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Abstract

In this article, we introduce the concept of α-fractionally convex func-
tions. We primarily focus on characterizing some of the qualitative prop-
erties of convex functions with the assistance of fractional order operators.
Also, we discuss the connection of optimality, monotonicity, and convex-
ity of a function in the sense of fractional calculus. Several examples are
provided to support the proposed formulation, and one can establish the
fractional convexity of a non-convex function.
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1. Introduction

The field of fractional calculus originated with an innovative idea to ex-
tend the order of derivative (or integration) from an integer to a non-integer.
Some of its extensively analyzed problems include generalized Abel’s inte-
gral equation and its applications [3], generalized Taylor’s series expansion
for fractional derivatives introduced by Osler [21], fractional variational
(see [15, 19]) and fractional optimal control problems (see [16, 25, 26]).
The modernization of such problems from classical to fractional calculus
motivates us to inspect the convexity of a function in the sense of frac-
tional calculus.
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As per the author’s knowledge, fractionally convex functions have not
been studied in the literature. Although, Zhou [28] discussed the mono-
tonicity and convexity of fractional differential operators. Some of the
related work includes convexity for nabla and delta fractional difference
operators (see [1, 8, 12, 13], and references therein), fractional mean value
theorem [7, 22], monotonicity of fractional difference operators [2, 5, 6], and
convexity results for fractional differences [9, 10].

In this paper, we focus on analyzing the role of fractional order deriva-
tives to define the convexity of a real-valued function. The prime objective
is to define the notion of fractional convexity, even for non-convex func-
tions. Apart from the convexity of fractional operators, it is necessary to
characterize the conditions under which a non-convex function becomes
fractionally convex. We provide a few well-founded reasons in support of
formulating fractionally convex functions, verified with given examples and
their graphical representations. Lastly, we discuss the necessary optimality
condition for optimizing a fractionally convex function.

1.1. Motivation: Why fractional sense convexity? The question of
primary interest: What is the necessity of fractional sense convexity? If
required, is it possible to define some sort of fractionally convex functions
as an augmentation of classically convex functions? Usually, one come
across non-convex functions. And, we are aware of the functions which
are not differentiable in the classical sense but fractionally differentiable
(e.g. f(x) = |x|). So, similar to fractional differentiability, we prefer to
talk about fractionally convex functions. Apart from necessity, at a certain
point, one may have any of the following questions:

(1) If a function turns out to be non-convex, what kind of fractional
sense convexity can be imposed?

(2) Does the proposed fractional sense convexity meet all the basic
criterion of convex functions?

(3) Will there be any sort of link between convex and fractionally con-
vex functions?

(4) Is it possible to find some functions which are convex but not frac-
tionally convex and vice-versa?

We shall answer these questions in our present investigation. Concern-
ing the above points, we shall see that fractional sense convexity should
possess certain properties to make the proposed work meaningful. These
remarks trace the presence and possibility of making an effort to impose the
fractional sense convexity on non-convex functions. Outlining the insights
of fractionally convex functions in present work, we have observed:

• functions which are non-convex in the classical sense but convex in
fractional sense and vice versa,
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• necessary conditions under which a convex function turns out to be
a fractionally convex function.

2. Preliminaries

In this section, we give some basic definitions and properties of frac-
tional order derivatives/integrals (see e.g. [24, 23, 14, 17]), which will be
needed in the sequel.

Let f ∈ C[a, b], where C[a, b] is the space of all continuous functions
defined on the closed interval [a, b].

Definition 2.1. For all x ∈ [a, b] and α > 0, the left Riemann-
Liouville fractional integral of order α is defined as

aI
α
x f(x) =

1

Γ(α)

∫ x

a
(x− τ)α−1f(τ) dτ.

Definition 2.2. For all x ∈ [a, b] and n−1 ≤ α < n, the left Riemann-
Liouville fractional derivative of order α is defined as

aD
α
xf(x) =

1

Γ(n− α)

(
d

dx

)n ∫ x

a
(x− τ)n−α−1f(τ) dτ.

Let us consider f ∈ Cn[a, b], where Cn[a, b] is the space of n times
continuously differentiable functions defined on [a, b].

