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Abstract

In this paper, we address the one-parameter families of the fractional
integrals and derivatives defined on a finite interval. First we remind the
reader of the known fact that under some reasonable conditions, there ex-
ists precisely one unique family of the fractional integrals, namely, the well-
known Riemann-Liouville fractional integrals. As to the fractional deriva-
tives, their natural definition follows from the fundamental theorem of the
Fractional Calculus, i.e., they are introduced as the left-inverse operators
to the Riemann-Liouville fractional integrals. Until now, three families
of such derivatives were suggested in the literature: the Riemann-Liouville
fractional derivatives, the Caputo fractional derivatives, and the Hilfer frac-
tional derivatives. We clarify the interconnections between these derivatives
on different spaces of functions and provide some of their properties includ-
ing the formulas for their projectors and the Laplace transforms. However,
it turns out that there exist infinitely many other families of the fractional
derivatives that are the left-inverse operators to the Riemann-Liouville frac-
tional integrals. In this paper, we focus on an important class of these
fractional derivatives and discuss some of their properties.
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1. Introduction

Within the last few years, a lot of efforts of the Fractional Calculus (FC)
community was put into clarifying the question what are the fractional
integrals and derivatives and what are they not ([8, 11, 14, 16, 17, 30,
31, 35, 36, 37]). These discussions mainly concerned the “new fractional
integrals and derivatives” ([8, 11, 14, 31, 35, 36, 37]), the integro-differential
operators of convolution type with some general kernels ([8, 14, 22, 23, 35,
39, 40]), and the abstract axioms of FC ([17, 30, 33]).

In this framework, the “classical” definitions of the fractional integrals
and derivatives as the Riemann-Liouville integral and derivative ([24, 34]),
the Caputo derivative ([3, 7, 24]), the generalized Riemann-Liouville deriv-
ative or the Hilfer derivative ([15, 18, 24]), etc., are usually considered to
be postulated. In this paper, we are going to take a closer and critical look
at the “right” definitions of the one-parameter families of the fractional
integrals and derivatives defined on a finite interval.

In the 2nd section, we reproduce a result derived in [4] more than forty
years ago regarding the “right” one-parameter families of the fractional in-
tegrals defined on a finite interval. It turns out that under some reasonable
conditions, the only family of the fractional integrals on a finite interval are
the Riemann-Liouville fractional integrals.

The question regarding the “right” fractional derivatives is more del-
icate and is addressed in the 3rd section. In calculus, the integer order
derivatives are usually defined via the limits of the difference quotients. The
definite integral is introduced independently through the Riemann sums or
in the Lebesgue sense. The fundamental theorem of calculus establishes
a connection between these two independently defined objects and says
that the first order derivative is a left-inverse operator to the definite in-
tegral with the variable upper limit of integration on a suitable space of
functions. Should we follow this approach to introduce the “right” frac-
tional derivative, we naturally arrive at the Grünwald-Letnikov definition
([7, 13, 26, 34]). This definition is useful and important, say, for numeri-
cal calculation of the fractional derivatives. However, it is unpractical for
analytical investigations and usually replaced by other definitions that are
equivalent to the Grünwald-Letnikov definition on some suitable spaces of
functions. Say, for the functions from Cn[a, b] with n− 1 < α ≤ n, n ∈ N,
the Grünwald-Letnikov fractional derivative of order α coincides with the
Riemann-Liouville fractional derivative of order α ([7]). That’s why in anal-
ysis of the operator-theoretic properties of the fractional derivatives, in the
fractional differential equations, etc., the Grünwald-Letnikov derivative is
often replaced by the Riemann-Liouville derivative.
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Another - and in fact the standard - approach for introducing the frac-
tional derivatives is to assume that they are connected to the corresponding
fractional integrals by a fractional analogy of the fundamental theorem of
calculus, i.e., to define them as the left-inverse operators to the fractional
integrals. As already said, the only “right” fractional integrals on a finite
interval are the Riemann-Liouville integrals Iα, α ≥ 0 and thus in the
framework of this approach, the Abel integral equation plays a decisive
role. It was known already to Abel ([1, 2]), that - under some natural con-
ditions - the Abel integral equation has a unique solution and this solution
is given by the formula that is presently known as the Riemann-Liouville
fractional derivative (see [34] for a detailed derivation of the solution for-
mula). Thus, on the function space Iα(L1(a, b)), there is only one “right”
one-parameter family of the fractional derivatives, namely, the Riemann-
Liouville fractional derivatives.

One of the most important and powerful ideas in mathematics in gen-
eral and in FC in particular is extension of validity domains for formulas,
statements, functions, operators, etc. Following this strategy, the basic def-
inition domain Iα(L1(a, b)) of the Riemann-Liouville fractional derivative
(as solution formula to the Abel integral equation) is extended to larger
spaces of functions. Say, in the case 0 < α < 1, to the space of functions,
whose Riemann-Liouville integrals of order 1−α are absolutely continuous
functions on the interval [a, b]. This extended operator is also called the
Riemann-Liouville fractional derivative even if - strictly speaking - any op-
erator is uniquely defined not only by its values, but also by its definition
domain. The extended Riemann-Liouville fractional derivative of order α
keeps the property to be a left-inverse operator to the Riemann-Liouville
fractional integral on even larger spaces of functions, e.g., on L1(a, b) ([34]).

At the first look, the considerations described above let no place for
other fractional derivatives on a finite interval, say, for the Caputo or the
Hilfer derivatives. However, it is known that these derivatives are also the
left-inverse operators to the Riemann-Liouville fractional integrals on some
suitable spaces of functions ([7, 18]) and thus they belong to the class of
the fractional derivatives in the sense of the fundamental theorem of FC.
As we will see in Section 3, the construction of these derivatives (espe-
cially of their definition domains) is not as straightforward as the one of
the Riemann-Liouville fractional derivative. Namely, instead of extension
one has to start with a contraction of the basic space Iα(L1(a, b)) (very
unusual in mathematics!) and to consider its subspaces, where the first
order derivative commutes with the corresponding Riemann-Liouville frac-
tional integrals. Only after this, in the second step, the definition domains
of the Caputo or the Hilfer fractional derivatives are extended from these
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subspaces to the larger spaces of functions. It is important to note that
on their extended definition domains these derivatives do not coincide any-
more with the Riemann-Liouville fractional derivative. In particular, their
kernels are different and this means that one has to provide different initial
conditions while considering the initial-value problems for the fractional
differential equations with these fractional derivatives.

The construction of the Hilfer fractional derivative can be extended to
the finite chains of compositions of the first order derivatives and some
suitable Riemann-Liouville fractional integrals. We call these operators
the n-th level fractional derivatives (the Riemann-Liouville, the Caputo,
and the Hilfer derivatives can be interpreted as the 1st level fractional
derivatives). It turns out that the n-th level fractional derivatives are the
left-inverse operators to the Riemann-Liouville fractional integrals on some
suitable spaces of functions and thus satisfy the fundamental theorem of
FC. As a result, there exist infinitely many different “right” one-parameter
families of the fractional derivatives defined on a finite interval. All of them
are the left-inverse operators to the Riemann-Liouville fractional integrals
on some suitable spaces of functions.

