in terms of the two-parameter Mittag-
Leffler function, that is the entire function

Eα,β(x) :=

∞∑
k=0

xk

Γ(αk + β)
, (3.20)

with α > 0, for which estimates, asymptotic estimates, and numerical
method for evaluating it do exist; see [8] or references therein.
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4. Some applications

A case when the Lipschitz continuity is seen to be extremely useful can
be found in the celebrated 1922 Banach contraction lemma (or Banach fixed
point theorem). Here, the Lipschitz continuity, with a constant 0 ≤ L < 1,
plays a fundamental role: not only existence and uniqueness of fixed points
for the equation x = f(x) can be established, but the rate of convergence
to the limit of a suitable approximating sequence, and even a criterion to
stop the convergence process when a prescribed accuracy is attained, are
provided.

This lemma states the following. Assume that M is a nonempty closed
subspace of the metric space X, which is complete with respect to the
distance d. Let the operator T map M into itself and be L-contractive, i.e.,
there exists a constant L, with 0 < L < 1, such that d(Tx, Ty) ≤ Ld(x, y)
for every x, y ∈ M. Then, the map T has a unique fixed point in M , i.e.,
the equation

x = Tx

has a unique solution, say x∗, x∗ ∈ M, and the sequence {xn}∞0 of succes-
sive approximations, iteratively defined by

xn+1 = Txn, n = 0, 1, 2, . . . ,

started at x0 ∈ M, converges to x∗ as n → ∞ for any choice of x0 (in
M). In addition, the following “error estimates” can be established for
n = 0, 1, 2, . . .:

d(xn, x
∗) ≤ Ln(1− L)−1d(x0, x1) (a priori estimate), (4.1)

d(xn+1, x
∗) ≤ L(1− L)−1d(xn+1, xn) (a posteriori). (4.2)

Moreover, the estimate for the “speed of convergence”

d(xn+1, x
∗) ≤ Ldxn, x

∗) (4.3)

can also be proved, for n = 0, 1, 2, . . ..

In many practical cases, the aforementioned metric space, X, will be a
normed space.

It is remarkable here that a precise estimate of the convergence rate,
not just the fact that xn converges to x∗, is provided. For instance, from
(4.1) one can infer how large n should be in order to get d(xn, x

∗) < ε. In
fact, one should choose

n >
log

(
1−L

d(x0,x1)
ε
)

logL
=

log 1
ε + log

(
d(x0,x1)
1−L

)
log 1

L

. (4.4)

Note that here 0 < L < 1, and ε > 0 can be assumed to be small (< 1), so
that both logL and log ε are negative numbers.
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In one dimension, in practice, what is needed is a (realistic and com-
putable) bound for the derivative.

The Nekhoroshev theorem.

We encounter an important example where the function δ(ε) is available
in the framework of the so-called KAM (Kolmogorov-Arnold-Moser) theory,
and more precisely in the Nekhoroshev and Nekhoroshev-like theorems.
These concern what is called “exponential stability” of dynamical systems
[13, 9]. The typical formulation reads

|I(t)− I(0)| ≤ ε ∀t, t ≤ TNekh :=
T

εa
exp

( c

εb

)
, (4.5)

for some real positive constants a, b, c, T, ε0, the relation holding for every
0 < ε < ε0.

While the practical usefulness of this kind of results rest on the violation
of the estimate for I(t)−I(0), namely in the fact that after times longer than
the Nekhoroshev time TNekh there is no guarantee that I(t) will remain
closer to I(0) (and in fact this typically will be the case), we consider
(4.5) as the formulation of a finite limit, where the rather special function

δ(ε) := (T/εa) ec/ε
b
is given.

In some practical applications, e.g., to the stability of the solar system,
the parameter ε is positive but usually estimated as extremely small, thus
letting the solar system to be stable for very long Nekhoroshev times, TNekh.
A time interval longer than the (estimated) life of the sun itself makes it
safe the life on the Earth as long as the Earth will be able to take advantage
from its star. In this respect, to have a good estimate of the “threshold”
parameter ε0 is quite important.

Recently, Nekhoroshev-type theorems have been established also for
some infinite-dimensional dynamical systems, namely systems governed by
nonlinear wave equations and by other kinds of nonlinear partial differential
equations [1].

Also in the asymptotic theory for nonlinear ODEs there are estimates
valid on “expanding intervals”, i.e., of the form |yn(t) − y(t)| < ε for 0 <
t ≤ T/ε, that is a kind of algebraic (rather than exponential) stability; see
e.g., [17].

5. Results and discussion

In this paper, we considered the possibility to formulate in a quantita-
tive form the classical ε-δ definition of limits for a given function, f(x), in
order to obtain a quantitative estimate of the speed of convergence. This
amounts to being able to estimate the function δ(ε). Functions f(x) ad-
mitting of a modulus of continuity, for which a realistic and computable
estimates exist, for instance, fit this requirement.
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6. Conclusions

Assessing the function δ(ε) inherent to the classical definition of lim-
its is useful in many practical applications of computational and applied
mathematics. In the special cases of convex, differentiable, or fractionally
differentiable functions, this can be done exploiting (often) computable es-
timates.
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