Definition 2.3. For n − 1 ≤ α < n, the left Caputo fractional
derivative of order α is defined as

c
aD

α
t f(t) =

1

Γ(n− α)

∫ t

a
(t− τ)n−α−1f (n)(τ) dτ. (2.1)

Properties of fractional order operators: For n−1 ≤ α < n, n∈N:

1. The Riemann-Liouville and Caputo fractional derivatives are related
by

aD
α
xf(x) =

c
aD

α
xf(x) +

n−1∑
k=0

(x− a)k−α

Γ(k − α+ 1)
f (k)(a) . (2.2)

2. Composition rules for fractional derivatives and integrals are given
by

• aI
α
x aD

α
xf(x) = f(x)−

n−1∑
j=0

(x− a)α−j

Γ(α− j + 1)
aD

α−j
x f(a) ,

• aI
α
x

c
aD

α
xf(x) = f(x)−

n−1∑
j=0

(x− a)j

Γ(j + 1)
f (j)(a) .
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3. Main results

In this section, we discuss convex functions in the sense of fractional cal-
culus. Throughout the work, we deal with univariate real-valued functions
and intend to accomplish the objectives listed below:

• Monotonicity: To assimilate the monotonicity of a real-valued func-
tion in terms of fractional order derivatives, and the monotonicity
of Riemann-Liouville and Caputo fractional derivatives.

• Convexity: To introduce the notion of α-fractionally convex func-
tions, and analyze the resemblance by deducing results analogous
to classically convex functions. We illustrate some examples graph-
ically for fractional convexity with distinct fractions α ∈ (0, 1).

• Optimal Points: To describe an unconstrained optimization prob-
lem for minimizing a fractionally convex function.

3.1. Comments on monotonicity of functions with fractional deriva-
tives. In this section, we investigate the criteria of monotonicity of a func-
tion with fractional derivative of order α ∈ (0, 1). We start by recalling the
classical property of a monotone function.

A real-valued function f ∈ C1[a, b] is said to be monotonically increas-
ing on [a, b], if ∀x, y ∈ [a, b] such that x ≤ y one must have f(x) ≤ f(y). In
terms of first derivative, we must have f ′(x) ≥ 0, ∀x ∈ [a, b]. Similarly, f is
said to be monotonically decreasing if, whenever x ≤ y then f(x) ≥ f(y).
Or, f ′(x) ≤ 0, ∀x ∈ [a, b]. Now, we will discuss the monotonicity of f with
Riemann-Liouville and Caputo fractional order derivatives.

Theorem 3.1. Let f ∈ C1[a, b], and α ∈ (0, 1). Then, f is monoton-
ically increasing on [a, x] if and only if c

aD
α
xf(x) ≥ 0. Or, f ′(x) ≥ 0 if and

only if c
aD

α
xf(x) ≥ 0.

P r o o f. Let f be monotonically increasing function on [a, x]. Next,
we consider the Caputo fractional derivative of order α,

c
aD

α
xf(x) =

1

Γ(1− α)

∫ x

a
(x− t)−αf ′(t) dt. (3.1)

Clearly, f ′(x) ≥ 0 on [a, x] as f is monotonically increasing, and also
(x − t)−α > 0. So, we conclude that the integral given by Eq. (3.1)
is non-negative, that is, c

aD
α
xf(x) ≥ 0. Conversely, let us now assume

g(x) = c
aD

α
xf(x) ≥ 0, which implies that

aI
α
x g(x) =

1

Γ(α)

∫ x

a
(x− t)α−1 g(t) dt ≥ 0, ∀x ≥ a,

or, aI
α
x

c
aD

α
xf(x) ≥ 0, ∀x ≥ a,
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or, aI
α
x

c
aD

α
xf(x) = f(x)− f(a) ≥ 0, ∀x ≥ a,

which proves that f is a monotonically increasing function on [a, x]. �

The next theorem gives the condition for monotonically decreasing func-
tions in terms of the Caputo fractional order derivative.

Theorem 3.2. Let f ∈ C1[a, b], and α ∈ (0, 1). Then, f is monotoni-
cally decreasing on [a, x] if and only if c

aD
α
xf(x) ≤ 0. Or, f ′(x) ≤ 0 if and

only if c
aD

α
xf(x) ≤ 0.