Finally, in Section 4, we discuss some important properties of the frac-
tional derivatives mentioned above. In particular, for the 2nd level frac-
tional derivative, we derive an explicit formula for its projector that de-
termines the number and the form of the initial conditions for the Cauchy
problems for the fractional differential equations with this fractional deriv-
ative. It is worth mentioning that the kernel dimension of the n-th level
fractional derivative of order α, 0 < α < 1 can be equal to or less than
n and thus, in the general case, up to n initial conditions are required to
guarantee uniqueness of solutions to the Cauchy problems for the fractional
differential equations with this derivative. Then we shortly discuss defini-
tion and properties of the 2nd level fractional derivatives on the positive
real semi-axis and derive a formula for its Laplace transform.

2. Fractional integrals on a finite interval

We start this section with formulation of a conjecture that was posed
by J.S. Lew during the first FC conference held in New Haven, USA in
1974 ([32]).

Let L be either L1(0, 1) or L2(0, 1). The formula for the Riemann-
Liouville fractional integrals (x ∈ [0, 1])

(Iα f)(x) =

{
1

Γ(α)

∫ x
0 (x− t)α−1 f(t) dt, α > 0,

f(x), α = 0,
(2.1)

yields a family Iα, α ≥ 0 of the bounded linear operators on L satisfying
the properties:
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L1) (I0 f)(x) = f(x), f ∈ L (1st interpolation condition),

L2) (I1 f)(x) =
∫ x
0 f(t) dt, f ∈ L (2nd interpolation condition),

L3) (Iα Iβ f)(x) = (Iα+β f)(x), α, β ≥ 0, f ∈ L (index law),

L4) Iα is continuous in α in some operator topology (continuity),

L5) f ∈ L and f(x) ≥ 0 a.e. ⇒ (Iα f)(x) ≥ 0 a.e. for all α ≥ 0 (non-
negativity).

Lew conjectured that the properties L1)-L5) uniquely determine the
family of the Riemann-Liouville fractional integrals defined by (2.1).

Two years later, in 1976, the conjecture by Lew was confirmed by
Cartwright and McMullen in [4] ([4] was published in 1978, but submit-
ted in 1976). Moreover, they proved the uniqueness of the family of the
Riemann-Liouville fractional integrals under weaker conditions than those
formulated by Lew and for larger spaces of functions. Their main result is
as follows:

Theorem 2.1 ([4]). Let E be the space Lp(0, 1), 1 ≤ p < +∞, or
C[0, 1]. Then there is precisely one family Iα, α > 0 of operators on E
satisfying the following conditions:

CM1) (I1 f)(x) =
∫ x
0 f(t) dt, f ∈ E (interpolation condition),

CM2) (Iα Iβ f)(x) = (Iα+β f)(x), α, β > 0, f ∈ E (index law),

CM3) α → Iα is a continuous map of (0, +∞) into L(E) for some Hausdorff
topology on L(E), weaker than the norm topology (continuity),
CM4) f ∈ E and f(x) ≥ 0 (a.e. for E = Lp(0, 1)) ⇒ (Iα f)(x) ≥ 0 (a.e.
for E = Lp(0, 1)) for all α > 0 (non-negativity).

That family is given by the Riemann-Liouville formula (2.1) with α > 0.

Please note that the result by Cartwright and McMullen does not in-
volve the case α = 0 and the 1st interpolation condition L1) from the con-
jecture by Lew. However, the family of the Riemann-Liouville fractional
integrals defined for α > 0 can be uniquely extended to the family defined
for α ≥ 0 by setting I0 to be the identity operator. This is justified by
the following statement (Theorem 2.6 in [34]): The family of the Riemann-
Liouville fractional integrals Iα, α ≥ 0 given by (2.1) forms a semigroup in
Lp(0, 1), p ≥ 1, which is strongly continuous for all α ≥ 0, i.e., the relation

lim
α→α0

‖Iαf − Iα0f‖Lp(0,1) = 0 (2.2)

holds valid for any α0, 0 ≤ α0 < +∞ and for any f ∈ Lp(0, 1). Evidently,
this extended family of operators satisfies the properties L1)-L5) for all
α ≥ 0.
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From the present viewpoint ([17]), the conditions CM1)-CM4) are very
natural and in fact desirable for any definition of the fractional integrals de-
fined on a finite interval. As proved in [4], they are also sufficient for unique-
ness of the family of the Riemann-Liouville fractional integrals. Thus, in
this sense, the Riemann-Liouville fractional integrals are the only “right”
one-parameter fractional integrals defined on a finite interval.

In the further discussions, we need the well-known formula for the
Riemann-Liouville fractional integral of a power law function:

(Iα tβ)(x) =
Γ(β + 1)

Γ(α+ β + 1)
xα+β , α ≥ 0, β > −1. (2.3)

For a very detailed discussion of other properties of the Riemann-Liouville
fractional integrals, we refer to [34].

In what follows, without loss of generality, we restrict ourselves to the
operators defined on the interval [0, 1] (the case of the interval [a, b] can be
reduced to the case of the interval [0, 1] by a linear variables substitution).

In the rest of this section, we recall some basic facts regarding the Abel
integral equation

(Iα φ)(x) =
1

Γ(α)

∫ x

0
(x− t)α−1 φ(t) dt = f(x), 0 < α < 1, x ∈ [0, 1].

(2.4)
In [1, 2], Abel solved this equation by applying the operator I1−α to both
sides of the equation (2.4) and by using the semigroup property of the
Riemann-Liouville fractional integrals (in modern terminology):

(I1−α Iα φ)(x) = (I1 φ)(x) =

∫ x

0
φ(t) dt = (I1−α f)(x).

To determine the unknown function φ, he differentiated the last formula
and applied the fundamental theorem of calculus (x ∈ [0, 1]):

φ(x) =
d

dx
(I1−α f)(x) =

d

dx

1

Γ(1− α)

∫ x

0
(x− t)−α f(t) dt, 0 < α < 1.

(2.5)
In the next section, we will employ the following result regarding solv-

ability of the Abel integral equation in L1(0, 1):

Theorem 2.2 ([34]). The Abel integral equation (2.4) is solvable in
L1(0, 1) if and only if

I1−α f ∈ AC([0, 1]) and (I1−α f)(0) = 0. (2.6)

If these conditions are satisfied, the Abel integral equation has a unique
solution in L1(0, 1) given by the formula (2.5).
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The notation AC([0, 1]) stands for the space of functions that are ab-
solutely continuous on the interval [0, 1]. This space can be characterized
as follows:

f ∈ AC([0, 1]) ⇔ ∃φ ∈ L1(0, 1) : f(x) = f(0) +

∫ x

0
φ(t) dt, x ∈ [0, 1].

(2.7)

Remark 2.1. Based on the representation (2.7), a (weak) derivative
of a function f ∈ AC([0, 1]) can be defined:

f(x) = f(0) +

∫ x

0
φ(t) dt, x ∈ [0, 1] ⇒ df

dx
:= φ ∈ L1(0, 1). (2.8)

In the further discussions, we interpret the first order derivative of the
absolutely continuous functions in the sense of the formula (2.8).

3. Fractional derivatives on a finite interval

As discussed in Introduction, the most standard and natural way for
defining the fractional derivatives is by means of their connection to the
fractional integrals. It turns out that the definitions and the properties
of the fractional derivatives essentially depend on the spaces of functions,
where they are defined (an operator is a triple (A,X, Y ) consisting of the
domain X, the range Y , and the correspondence A : X → Y ). In this
section, we discuss both the known fractional derivatives like the Riemann-
Liouville, the Caputo, and the Hilfer fractional derivatives and the new
fractional derivatives that we call the n-th level fractional derivatives. First
we introduce a general notion of a one-parameter family of the fractional
derivatives defined on a finite interval.