P r o o f. The proof is omitted as f is monotonically decreasing in an
interval [a, b], if −f is monotonically increasing in [a, b]. �

Corollary 3.1. Let f ∈ C1[a, b], and α ∈ (0, 1). If f is monotonically
increasing and f(a) ≥ 0, then the αth-order Riemann-Liouville derivative

aD
α
xf(x) ≥ 0.

P r o o f. For α ∈ (0, 1), using the relationship between Riemann-
Liouville and Caputo fractional derivative given by Eq. (2.2) , we have

aD
α
xf(x) =

(x− a)−α

Γ(1− α)
f(a) + c

aD
α
xf(x). (3.2)

As f is monotonically increasing, we have c
aD

α
xf(x) ≥ 0 (Theorem 3.1).

Since f(a) ≥ 0, from Eq. (3.2) we can easily observe that aD
α
xf(x) ≥ 0. �

Corollary 3.2. Let f ∈ C1[a, b], and α ∈ (0, 1). If aD
α
xf(x) ≥ 0 and

f(a) ≤ 0, then f is monotonically increasing.

P r o o f. With Eq. (3.2), we can write

c
aD

α
xf(x) = aD

α
xf(x)−

(x− a)−α

Γ(1− α)
f(a).

Let aD
α
xf(x) ≥ 0 and f(a) ≤ 0, thus c

aD
α
xf(x) ≥ 0. Again Theorem 3.1

states that f is monotonically increasing if and only if c
aD

α
xf(x) ≥ 0, which

completes the proof. �

On combining Corollaries 3.1 and 3.2 stated above, we arrive at the
following theorem.

Theorem 3.3. Let f ∈ C1[a, b], f(a) = 0, and α ∈ (0, 1). Then, f
is monotonically increasing on [a, x] if and only if the Riemann-Liouville
derivative aD

α
xf(x) ≥ 0.

The following example describes the relevance of Theorems 3.1- 3.3.
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Example 3.1. Let f(x) = x2 − 1, x ≥ 0. Clearly f is monotonically
increasing for x ≥ 0, as f ′(x) ≥ 0. For α ∈ (0, 1), we first consider the
Caputo fractional derivative of f ,

c
aD

α
xf(x) =

Γ(3)

Γ(3− α)
x2−α, ∀x ≥ 0,

which shows that c
aD

α
xf(x) ≥ 0. But, if we consider the Riemann-Liouville

derivative of f ,

aD
α
xf(x) =

2

Γ(3− α)
x2−α − 1

Γ(1− α)
x−α, ∀x ≥ 0.

Clearly, aD
α
xf(x) ≥ 0 for 2x2 ≥ (1 − α)(2 − α). It does guarantee the

non-negativity of aD
α
xf(x), since α ∈ (0, 1) is not fixed. Here f(0) = −1,

so monotonically increasing nature of f need not imply aD
α
xf(x) ≥ 0. We

can verify the same by monitoring the graphs of αth-order Caputo and
Riemann-Liouville derivatives of f , as shown in Figure 3.1 .
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Fig. 3.1: Plot of αth-order Caputo and Riemann-Liouville fractional
derivatives of f(x) = x2 − 1, Example 3.1

At this point, it is important to mention that the above results deal
with the monotonicity of a function f in terms of fractional derivatives.
But, it is not same as the monotonicity of fractional differential operators.
For monotonicity of Riemann-Liouville or Caputo fractional derivative, we
must emphasize on the (α + 1)th-order derivative. And, we must have
d
dx [caD

α
xf(x)] ≥ 0 (or ≤ 0).

Theorem 3.4. Let f ∈ C2[a, b], and α ∈ (0, 1). Then, f ′ is monoton-
ically increasing on [a, x] if and only if c

aD
α+1
x f(x) ≥ 0. Or, f ′′(x) ≥ 0 if

and only if c
aD

α+1
x f(x) ≥ 0.
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P r o o f. Let f ′′(x) ≥ 0, ∀x ≥ a, which implies that

c
aD

α+1
x f(x) =

1

Γ(1− α)

∫ x

a
(x− t)−αf ′′(t) dt ≥ 0.

Conversely, we have c
aD

α+1
x f(x) ≥ 0. Let c

aD
α+1
x f(x) = c

aD
α
xg(x) ≥ 0,

where g(x) = f ′(x). Thus,

aI
α
x

c
aD

α
xg(x) ≥ 0, ∀x ≥ a,

i.e., g(x)− g(a) ≥ 0, ∀x ≥ a,

or, f ′(x)− f ′(a) ≥ 0, ∀x ≥ a,

that is, f ′(x) ≥ f ′(a), ∀x ≥ a, which implies that f ′(x) is monotonically
increasing on [a, x]. �

The next theorem states the similar kind of result for f ′(x) to be mono-
tonically decreasing.

Theorem 3.5. Let f ∈ C2[a, b], and α ∈ (0, 1). Then, f ′ is monoton-
ically decreasing on [a, x] if and only if c

aD
α+1
x f(x) ≤ 0. Or, f ′′(x) ≤ 0 if

and only if c
aD

α+1
x f(x) ≤ 0.

Theorem 3.6. Let f ∈ C2[a, b], and α ∈ (0, 1). If f ′(x) is monoton-
ically increasing and f ′(a) ≥ 0, then c

aD
α
xf(x) is monotonically increasing

on [a, x].

P r o o f. We consider

d

dx
[caD

α
xf(x)] =

1

Γ(1− α)

d

dx

∫ x

a
(x− t)−α f ′(t) dt,

=
1

Γ(1− α)

d

dx

∫ x−a

0
Y −α f ′(x− Y ) dY, Y = x− t

=
1

Γ(1− α)

[∫ x−a

0
Y −α f ′′(x− Y ) dY + (x− a)−α f ′(a)

]
,

=
1

Γ(1− α)

∫ x

a
(x− t)−α f ′′(t) dt+

(x− a)−α

Γ(1− α)
f ′(a).

For f ′′(x) ≥ 0 and f ′(a) ≥ 0, d
dx [caD

α
xf(x)] ≥ 0, i.e., the αth-order Caputo’s

fractional derivative of f is monotonically increasing. �

The next theorem states the condition for αth-order Caputo’s fractional
derivative to be monotonically decreasing.
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Theorem 3.7. Let f ∈ C2[a, b], and α ∈ (0, 1). If f ′(x) is monotoni-
cally decreasing and f ′(a) ≤ 0, then c

aD
α
xf(x) is monotonically decreasing

on [a, x].

Note that
d

dx
[aD

α
xf(x)] = aD

α+1
x f(x), so one must have aD

α+1
x f(x) ≥

0 (or ≤ 0) for Riemann-Liouville derivative to be monotonically increasing
(or decreasing).

Corollary 3.3. Let f ∈ C2[a, b], and α ∈ (0, 1). If f ′(x) is mono-
tonically increasing, f(a) ≤ 0, and f ′(a) ≥ 0. Then aD

α+1
x f(x) ≥ 0, that

is, the αth-order Riemann-Liouville derivative aD
α
xf(x) is monotonically

increasing.

P r o o f. For 1 < α+ 1 < 2, using the relationship between Riemann-
Liouville and Caputo fractional derivative, we get

aD
α+1
x f(x) = c

aD
α+1
x f(x) +

1∑
k=0

(x− a)k−(α+1)

Γ(k − (α+ 1) + 1)
fk(a),

= c
aD

α+1
x f(x) +

(x− a)−(α+1)

Γ(−α)
f(a) +

(x− a)−α

Γ(1− α)
f ′(a),

= c
aD

α+1
x f(x)− α(x− a)−(α+1)

Γ(1− α)
f(a) +

(x− a)−α

Γ(1− α)
f ′(a). (3.3)

Let f ′ be monotonically increasing on [a, x], which implies c
aD

α+1
x f(x) ≥ 0

(by Theorem 3.5). One may observe from Eq. (3.3), aD
α+1
x f(x) ≥ 0 for

f(a) ≤ 0, and f ′(a) ≥ 0. �

Corollary 3.4. Let f ∈ C2[a, b], and α ∈ (0, 1). If aD
α+1
x f(x) ≥ 0,

f(a) ≥ 0, and f ′(a) ≤ 0. Then, f ′(x) is monotonically increasing function
on [a, x].