Definition 3.1. Let Iα, α ≥ 0 be the family of the fractional
Riemann-Liouville integrals defined by (2.1). A one-parameter family Dα,
α ≥ 0 of the linear operators is called the fractional derivatives if and only
if it satisfies the Fundamental Theorem of Fractional Calculus formulated
below.

Theorem 3.1 (Fundamental Theorem of FC). For the fractional deriva-
tives Dα, α ≥ 0 and the Riemann-Liouville fractional integrals Iα, α ≥ 0,
the relation

(Dα Iα φ)(x) = φ(x), x ∈ [0, 1] (3.1)

holds true on appropriate nontrivial spaces of functions.
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In fact, the Fundamental Theorem of FC is a part of Definition 3.1,
i.e., a linear operator is called a fractional derivative if and only if it is
a left-inverse operator to the Riemann-Liouville fractional integral on a
certain space of functions (compare to the desiderata (c) from [17]). It
turns out that there exist infinitely many different families of the fractional
derivatives in the sense of Definition 3.1. In the rest of this section, we
discuss some known and new families of the fractional derivatives on the
interval [0, 1].

Remark 3.1. In calculus, the formula of type (3.1) with α = 1 is usu-
ally called the 1st fundamental theorem of calculus. The 2nd fundamental
theorem of calculus states that

∫ x
0 f ′(t) dt = f(x)− f(0). We address the

FC analogy of the 2nd fundamental theorem in Section 4.

Remark 3.2. It is worth mentioning that the formula (3.1) and the
relation (I0 f)(x) = f(x) uniquely define the fractional derivative of order
α = 0 as the identity operator: (D0 f)(x) = f(x). Therefore, in what
follows, we mainly restrict our attention to the case α > 0.

Remark 3.3. The Riemann-Liouville fractional integral Iα is injective
on L1(0, 1), i.e., its kernel contains only the null-function f(x) = 0 a.e. on
[0, 1] (Lemma 2.5 in [34]). Evidently, this statement holds true for any
linear operator that possesses a linear left-inverse operator. For Iα, it
follows from the realization (3.12) of the Fundamental Theorem of FC for
the Riemann-Liouville fractional derivatives.

Remark 3.4. For the sake of formulations simplicity, in what follows,
we restrict ourselves to the function space L1(0, 1) and its subspaces (a
similar theory can be developed for, say, Lp(0, 1), 1 < p < +∞ and its
subspaces) and to the orders α, 0 < α ≤ 1 of the fractional derivatives (the
case n− 1 < α ≤ n ∈ N can be covered by analogy to the known theory of
the Riemann-Liouville fractional derivatives of order α, α ∈ R+).

3.1. The Riemann-Liouville fractional derivative. In this subsection,
some known results (see, e.g., [34]) are presented in a slightly different form
suitable for our further constructions.

We start with the formula (3.1) and rewrite it in equivalent form of two
equations:

(Iα φ)(x) = f(x), (Dα f)(x) = φ(x), x ∈ [0, 1]. (3.2)
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The second of equations from (3.2) defines the fractional derivative Dα of
a function f as the solution φ of the Abel integral equation with the right-
hand side f . Now we recall Theorem 2.2 and reformulate it as follows:

Theorem 3.2. On the space of functions X0 = Iα(L1(0, 1)), the
unique fractional derivative Dα of order α, 0 < α < 1 is given by the
formula

(Dα f)(x) =
d

dx
(I1−α f)(x) =

d

dx

1

Γ(1− α)

∫ x

0
(x− t)−α f(t) dt. (3.3)

To justify Theorem 3.2, we just mention that for any function f ∈ X0

the conditions (2.6) of Theorem 2.2 are satisfied. This follows from the
representation

(I1−α f)(x) = (I1−α Iα φ)(x) = (I1φ)(x), φ ∈ L1(0, 1) (3.4)

and the formula (2.7). Then the Abel integral equation (the first formula
in (3.2)) has a unique solution given by the formula (3.3).

The first part of the formula (3.3) can be used to define the fractional
derivative Dα of the order α = 1 as the first order derivative:

(D1 f)(x) =
d

dx
(I0 f)(x) =

df

dx
. (3.5)

In what follows, we refer to the operator Dα = d
dx I

1−α : X0 → L1(0, 1)
with 0 < α ≤ 1 as to the basic Riemann-Liouville fractional derivative of
order α (the term “basic” refers to the domain X0 of Dα).

Remark 3.5. The basic Riemann-Liouville fractional derivative Dα :
X0 → L1(0, 1) is a one-to-one mapping from X0 onto L1(0, 1). For 0 <
α < 1, this follows from Theorem 2.2, representation (3.2), and Remark
3.3, whereas for α = 1 this statement can be easily directly verified.

Now let us continue with defining the Riemann-Liouville fractional de-
rivative on the interval [0, 1]. Evidently, the formula (3.3) makes sense for
a space of functions larger than X0, namely, for the space

X1
RL = {f : I1−α f ∈ AC([0, 1])}. (3.6)

Indeed, for f ∈ X1
RL, the representation

(I1−αf)(x) = (I1−αf)(0) +

∫ x

0
φ(t) dt, x ∈ [0, 1], φ ∈ L1(0, 1) (3.7)

holds true (see the formula (2.7)) and thus

(Dα f)(x) =
d

dx
(I1−αf)(x) = φ(x), x ∈ [0, 1] (3.8)
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according to Remark 2.1.

Definition 3.2. The extension of the basic Riemann-Liouville frac-
tional derivative Dα : X0 → L1(0, 1) to the domain X1

RL is called the
Riemann-Liouville fractional derivative of order α, 0 < α ≤ 1:

(Dα
RL f)(x) =

d

dx
(I1−αf)(x), Dα

RL : X1
RL → L1(0, 1). (3.9)

In contrast to the basic Riemann-Liouville fractional derivative, the
Riemann-Liouville fractional derivative is not injective and its kernel is a
one-dimensional vector space:

Ker(Dα
RL) =

{
c1 x

α−1, c1 ∈ R
}
. (3.10)

This immediately follows from the formula (2.3) and Remark 3.3. It is
worth mentioning that the basis function f1(x) = xα−1 does not belong to
the space X0 because (I1−αtα−1)(x) ≡ Γ(α)∀x ∈ [0, 1] that contradicts
to the condition (I1−αf)(0) = 0 that is fulfilled for any f ∈ X0 (see the
formula (3.4)). Otherwise, we have the inclusions

X0 ⊂ X1
RL, AC([0, 1]) ⊂ X1

RL. (3.11)

The first inclusion follows from the formula (3.4) and a proof of the sec-
ond inclusion can be found in [34] (Lemma 2.1). For other properties of
the Riemann-Liouville fractional derivative introduced above we refer the
readers to [34].

Here, we just mention that for the Riemann-Liouville fractional deriv-
ative, the Fundamental Theorem of FC (Theorem 3.1) is evidently valid
on even larger space of functions X2

RL = L1(0, 1), X1
RL ⊂ X2

RL, i.e., the
formula

(Dα
RL Iα f)(x) = f(x), x ∈ [0, 1], f ∈ X2

RL (3.12)

holds true.