P r o o f. By Eq. (3.3), we have

c
aD

α+1
x f(x) = aD

α+1
x f(x) +

α (x− a)−(α+1)

Γ(1− α)
f(a)− (x− a)−α

Γ(1− α)
f ′(a).

Clearly c
aD

α+1
x f(x) ≥ 0, since aD

α+1
x f(x) ≥ 0, f(a) ≥ 0 and f ′(a) ≤ 0.

Thus, Theorem 3.5 assures that f ′ is monotonically increasing function on
the interval [a, x]. �

On combining Corollaries 3.3 and 3.4, we arrive at the following theo-
rem.
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Theorem 3.8. Let f ∈ C2[a, b], f(a) = 0 = f ′(a), and α ∈ (0, 1).
Then, f ′ is monotonically increasing (or f ′′(x) ≥ 0) on [a, x] if and only if
the Riemann-Liouville derivative aD

α+1
x f(x) ≥ 0.

The above theorem asserts that the non-negativity of second deriva-
tive of a function f is equivalent to the non-negativity of (α + 1)th-order
Riemann-Liouville derivative of f , provided f(a) = 0 = f ′(a). Convention-
ally, the convexity of a function f ∈ C2[a, b] is same as the non-negativity of
f ′′. Thus, the interconnection of the second derivative and (α+ 1)th-order
derivative of f suggests an idea to propose the notion of fractionally convex
functions.

3.2. α-Fractionally Convex functions. In this section, we attend con-
vex functions with Riemann-Liouville fractional order derivative in place
of classical derivatives. This work introduces the concept of fractionally
convex functions, and characterizes the conditions for which a function be-
comes convex in fractional calculus sense.

We know that a twice differentiable function f defined on an interval I
is convex if and only if f ′′(x) ≥ 0, ∀x ∈ I. The monotonicity criterion of
f ′ in terms of fractional derivatives (Theorem 3.8) assists us to define the
notion of fractionally convex functions by attaching a fraction α ∈ (0, 1),
as described below.

Definition 3.1. α-fractionally convex function: Let α ∈ (0, 1). A
real-valued univariate function f ∈ C2[a, b] is said to be fractionally convex
of order α, or α-fractionally convex on [a, x) if the (α+1)th-order Riemann-
Liouville derivative of f is non-negative, i.e. aD

α+1
x f ≥ 0. And, strictly

α-fractionally convex if aD
α+1
x f > 0.

Note:

• One of the vital inspection is the selection of a fractional order deriv-
ative while defining α-fractionally convex functions. The existence
of a variety of definitions in literature such as Riemann-Liouville,
Grunwald-Letnikov, Weyl, Caputo, and Riesz fractional derivatives
(see [17, 20, 24]) make the desired choice crucial. We observe that
the left Riemann-Liouville derivative appears to be appropriate as

aD
0
xf(x) = f(x). And xD

0
bf(x) = −f(x), so one can use right

Riemann-Liouville derivative to define the fractional convexity of
−f or fractional concavity of f .

• In case of Caputo’s fractional derivative c
aD

0
xf(x) = f(a) + f(x)

which further restricts the extension of classically convex functions
(as for α = 0 one must reach f).
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• One may note that Riemann-Liouville derivative is used here to
explain fractional convexity of f in some interval [a, b]. But, we
have to use Weyl’s fractional order derivative whenever the interval
is extended to whole real line.

Remark 3.1. For α = 0, aD
α+1
x f(x) ≥ 0 ⇒ f ′(x) ≥ 0, that is, the

function f is a monotonically increasing function in [a, x).

Remark 3.2. If α = 1, aD
α+1
x f(x) ≥ 0 ⇒ f ′′(x) ≥ 0, that is, the

function f is a convex function in [a, x).

The raised remarks facilitate us to consider the fractional convexity of
f as the lower order convexity of f lying between 0 and 1, i.e., aD

α+1
x f ≥ 0

gives the fractional sense convexity of f for α ∈ (0, 1).

Characterization of α-fractionally convex functions.

As fractionally convex functions are structured similar to convex func-
tions, we must explain the extensive properties and characteristics analo-
gous to classically convex functions. In addition, we specify the conditions
under which classical convexity of a function implies fractional convexity
and vice versa.