3.2. The Caputo fractional derivative. As stated in Theorem 3.2, the
basic Riemann-Liouville fractional derivative is the unique one-parameter
fractional derivative on the function space X0 = Iα(L1(0, 1)). Its extension
to the larger space X1

RL that leads to the Riemann-Liouville fractional de-
rivative is also unique. Because in mathematics one usually works with the
maximal domains and extensions of formulas valid on these domains, from
the mathematical viewpoint, the Riemann-Liouville fractional derivatives
can be considered as the only “right” one-parameter family of the fractional
derivatives defined on a finite interval. Indeed, in the classical mathemati-
cal literature (see [34] and many hundreds references therein), mainly this
derivative and some of its modifications have been considered on a finite
interval. Where is then the place for the Caputo fractional derivative?
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The trick with its definition is that first one needs to contract the
basic space X0 and to introduce a space of functions, where the first order
derivative commutes with the Riemann-Liouville fractional integral of order
1− α (0 < α ≤ 1):

X0
C =

{
f ∈ X0 :

d

dx
I1−α f = I1−α df

dx

}
. (3.13)

In particular, the space X0
C contains the functions f ∈ AC([0, 1]) that

satisfy the condition f(0) = 0. Indeed, according to (2.7), these functions
can be represented in the form

f(x) =

∫ x

0
φ(t) dt, x ∈ [0, 1], φ ∈ L1(0, 1).

Then we have the following chain of relations (0 ≤ α):

(Iα
df

dx
)(x) = (Iα

d

dx
I1 φ)(x) = (Iα φ)(x)

=
d

dx
(I1 Iα φ)(x) =

d

dx
(Iα I1 φ)(x) =

d

dx
(Iα f)(x).

The basic Caputo fractional derivative of order α, 0 < α ≤ 1, is intro-
duced as follows:

(Dα
C f)(x) = (I1−α df

dx
)(x), Dα

C : X0
C → L1(0, 1). (3.14)

Of course, the basic Caputo fractional derivative is identical with the
basic Riemann-Liouville fractional derivative restricted to the domain X0

C
and thus it is nothing new. However, we get a new operator by extension
of its domain! The operator (3.14) is well defined, say, on the space X1

C =
AC([0, 1]).

Definition 3.3. The extension of the basic Caputo fractional deriva-
tive Dα

C : X0
C → L1(0, 1) to the domain X1

C is called the Caputo fractional
derivative of order α, 0 < α ≤ 1:

(Dα
C f)(x) = (I1−α d

dx
f)(x), Dα

C : X1
C → L1(0, 1). (3.15)

Evidently, the kernel of the Caputo fractional derivative coincides with
the kernel of the first order derivative:

Ker(Dα
C) = {c1, c1 ∈ R} . (3.16)

For the functions from X1
C , there is a simple connection between the

Riemann-Liouville and the Caputo fractional derivatives (Lemma 2.2 in
[34]):

(Dα
C f)(x) = (Dα

RL f)(x)− f(0)

Γ(1− α)
x−α, x > 0, f ∈ X1

C . (3.17)
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As in the case of the Riemann-Liouville fractional derivative, the Funda-
mental Theorem of FC (Theorem 3.1) for the Caputo fractional derivative
is valid on even larger space of functions

XFT = {f : Iαf ∈ AC([0, 1]) and (Iαf)(0) = 0} , (3.18)

i.e., the formula

(Dα
C Iα f)(x) = f(x), x ∈ [0, 1], f ∈ XFT (3.19)

holds true. Let us prove it. According to (2.7), for a function f from XFT ,
the representation

(Iα f)(x) = (I1 φ)(x), x ∈ [0, 1] (3.20)

holds true with a function φ ∈ L1(0, 1). We then get the following chain of
equalities:

(Dα
C Iα f)(x) = (I1−α d

dx
Iα f)(x) = (I1−α d

dx
I1 φ)(x) = (I1−α φ)(x).

Because for φ ∈ L1(0, 1), the fractional integral I1−α φ also belongs to
L1(0, 1) (Theorem 2.1 in [7]), we can apply the operator Iα to the last
formula:

(Iα (Dα
C Iα f))(x) = (Iα I1−α φ)(x) = (I1 φ)(x) = (Iα f)(x).

The Riemann-Liouville fractional integral is injective (Remark 3.3) and
thus the formula (3.19) follows from the last relation.

It is worth mentioning that the space XFT defined by (3.18) can be also
characterized as follows (Theorem 2.3 in [34]):

XFT = I1−α(L1(0, 1)) (∀f ∈ XFT ∃φ ∈ L1(0, 1) : f(x) = (I1−α φ)(x)).
(3.21)

For other properties of the Caputo fractional derivative we refer the
readers to [7].

3.3. The Hilfer fractional derivative. The third known family of the
fractional derivatives defined on a finite interval that fulfills the Funda-
mental Theorem of FC is the family of the generalized Riemann-Liouville
fractional derivatives. They were introduced by Hilfer in [15] and are nowa-
days referred to as the Hilfer fractional derivatives.

The schema for construction of the Hilfer fractional derivative of order
α, 0 < α ≤ 1 on a finite interval is the same as the one employed for
the Caputo fractional derivative. We start by defining a suitable basic
space of functions, where the first order derivative commutes with a certain
Riemann-Liouville fractional integral. Let a parameter γ1 ∈ R satisfy the
conditions

0 ≤ γ1 ≤ 1− α. (3.22)
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The space of functions for the basic Hilfer fractional derivative is defined
as follows:

X0
H =

{
f ∈ X0 :

d

dx
Iγ1 f = Iγ1

df

dx

}
. (3.23)

As in the case of the space X0
C for the Caputo fractional derivative, the

space X0
H contains in particular the functions f ∈ AC([0, 1]) that satisfy

the condition f(0) = 0.
The basic Hilfer fractional derivative of order α, 0 < α ≤ 1 and type

γ1, 0 ≤ γ1 ≤ 1− α is introduced as follows:

(Dα,γ1
H f)(x) = (Iγ1

d

dx
I1−α−γ1 f)(x), Dα,γ1

H : X0
H → L1(0, 1). (3.24)

On the space X0
H , the basic Hilfer fractional derivative is identical to

the basic Riemann-Liouville fractional derivative restricted to the domain
X0

H :

(Dα,γ1
H f)(x) = (Iγ1

d

dx
I1−α−γ1 f)(x) =

d

dx
(Iγ1 I1−α−γ1 f)(x)

=
d

dx
(I1−α f)(x) = (Dα

RL f)(x), f ∈ X0
H .

However, the domain of the basic Hilfer fractional derivative can be ex-
tended to the larger space of functions:

X1
H =

{
f : I1−α−γ1 f ∈ AC([0, 1])

}
. (3.25)

Definition 3.4. The extension of the basic Hilfer fractional derivative
Dα

H : X0
H → L1(0, 1) to the domain X1

H is called the Hilfer fractional
derivative of order α, 0 < α ≤ 1 and type γ1, 0 ≤ γ1 ≤ 1− α:

(Dα,γ1
H f)(x) = (Iγ1

d

dx
I1−α−γ1 f)(x), Dα,γ1

H : X1
H → L1(0, 1). (3.26)

Remark 3.6. In [15] and subsequent publications [16, 18, 24], another
parametrization of the Hilfer fractional derivative has been employed:

(Dα,β
H f)(x) = (Iβ(1−α) d

dx
I(1−α)(1−β) f)(x), 0 < α ≤ 1, 0 ≤ β ≤ 1.

Setting γ1 = β(1−α) in this formula, we get the formula (3.26). In this pa-
per, we prefer using the parametrization (3.26) because it admits a straight-
forward generalization as we will see in the subsequent subsections.
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The Fundamental Theorem of FC (Theorem 3.1) for the Hilfer fractional
derivative is valid on the space XFT defined by (3.18):

(Dα,γ1
H Iα f)(x) = f(x), x ∈ [0, 1], f ∈ XFT , 0 < α ≤ 1, 0 ≤ γ1 ≤ 1− α.

(3.27)
Its proof follows the steps of the proof of the formula (3.19) for the

Caputo fractional derivative. We start with the representation (3.20) and
substitute it into the left-hand side of the formula (3.27):

(Dα,γ1
H Iα f)(x) = (Iγ1

d

dx
I1−α−γ1 Iα f)(x) = (Iγ1

d

dx
I1−α−γ1 I1 φ)(x)

= (Iγ1
d

dx
I1 I1−α−γ1 φ)(x) = (Iγ1 I1−α−γ1 φ)(x) = (I1−α φ)(x).

The rest of the proof is exactly the same as the proof of the formula (3.19)
for the Caputo fractional derivative we presented in the previous subsection.

Remark 3.7. For each type γ1, 0 ≤ γ1 ≤ 1− α, the Hilfer derivatives
Dα,γ1

H of orders α, 0 < α ≤ 1 form the one-parameter families of the
fractional derivatives in the sense of Definition 3.1 (see the formula (3.27)).
For γ1 = 0, this family coincides with the Riemann-Liouville fractional
derivatives, while for γ1 = 1− α we get the Caputo fractional derivatives.

The kernel of the Hilfer fractional derivative can be easily calculated
by employing the formula (2.3) ([18]):

Ker(Dα,γ1
H ) =

{
c1 x

α+γ1−1, c1 ∈ R
}
. (3.28)

In agreement with Remark (3.6), for γ1 = 0, it coincides with the kernel
(3.10) of the Riemann-Liouville fractional derivative and for γ1 = 1 − α
with the kernel (3.16) of the Caputo fractional derivative.

For other properties of the Hilfer fractional derivative we refer the read-
ers to [15, 18].

3.4. The 2nd level fractional derivative. In turns out that the proce-
dure from the previous subsection can be employed to introduce some new
families of the one-parameter fractional derivatives in the sense of Defini-
tion 3.1. In this subsection, a family of the derivatives that we call the
2nd level fractional derivatives of order α, 0 < α ≤ 1 and type (γ1, γ2) is
discussed.

First we define a suitable basic space of functions. Let the parameters
γ1, γ2 ∈ R satisfy the conditions

0 ≤ γ1, 0 ≤ γ2, α+ γ1 ≤ 1, α+ γ1 + γ2 ≤ 2. (3.29)

In this subsection, we always suppose that these conditions are fulfilled.
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The space of functions for the basic 2nd level fractional derivative is
defined as follows:

X0
2L =

{
f ∈ X0 :

d

dx
Iγ1 f = Iγ1

df

dx
and

d

dx
Iγ1+γ2 f = Iγ1+γ2 df

dx

}
.

(3.30)
The space X0

2L contains in particular the functions f ∈ AC([0, 1]) that
satisfy the condition f(0) = 0. As already mentioned, for such functions,
the first order derivative commutes with the Riemann-Liouville integral of
any order α, 0 ≤ α.

The basic 2nd level fractional derivative of order α, 0 < α ≤ 1 and
type (γ1, γ2) is first introduced on the space of functions X0

2L as follows:

(D
α,(γ1,γ2)
2L f)(x) = (Iγ1

d

dx
Iγ2

d

dx
I2−α−γ1−γ2 f)(x). (3.31)

It maps the spaceX0
2L into L1(0, 1) and coincides with the basic Riemann-

Liouville fractional derivative restricted to the domain X0
2L:

(D
α,(γ1,γ2)
2L f)(x) = (Iγ1

d

dx
Iγ2

d

dx
I2−α−γ1−γ2 f)(x)

=
d

dx
(Iγ1+γ2 d

dx
I2−α−γ1−γ2 f)(x) =

d

dx

d

dx
(Iγ1+γ2 I2−α−γ1−γ2 f)(x)

=
d

dx

d

dx
(I1 I1−α f)(x) =

d

dx
(I1−α f)(x) = (Dα

RL f)(x), f ∈ X0
2L.

However, the domain of the basic 2nd level fractional derivative can be
extended to the larger space of functions:

X1
2L = {f : I2−α−γ1−γ2f, Iγ2

d

dx
I2−α−γ1−γ2f ∈ AC([0, 1])}. (3.32)

Definition 3.5. The extension of the basic 2nd level fractional deriv-
ative D

α,(γ1,γ2)
2L : X0

2L → L1(0, 1) to the domain X1
2L is called the 2nd level

fractional derivative of order α, 0 < α ≤ 1 and type (γ1, γ2):

(D
α,(γ1,γ2)
2L f)(x) = (Iγ1

d

dx
Iγ2

d

dx
I2−α−γ1−γ2 f)(x), (3.33)

D
α,(γ1,γ2)
2L : X1

2L → L1(0, 1).

Remark 3.8. The operator (3.33) is called the 2nd level fractional
derivative because its formula contains two pairs of compositions of the
first order derivatives and the Riemann-Liouville fractional integrals. In
this sense, the Riemann-Liouville, the Caputo, and the Hilfer fractional
derivatives are the 1st level derivatives.
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To justify the notation “fractional derivative”, we formulate and prove
the Fundamental Theorem of FC (Theorem 3.1) for the 2nd level fractional
derivative.

Theorem 3.3. On the space XFT , the 2nd level fractional derivative
is a left-inverse operator to the Riemann-Lioville fractional integral , i.e.,
the relation

(D
α,(γ1,γ2)
2L Iα f)(x) = f(x), x ∈ [0, 1] (3.34)

holds true for any f from the space XFT defined by (3.18).

The proof of this theorem follows the lines of the one of the Funda-
mental Theorem for the Hilfer fractional derivative (formula (3.27)). First
we substitute the representation (3.20) of a function from XFT into the
left-hand side of the formula (3.34) and get the following chain of relations:

(D
α,(γ1,γ2)
2L Iα f)(x) = (Iγ1

d

dx
Iγ2

d

dx
I2−α−γ1−γ2 Iα f)(x)

= (Iγ1
d

dx
Iγ2

d

dx
I2−α−γ1−γ2 I1 φ)(x) = (Iγ1

d

dx
Iγ2 I2−α−γ1−γ2 φ)(x)

= (Iγ1
d

dx
I1 I1−α−γ1 φ)(x) = (Iγ1 I1−α−γ1 φ)(x) = (I1−α φ)(x).

The rest of the proof is exactly the same as the proof of the formula (3.27)
for the Hilfer fractional derivative that we presented in the previous sub-
section.

Thus, for each type (γ1, γ2) that satisfies the conditions (3.29), the 2nd

level factional derivatives D
α,(γ1,γ2)
2L of orders α, 0 < α ≤ 1 form the one-

parameter families of the fractional derivatives in the sense of Definition
3.1.