Corollary 3.5. Let f ∈ C2([a, b]) be a classically convex function
on [a, x]. If f(a) ≤ 0 and f ′(a) ≥ 0, then f is α-fractionally convex for
α ∈ (0, 1)

P r o o f. The proof follows from Corollary 3.3. �

Corollary 3.6. Let α ∈ (0, 1), and f ∈ C2([a, b]) be α-fractionally
convex. If f(a) ≥ 0 and f ′(a) ≤ 0, then f is classically convex in [a, x].

P r o o f. The proof follows from Corollary 3.4. �

The next example enables us to understand the criteria of fractional
sense convexity of a function.

Example 3.2. Let f(x) = x
1
2 , x ∈ R. And, f ′′(x) = −1

4x
− 3

2 < 0

for all x > 0. Next, we compute the (1 + α)th- order Riemann-Liouville
derivative of f

0D
1+α
x f(x) =

Γ
(
3
2

)
Γ(12 − α)

x−(
1
2
+α).
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Clearly 0D
1+α
x f(x) ≥ 0, for α ≤ 1

2 . Thus, f is α-fractionally convex in

(0, x) for all α ∈ (0, 12 ]. But, f is not convex in classical sense for x > 0.
We may also observe that f(0) = 0, and f ′(0) > 0, that is Corollary 3.6 is
not satisfied for f to be classically convex. In Figure 3.2, the non-negativity
of 0D

α+1
x f is justified for α ∈ (0, 12 ]. We have also plotted the αth-order

Riemann-Liouville derivative of f to verify the monotonicity of f in terms
of fractional derivatives (see Theorem 3.3).
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Fig. 3.2: Plot of αth, (1 + α)th order Riemann-Liouville derivatives of

f(x) = x
1
2 , Example 3.2

On combining Corollaries 3.5 and 3.6, we get the condition for a convex
function to be fractionally convex and vice versa.

Theorem 3.9. Let f ∈ C2([a, b]) and α ∈ (0, 1). If f(a) = 0 = f ′(a),
then f is convex on [a, x] if and only if f is α-fractionally convex.

The above theorem asserts that the classical convexity of f in [a, x) is
same as the fractional convexity of f , provided f(a) = 0 = f ′(a).

Example 3.3. Let f(x) = xn, n ≥ 1, n ∈ R+. Clearly, f is convex in
(0, x) as f ′′(x) = n(n− 1)xn−1 > 0, ∀x > 0. And,

0D
1+α
x f(x) =

Γ(n+ 1)

Γ(n− α)
xn−α−1 > 0, ∀x > 0,

that is, f is classically as well as α-fractionally convex in (0, x). One may
also observe that f(0) = 0 = f ′(0), as given in Theorem 3.9. In particular,
for n = 2, 4, we have plotted the (1 + α)th derivative of f in Figure 3.3.
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Fig. 3.3: Plot of (1 + α)th-order Riemann-Liouville derivatives of
f(x) = xn, Example 3.3

Example 3.4. Let f(x) = x3 + k x, where k is a positive real number.
Clearly, f is classically convex (strictly) for x > 0. One may observe that
f(0) = 0, and f ′(0) = 1 > 0, thus f is α-fractionally convex for all α ∈ (0, 1)
(Corollary 3.5). It can also be validated by computing

0D
α+1
x f(x) = 6

x2−α

Γ(3− α)
+ k

x−α

Γ(1− α)
> 0, ∀x > 0.

In Figure 3.4, the graphical representation is given for (1 + α)th-order de-
rivative of f = x3 + kx by taking different values of k.
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Fig. 3.4: Plot of (1 + α)th-order Riemann-Liouville derivatives of
f(x) = x3 + kx, for k = 1, 10 in Example 3.4

All the above examples deal with convex and fractionally convex func-
tion over the same interval (0, x). But, this is not the case in general. Next
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example discusses the fractional sense convexity of a function in (0, x),
which is classically convex in (1, x).

Example 3.5. Let f(x) = 3
4x

2 − 2x−
1
2 , x > 0, classically convex for

x ≥ 1 as f ′′(x) = 3
2(1− x−

5
2 ). And,

0D
1+α
x f(x) =

3

2

x1−α

Γ(2− α)
+ 2Γ

(
1

2

)(
1

2
+ α

)
x−( 3

2
+α)

Γ(12 − α)
.