Remark 3.9. For 1 ≤ γ2 or α+γ1+γ2 ≤ 1, the 2nd level fractional de-
rivative is reduced to the 1st level Hilfer fractional derivative, respectively:

D
α,(γ1,γ2)
2L = Iγ1

d

dx
I1 Iγ2−1 d

dx
I2−α−γ1−γ2

= Iγ1+γ2−1 d

dx
I1−α−(γ1+γ2−1) = Dα,γ1+γ2−1

H ,

D
α,(γ1,γ2)
2L = Iγ1

d

dx
Iγ2

d

dx
I1 I1−α−γ1−γ2 = Iγ1

d

dx
Iγ2I1−α−γ1−γ2

= Iγ1
d

dx
I1−α−γ1 = Dα,γ1

H .
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In the rest of this subsection we determine the kernel of the 2nd level
fractional derivative of order α, 0 < α ≤ 1 and type (γ1, γ2) by applying
the formula (2.3). In accordance with Remark 3.9, we restrict ourselves to
the case of the truly 2nd level fractional derivative, i.e., to the case when
the conditions

γ2 < 1, 1 < α+ γ1 + γ2 (3.35)

hold true. These conditions ensure that the kernel is two-dimensional:

Ker(D
α,(γ1,γ2)
2L ) =

{
c1x

α+γ1−1 + c2x
α+γ1+γ2−2, c1, c2 ∈ R

}
. (3.36)

The exponents σ1 = α+γ1−1 and σ2 = α+γ1+γ2−2 of the basis functions
of the kernel fulfill the inequalities −1 < σk ≤ 0, k = 1, 2 because of the
conditions (3.29) and (3.35).

As an example, let us consider the case of the 2nd level fractional deriv-
ative of order α, 0 < α < 1 with γ1 = γ2 = 1−α. The conditions (3.29) and
(3.35) are evidently satisfied and the fractional derivative takes the form

D
α,(1−α,1−α)
2L = I1−α d

dx
I1−α d

dx
Iα, 0 < α < 1.

Its kernel

Ker(D
α,(1−α,1−α)
2L ) =

{
c1 + c2x

−α, c1, c2 ∈ R
}

can be interpreted as a direct sum of the kernels of the Caputo fractional
derivative of order α and the Riemann-Liouville fractional derivative of
order 1− α.

3.5. The nth level fractional derivative. In this subsection, the con-
struction employed in the previous subsection is extended to the case of
n compositions of the first order derivatives and appropriate Riemann-
Liouville fractional integrals. As a result, we arrive at infinitely many
different families of the one-parameter fractional derivatives that we call
the nth level fractional derivatives of order α, 0 < α ≤ 1 and type
γ = (γ1, γ2, . . . , γn).

In what follows, we suppose that the parameters γ1, γ2, . . . , γn ∈ R

satisfy the following conditions:

0 ≤ γk and α+ sk ≤ k, k = 1, 2, . . . , n, (3.37)

where, for convenience, we used the notation

sk :=

k∑
i=1

γi, k = 1, 2, . . . , n. (3.38)

A suitable space of functions for the basic nth level fractional derivative
is defined as follows:

X0
nL =

{
f ∈ X0 :

d

dx
Isk f = Isk

df

dx
, k = 1, 2, . . . , n

}
. (3.39)
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The space X0
nL contains in particular the functions f ∈ AC([0, 1]) that

satisfy the condition f(0) = 0 because for these functions, the first order
derivative commutes with the Riemann-Liouville integral of any order α,
0 ≤ α.

On the space of functions X0
nL, the basic nth level fractional derivative

of order α, 0 < α ≤ 1 and type γ = (γ1, γ2, . . . , γn) is introduced as follows:

(D
α,(γ)
nL f)(x) =

(
n∏

k=1

(Iγk
d

dx
)

)
(In−α−sn f)(x). (3.40)

For n = 2, (3.40) is reduced to the 2nd level fractional derivative (3.31).

The operator D
α,(γ)
nL maps the space X0

nL into L1(0, 1) and is identical with
the basic Riemann-Liouville fractional derivative restricted to the domain
X0

nL:

(D
α,(γ)
nL f)(x) =

(
n∏

k=1

(Iγk
d

dx
)

)
(In−α−sn f)(x)

=
d

dx
Iγ1

(
n∏

k=2

(Iγk
d

dx
)

)
(In−α−sn f)(x)

=
d

dx

d

dx
Iγ1+γ2

(
n∏

k=3

(Iγk
d

dx
)

)
(In−α−sn f)(x)

= · · · =
(

d

dx

)n

(Isn In−α−sn f)(x) =

(
d

dx

)n

(In−α f)(x)

=
d

dx
(I1−α f)(x) = (Dα

RL f)(x), f ∈ X0
nL.

As in the case of the 2nd level fractional derivative, the domain of the
basic nth level fractional derivative can be extended to a larger space of
functions (an empty product is interpreted as the identity operator):

X1
nL = {f :

(
n∏

k=i

(Iγk
d

dx
)

)
In−α−sn f ∈ AC([0, 1]), i = 2, . . . n+ 1}.

(3.41)

Definition 3.6. The extension of the basic nth level fractional deriv-
ative D

α,(γ)
nL : X0

nL → L1(0, 1) to the domain X1
nL is called the nth level

fractional derivative of order α, 0 < α ≤ 1 and type γ = (γ1, γ2, . . . , γn):

(D
α,(γ)
nL f)(x) =

(
n∏

k=1

(Iγk
d

dx
)

)
(In−α−sn f)(x), D

α,(γ)
nL : X1

nL → L1(0, 1).

(3.42)
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Now we proceed with the Fundamental Theorem of FC (Theorem 3.1)
for the nth level fractional derivative.

Theorem 3.4. On the space XFT defined by (3.18), the nth level frac-
tional derivative is a left-inverse operator to the Riemann-Lioville fractional
integral, i.e., the relation

(D
α,(γ)
nL Iα f)(x) = f(x), x ∈ [0, 1] (3.43)

holds true for any f from the space XFT .

The proof of this theorem repeats the arguments presented in the pre-
vious subsection for the 2nd level fractional derivative. Here we restrict
ourselves to the only place in the proof that looks slightly different com-
pared to the proof of the formula (3.34). Substitution of the representation
(3.20) into the left-hand side of the formula (3.43) leads to the following
chain of relations:

(D
α,(γ)
nL Iα f)(x) =

((
n∏

k=1

(Iγk
d

dx
)

)
In−α−sn Iα f

)
(x)

=

((
n∏

k=1

(Iγk
d

dx
)

)
In−α−sn I1 φ

)
(x)=

((
n−1∏
k=1

(Iγk
d

dx
)

)
Iγn In−α−sn φ

)
(x)

=

((
n−1∏
k=1

(Iγk
d

dx
)

)
In−1−α−sn−1 I1 φ

)
(x) = · · · = (Iγ1

d

dx
I1−α−s1 I1 φ)(x)

= (Iγ1 I1−α−γ1 φ)(x) = (I1−α φ)(x).

The rest of the proof is exactly the same as the proof of the formula (3.34)
for the 2nd level fractional derivative that we presented in the previous
subsection.

Thus, for each type γ = (γ1, γ2, . . . , γn) satisfying the conditions (3.37),

the nth level fractional derivatives D
α,(γ)
nL of orders α, 0 < α ≤ 1 form the

one-parameter families of the fractional derivatives in the sense of Definition
3.1.

Remark 3.10. In [10], uniqueness and existence of solutions to some
Cauchy problems for the fractional differential equations with the operators

similar to the nth level fractional derivatives D
α,(γ)
nL (in other notations

and with other restrictions on the parameters) were considered. However,
no connection to the Riemann-Liouville fractional integrals in form of the
Fundamental Theorem 3.4 was discussed there.
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Remark 3.11. As in the case of the 2nd level fractional derivative
(see Remark (3.8)), the nth level fractional derivatives are reduced to the
fractional derivatives of the level less than n if some of the parameters
γk, k = 2, . . . , n are equal to or grater than one or if the inequality α+sn ≤
n− 1 holds valid.

In the rest of this subsection, we consider the truly nth level fractional
derivatives and suppose that the conditions

n− 1 < α+ sn and γk < 1, k = 2, . . . , n (3.44)

are satisfied (see Remark 3.11).
To determine the kernel of the nth level fractional derivative, we again

apply the formula (2.3). Under the conditions (3.44), the kernel is n-
dimensional:

Ker(D
α,(γ)
nL ) =

{
n∑

k=1

ckx
α+sk−k, ck ∈ R

}
. (3.45)

The exponents σk = α+sk−k of the basis functions of the kernel fulfill the
inequalities −1 < σk ≤ 0, k = 1, 2, . . . , n because of the conditions (3.37)
and (3.44).

In the case, one or several of the conditions from (3.44) do not hold
true, the nth level fractional derivatives degenerate to the derivatives of
the level less than n and thus their kernels have dimensions less than n.

As an example, we consider the case of the truly nth level fractional
derivative of order α, 0 < α ≤ 1/(n − 1) and type (γ1 . . . , γn) with γk =
1− α, k = 1, 2, . . . , n. In this case, the fractional derivative takes the form

D
α,(1−α)
nL = I1−α d

dx
. . . I1−α d

dx
I(n−1)α.

For 0 < α ≤ 1/(n − 1), the conditions (3.37) and (3.44) are satisfied and
the kernel of this fractional derivative is n-dimensional:

Ker(D
α,(1−α)
2L ) =

{
n∑

k=1

ckx
−α(k−1), ck ∈ R

}
.

It can be interpreted as a direct sum of the kernels of the Caputo fractional
derivative of order α and the Riemann-Liouville fractional derivatives of
orders 1− α k, k = 1, . . . , n− 1.

4. Some properties of the fractional integrals and derivatives

In this section, we mainly address the 2nd level fractional derivatives
defined by (3.33) and their connection to the Riemann-Liouville fractional
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integral. On the one hand, this derivative is a new object that general-
izes the Hilfer fractional derivative that in its turn contains the Riemann-
Liouville and the Caputo fractional derivatives as its particular cases. On
the other hand, as we have seen in the previous section, the results obtained
for the 2nd level fractional derivative can be easily extended to the case of
the nth level fractional derivatives.

4.1. Projector of the 2nd level fractional derivative. The projector
Pα
2L of the 2nd level fractional derivative (3.33) is defined as follows:

(Pα
2L f)(x) = (Id− IαD

α,(γ1,γ2)
2L f)(x). (4.1)

An explicit formula for the projector is central for one of the most im-
portant methods of analysis of the fractional differential equations, namely,
for reduction of the fractional differential equations to certain integral equa-
tions of Volterra type. The coefficients in the representation formulas for
the projectors determine the form of the “natural” initial conditions re-
quired for the corresponding fractional differential equations.

Theorem 4.1. Under the conditions (3.35), the projector (4.1) of the
2nd level fractional derivative (3.33) for the functions from the space X1

2L
defined by (3.32) has the following form:

(Pα
2L f)(x) = p1 x

α+γ1−1 + p2 x
α+γ1+γ2−2, (4.2)

p1 =
1

Γ(α+ γ1)

(
Iγ2

d

dx
I2−α−γ1−γ2 f

)
(0), (4.3)

p2 =
1

Γ(α+ γ1 + γ2 − 1)

(
I2−α−γ1−γ2 f

)
(0). (4.4)

We prove the theorem by applying a method that works also in the case
of the nth level fractional derivative. Let us introduce an auxiliary function

g(x) := (IαD
α,(γ1,γ2)
2L f)(x). (4.5)

For f ∈ X1
2L, the derivative D

α,(γ1,γ2)
2L f is well defined and belongs to

L1(0, 1) (see subsection 3.4) and thus the function g is from the space

Iα(L1(0, 1)). Then we can act on g with the operator D
α,(γ1,γ2)
2L and apply

the Fundamental Theorem of FC for the 2nd level fractional derivative:

(D
α,(γ1,γ2)
2L g)(x) = (D

α,(γ1,γ2)
2L IαD

α,(γ1,γ2)
2L f)(x) = (D

α,(γ1,γ2)
2L f)(x).

Thus the function g − f belongs to the kernel of D
α,(γ1,γ2)
2L given by the

formula (3.36) and we arrive at the representation

g(x) = f(x) + c1x
α+γ1−1 + c2x

α+γ1+γ2−2. (4.6)
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To determine the coefficients c1, c2, we first apply the operator I1−α−γ1 to
the function g:

(I1−α−γ1 g)(x) = (I1−α−γ1IαD
α,(γ1,γ2)
2L f)(x)

=

(
I1−α−γ1IαIγ1

d

dx
Iγ2

d

dx
I2−α−γ1−γ2 f

)
(x)

=

(
I1

d

dx
Iγ2

d

dx
I2−α−γ1−γ2 f

)
(x)

=

(
Iγ2

d

dx
I2−α−γ1−γ2 f

)
(x)−

(
Iγ2

d

dx
I2−α−γ1−γ2 f

)
(0).

Then we apply the operator I1−γ2 to the result of the previous evaluation:

(I1−γ2 I1−α−γ1 g)(x) =

(
I1

d

dx
I2−α−γ1−γ2 f

)
(x)

−(I1−γ2

(
Iγ2

d

dx
I2−α−γ1−γ2 f

)
(0))(x)

=
(
I2−α−γ1−γ2 f

)
(x)− (

I2−α−γ1−γ2 f
)
(0)

− 1

Γ(2− γ2)

(
Iγ2

d

dx
I2−α−γ1−γ2 f

)
(0)x1−γ2 .

On the other hand, we can apply the operator I1−α−γ1 I1−γ2 = I2−α−γ1−γ2

to the representation (4.6) and get the relation

(I2−α−γ1−γ2 g)(x) = (I2−α−γ1−γ2 f)(x)

+ c1
Γ(α+ γ1)

Γ(2− γ2)
x1−γ2 + c2

Γ(α+ γ1 + γ2 − 1)

Γ(1)
x0.

Comparing the coefficients by the same powers of x in the last two formulas,
we arrive at the values of the coefficients c1 and c2:

c1 = − 1

Γ(α+ γ1)

(
Iγ2

d

dx
I2−α−γ1−γ2 f

)
(0),

c2 = − 1

Γ(α+ γ1 + γ2 − 1)

(
I2−α−γ1−γ2 f

)
(0).

The statement of the theorem follows now from these formulas and the
representation (4.6).