Clearly, 0D
1+α
x f(x) > 0 for α ≤ 1

2 . So, we finally conclude that f is

classically convex in (1, x) but α-fractionally convex in (0, x) for α ∈ (0, 12 ].

We suggest the reader to look at the graph of 0D
1+α
x f(x) in Figure 3.5 for

different values of α ∈ (0, 1) (also for α = 0, 1, the classical case). One
may also observe the behavior of αth-order fractional derivative of f for
monotonicity of f .
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Fig. 3.5: Plot of αth,(1 + α)th-order Riemann-Liouville derivatives of

f(x) = 3
4x

2 − 2x−
1
2 , Example 3.5

Example 3.6. Let f(x) = −x, classically convex for x ∈ R. And,

0D
1+α
x f(x) = − x−α

Γ(1− α)
.

Clearly, 0D
1+α
x f(x) < 0 for α ∈ (0, 1). Thus, we can conclude that f is

not α-fractionally convex in the positive real axis. Figure 3.6 illustrates the
non-negativity of 0D

1+α
x f(x) for all values of α ∈ (0, 1).

Next, we present the fractional-order analogue for the equivalent defi-
nitions of classical convex functions. Let us first give the Taylor-Riemann
series for Riemann-Liouville fractional derivatives stated below.
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Fig. 3.6: Plot of (1 + α)th-order Riemann-Liouville derivatives of
f(x) = −x, Example 3.6

Theorem 3.10. (Taylor-Riemann series for fractional derivatives [18])

Let α > 0, n ∈ Z+ and f(x) ∈ C [α+n+1]([a, b]). Then,

f(x) =

n−1∑
k=−n

aD
α+k
x f(x0)

Γ(α+ k + 1)
(x− x0)

α+k +Rn(x), ∀a ≤ x0 < x ≤ b, (3.4)

where Rn(x) = aI
α+n
x aD

α+n
x f(x) is the remainder.

Theorem 3.11. Let f ∈ C2[a, b] and α ∈ (0, 1). If f is α-fractionally
convex, then

f(x) ≥ aI
1−α
x f(x0)

(x− x0)
−(1−α)

Γ(α)
+ aD

α
xf(x0)

(x− x0)
α

Γ(α+ 1)
, ∀a ≤ x0 < x ≤ b.

(3.5)
For α = 1,

f(x) ≥ f(x0) + (x− x0)f
′(x0), ∀ a ≤ x0 < x ≤ b,

that is, we regain the definition of classical convexity of f .

P r o o f. Let f be α-fractionally convex, α ∈ (0, 1). By the Taylor-
Riemann series for fractional derivatives (see Theorem 3.10), we have

f(x) =

0∑
k=−1

aD
α+k
x f(x0)

Γ(α+ k + 1)
(x− x0)

α+k +R1(x), ∀a ≤ x0 < x ≤ b,

where R1(x) = aI
α+1
x aD

α+1
x f(x) is the remainder. Since f is α-fractionally

convex, aD
α+1
x f(x) ≥ 0 which implies R1(x) = aI

α+1
x aD

α+1
x f(x) ≥ 0.

Thus, we arrive at
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f(x) ≥ aI
1−α
x f(x0)

(x− x0)
−(1−α)

Γ(α)
+ aD

α
xf(x0)

(x− x0)
α

Γ(α+ 1)
, ∀a ≤ x0 < x ≤ b.

�

Theorem 3.12. Let f ∈ C2[a, b] and α ∈ (0, 1). If f is α-fractionally
convex, for λ ∈ [0, 1],

aI
1−α
x f(λx1+(1−λ)x2) ≤ λaI

1−α
x f(x1)+(1−λ)aI

1−α
x f(x2), ∀x1, x2 ∈ [a, x).

Clearly, for α = 1, we arrive at the classical definition of convex functions.

P r o o f. Since f is α-fractionally convex, by using the condition stated
in Theorem 3.11, we can write

f(x) ≥ aI
1−α
x f(x0)

(x− x0)
−(1−α)

Γ(α)
+ aD

α
xf(x0)

(x− x0)
α

Γ(α+ 1)
,

or, aI
1−α
x f(x) ≥ aI

1−α
x f(x0) + aD

α
xf(x0) (x− x0).