Remark 4.1. Theorem 4.1 can be rewritten in form of the 2nd Fun-
damental Theorem of FC for the 2nd level fractional derivative:

(IαD
α,(γ1,γ2)
2L f)(x) = f(x)− p1 x

α+γ1−1 − p2 x
α+γ1+γ2−2, (4.7)

where the coefficients p1 and p2 are defined as in (4.3) and (4.4), respec-
tively.
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Remark 4.2. As mentioned in the previous section, if one of the
conditions (3.35) does not hold true, the 2nd level fractional derivatives
are reduced to the Hilfer fractional derivatives and their kernels become
one-dimensional. In these cases, one of the coefficients c1 or c2 in the
representation (4.6) and thus one of the coefficients p1 or p2 in the formula
(4.2) for the projector Pα

2L is equal to zero.

Say, for γ2 = 1 or α + γ1 + γ2 ≤ 1, the 2nd level fractional derivative

D
α,(γ1,γ2)
2L is reduced to the Hilfer fractional derivative Dα,γ1

H (see Remark
3.8). As a result, the projector Pα

H of the Hilfer fractional derivative takes
the following known form ([18]):

(Pα
H f)(x) =

1

Γ(α+ γ1)

(
I1−α−γ1 f

)
(0)xα+γ1−1. (4.8)

Substituting γ1 = 0 into the formula (4.8), we get the projector of the
Riemann-Liouville fractional derivative

(Pα
RL f)(x) =

1

Γ(α)

(
I1−α f

)
(0)xα−1. (4.9)

The value γ1 = 1− α corresponds to the Caputo fractional derivative:

(Pα
C f)(x) = f(0). (4.10)

The last formula makes clear why many researchers prefer to employ the
Caputo fractional derivative while working with the fractional differential
equations: it is the only fractional derivative on a finite interval that admits
the same initial conditions as the ones usually posed for the differential
equations with the integer order derivatives.

4.2. Laplace transform of the 2nd level fractional derivative. The
theory of the fractional derivatives on a finite interval that we addressed un-
til now can be extended to the case of the semi-axis following the approach
employed for the Riemann-Liouville fractional derivative ([34]). This will
be done elsewhere. Here, we just introduce the 2nd level fractional deriv-
ative on the positive real semi-axis and derive a formula for its Laplace
transform.

For the functions from the space Lloc(R+), the Riemann-Liouville frac-
tional integral on the positive real semi-axis is defined as follows:

(Iα0+ f)(x) =

{
1

Γ(α)

∫ x
0 (x− t)α−1 f(t) dt, x > 0, α > 0,

f(x), x > 0, α = 0.
(4.11)

For α > 0, the Riemann-Liouville fractional integral Iα0+ can be inter-
preted as the Laplace convolution of the functions f = f(x) and hα(x) =
xα−1/Γ(α), x > 0. Application of the convolution theorem for the Laplace
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transform leads to the well-known result for the Laplace transform of the
Riemann-Liouville fractional integral Iα0+ ([34])

(L Iα0+ f)(s) = s−α (L f)(s), �(s) > max{sf , 0} (4.12)

that is valid under the condition that the Laplace transform of the function
f given by the integral

(L f)(s) =

∫ +∞

0
f(t) e−st dt (4.13)

does exist for �(s) > sf .
On the positive real semi-axis, the 2nd level fractional derivative of

order α, 0 < α ≤ 1 and type (γ1, γ2) is defined as follows:

(D
α,(γ1,γ2)
2L+

f)(x) = (Iγ10+
d

dx
Iγ20+

d

dx
I2−α−γ1−γ2
0+ f)(x). (4.14)

For the appropriate spaces of functions, both the Fundamental Theorem
of FC and the projector formula that we derived for the 2nd level fractional

derivative on a finite interval are valid for the operators Iα0+ and D
α,(γ1,γ2)
2L+

defined on the positive real semi-axis (the proofs repeat the arguments we
applied in the case of a finite interval).

In what follows we restrict ourselves to the truly 2nd level fractional
derivatives and suppose that the conditions (3.35) are satisfied. Then the
2nd Fundamental Theorem of FC (Remark 4.1) holds true and we have the
representation

(Iα0+D
α,(γ1,γ2)
2L+

f)(x) = f(x)− p1 x
α+γ1−1 − p2 x

α+γ1+γ2−2,

where the coefficients p1 and p2 are given by (4.3) and (4.4), respectively.
Note that under the conditions (3.35), the exponents σ1 = α + γ1 − 1

and σ2 = α+ γ1 + γ2 − 2 satisfy the inequalities −1 < σk ≤ 0, k = 1, 2 and
thus we can apply the Laplace transform to the last formula. Using (4.12),
we get the equation

s−α (LD
α,(γ1,γ2)
2L+

f)(s) = (L f)(s)− p1
Γ(α+ γ1)

sα+γ1
− p2

Γ(α+ γ1 + γ2 − 1)

sα+γ1+γ2−1
.

Multiplying it with sα leads to the formula

(LD
α,(γ1,γ2)
2L+

f)(s) = sα (L f)(s)− p1
Γ(α+ γ1)

sγ1
− p2

Γ(α+ γ1 + γ2 − 1)

sγ1+γ2−1

that can be transformed to the final form

(LD
α,(γ1,γ2)
2L+

f)(s) = sα (L f)(s)− a1 s
−γ1 − a2 s

−γ1−γ2+1 (4.15)

with

a1 =

(
Iγ20+

d

dx
I2−α−γ1−γ2
0+ f

)
(0), a2 =

(
I2−α−γ1−γ2
0+ f

)
(0). (4.16)
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If one of the conditions (3.35) does not hold true, the kernel of the
2nd level fractional derivative becomes one-dimensional and one of the co-
efficients a1 or a2 in (4.16) is equal to zero. In particular, for the Hilfer
fractional derivative Dα,γ1

H+
defined on the real positive semi-axis (γ2 = 1 or

α+ γ1 + γ2 ≤ 1 in (4.14)), we get the formula

(LDα,γ1
H+

f)(s) = sα (L f)(s)−
(
I1−α−γ1
0+ f

)
(0) s−γ1 . (4.17)

Setting γ1 to zero in (4.17) leads to the known formula for the Laplace
transform of the Riemann-Liouville fractional derivative

(LDα
0+ f)(s) = sα (L f)(s)− (

I1−α
0+ f

)
(0), (4.18)

whereas the value γ1 = 1 − α in the formula (4.17) corresponds to the
Laplace transform of the Caputo fractional derivative:

(LDα
C+

f)(s) = sα (L f)(s)− f(0) sα−1. (4.19)

Remark 4.3. In this paper, we restricted ourselves to analysis of some
families of the one-parameter fractional integrals and derivatives on a finite
interval and the positive real semi-axis. Thus, the many parameters families
of the fractional integrals and derivatives (say, the Erdélyi-Kober operators
[19, 38] or their Caputo type modifications [28, 20]), the distributed or-
der fractional derivatives [5, 6, 21, 24], the fractional derivatives with the
general kernels [22, 39, 40], and the fractional integrals and derivatives de-
fined on the whole space like the Riesz fractional potentials and derivatives
[25, 34] are not included into this theory.

Remark 4.4. Another important challenge in FC is studying the
fractional order operators on different spaces of functions that are often
chosen to satisfy some special requirements of concrete problems. In this
paper, we addressed the fractional integrals and derivatives on the space
L1(0, 1) and its subspaces. However, the FC operators have been already
considered on Lp(0, 1), p > 1 ([34]), Cα(0,∞), α > −1 ([9, 19, 27, 29, 38]),
and the fractional Sobolev spaces ([12]) to mention only some of the relevant
spaces. It is worth to once again stress that the properties of the FC
operators essentially depend on the spaces of functions, where they are
defined.
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