For λ ∈ [0, 1], let x = x1, and x0 = λx1 + (1− λ)x2, we have

aI
1−α
x f(x1) ≥ aI

1−α
x f(λx1+(1−λ)x2)+(1−λ)aD

α
xf(λx1+(1−λ)x2).(x1−x2).

(3.6)
Again, let x = x2, and x0 = λx1 + (1− λ)x2

aI
1−α
x f(x2) ≥ aI

1−α
x f(λx1+(1−λ)x2)−λaD

α
xf(λx1+(1−λ)x2).(x1−x2).

(3.7)
Adding λ times of Eq. (3.6) to (1− λ) times of Eq. (3.7), we obtain

λ aI
1−α
x f(x1) + (1− λ) aI

1−α
x f(x2) ≥ aI

1−α
x f(λx1 + (1− λ)x2),

which proves the result. �

Collectively, by virtue of Theorems 3.11-3.12, we can say that a function
f ∈ C2[a, b] is said to be α-fractionally convex in [a, x) if any one of the
following conditions holds:

• aD
1+α
x f(x) ≥ 0, α ∈ (0, 1)

• For all a ≤ x0 < x ≤ b,

f(x) ≥ aI
1−α
x f(x0)

(x− x0)
−(1−α)

Γ(α)
+ aD

α
xf(x0)

(x− x0)
α

Γ(α+ 1)
,

• For x1, x2 ∈ [a, x), α ∈ (0, 1), and λ ∈ [0, 1]

aI
1−α
x f(λx1 + (1− λ)x2) ≤ λaI

1−α
x f(x1) + (1− λ)aI

1−α
x f(x2),

Next, we characterize the condition for minimizing α-fractionally con-
vex functions, which is very similar to a classical optimization problem.
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Theorem 3.13. Let minx∈R f(x) be an unconstrained optimization
problem, where f is α-fractionally convex for some α ∈ (0, 1). Then, any
point x∗ ∈ [a, x) satisfying aD

α
xf(x) = 0, is a unique minimum of f .

P r o o f. Using Theorem 3.11 for α-fractionally convex functions,

f(x) ≥ aI
1−α
x f(x0)

(x− x0)
−(1−α)

Γ(α)
+ aD

α
xf(x0)

(x− x0)
α

Γ(α+ 1)
, ∀a ≤ x0 < x ≤ b.

In particular,

f(x) ≥ aI
1−α
x f(x∗)

(x− x∗)−(1−α)

Γ(α)
+ aD

α
xf(x

∗)
(x− x∗)α

Γ(α+ 1)
.

Since aD
α
xf(x

∗) = 0, we get

f(x) ≥ aI
1−α
x f(x∗)

(x− x∗)−(1−α)

Γ(α)
. (3.8)

It suffices to show that f(x∗) ≤ f(x). Let m(x) = f(x∗)− f(x) > 0, then

aI
1−α
x m(x) = aI

1−α
x [f(x∗)− f(x)] ≥ 0,

i.e., aI
1−α
x f(x∗) ≥ aI

1−α
x f(x),

which is a contradiction to Eq. (3.8). Note that aI
1−α
x f(x∗) = aI

1−α
x f(x)

if and only if f(x∗) = f(x). Thus, f(x∗) ≤ f(x), and we conclude that x∗
is a unique minimum of α-fractionally convex function f . �

4. Conclusions

We have investigated the monotonicity of a function in terms of Riemann-
Liouville and Caputo fractional derivatives. The concept of α-fractionally
convex functions has been introduced with relevant properties. Some of the
equivalent results of the proposed α-fractionally convex functions are given
so that the classical results are obtained for α = 1. We characterize the
condition for which a classically convex function becomes fractionally con-
vex and vice versa. Few examples are provided to observe the cases when
a function is (i) convex but not fractionally convex, (ii) fractionally convex
but not convex, (iii) classically convex as well as fractionally convex. Also,
we deduce the optimality condition for minimizing a fractionally convex
function. A review of Karush-Kuhn-Tucker (KKT) optimality conditions,
with α-fractionally convex functions, is in the future research of the author.
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