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Abstract

In this paper, the existence of two nontrivial solutions for a fractional
problem with critical exponent, depending on real parameters, is estab-
lished. The variational approach is used based on a local minimum the-
orem due to G. Bonanno. In addition, a numerical estimate on the real
parameters is provided, for which the two solutions are obtained.
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1. Introduction and main result

In this paper we consider the fractional problem

(—=A)u = A([ul*?u+ plu[f%u)  inQ,
(P/\,u)

u=0, in RV \ Q,

where (2 is a non-empty bounded open subset of the Euclidean space (RY, |-
), N > 2s, with Lipshcitz boundary 09,0 < s < 1,2} = 2 1 < g < 2,
A, p are positive parameters. Servadei and Valdinoci [21] study a fractional
problems with a critical growth, which presents several difficulties. Indeed,
the Palais-Smale condition, as well as the weak lower semi-continuity of

the associated functional may fail because the Sobolev embedding is not
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compact. To be precise, consider the problem

(—A)su = |u|*>"2u+ g(u), in Q, D

u=0, in RV \ €, ®)
where () is a non-empty bounded open subset of the Euclidean space
(RN, |-|), N > 2s, with boundary of class C*!, and g : R — R is a non-zero
continuous lower-order perturbation of |u|?2u. 0 < g(u) < pu® for all
u € R, for some > 0 and 0 < ¢t < 2. A typical example for g is that
g(u) = plult. Servadei and Valdinoci [21] study the problem (D) when
g = 0 following the well-known nonexistence result [10]. In particular, they
established that, when g(u) = plul’, problem (D) admits a solution for
suitable values of p, provided that 1 <t < 2. Hence, a lower-order per-
turbation, which is linear or super-linear at zero, can reverse the situation
highlighted by Pohozaev. For other result of this type of problem, we refer
the reader to [7, 19, 15, 13, 14, 22] and references therein.

Subsequently, Barrios et al. [3] study a fractional equation with critical
growth and a sub-linear perturbation following the idea of Garcia-Azorero
and Peral [11]. They proved that for the problem (D) with 0 < ¢ < 1,
g(u) = pul there is A > 0 such that for each u €]0, A[ the problem has at
least two weak solutions. Moreover, they also proved that if p > A, the
previous problem admits no solution (see [3, Theorem 1.1]) and if u = A
the previous problem admits at least one solution.

In this paper, we investigate fractional problems with critical exponent.
In this case, the Palais-Smale condition and the weak lower semi-continuity
of the associated functional may fail and direct method theorems cannot
be used to obtain nontrivial solutions. Our approach is due to Bonanno
[4, 5] to ensures the existence of one positive solution. Then, as a conse-
quence, the existence of two positive solutions are obtained. Firstly, we
give the framework of the problem, and we establish Lemma 3.1 which is
fundamental in the proof of Theorem 1.1.

The nonlocal operator (—A)® is defined as follows:

. u(z) — u(y) N
—A)* :=C(N,s) lim T R
(=A)*u(z) := C(N, s) i, BN\ B, (2) |:cfy|N+25dy, e RY,

where B.(z) is the ball centered at € RY with radius ¢ and C(N, s) is
the following (positive) normalization constant:

C(N,s) = (/]RN 1 coslér) Kr:jggl)dC) )

with ¢ = (¢1,¢), ¢’ € R¥71 see Section 2 of [17].
Denote by H*(RY) the usual fractional Sobolev space endowed with
the so-called Gagliardo norm
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lg(z) — g(y)

2 1/2
oy = Dol + ([ A28 asay) ™,

while X§(€2) is the function space defined as
X5(Q) ={ue H*RY) :u=0ae in RV \Q}. (1.2)

We refer to [20] for a general definition of X{§(£2) and its properties.
We can consider the following norm

[v(z) — o) >1/2
of| = T drdy )
I} (/RNXM |z — y[rres !

We also recall that (X§(€2), || - ||) is a Hilbert space, with scalar product

)= [ WEAZUODOE ) oy, g

|z — y[rt2s

N RN

See for instance [20, Lemma 7).
Observe that by [9, Proposition 3.6] we have the following identity

ull = 1(=2)""2u]l 2 gy (1.4)

We say that v € X§(Q) is a weak solution of (Py ) if for every ¢ € X§(9),
one has

/ (u(@) — u@)(e(@) = W) 4 4
RN xRN

|z —y|"+>

:)\,u/ uq2ug0dx+)\/ uw* " 2up dr.
Q Q

- M - 1 25 1 q
o) = 1w = w(@)% + p-lu@)? ) de (15)
2 o \2§ q
for all u € X§(€2). Recall that, by Sobolev embedding
lullLe) < cllull,  we X§(Q), ¢e L, 2]
The best Sobolev constant is
20— D(V — 25)/2) < I(N) )QS/N (16)
L((N +2s)/2) \I'(N/2) ’

which obtained in [8]. Due to (1.6), as a simple consequence of Holder’s
inequality, it follows that

on Bt o s T((N —=2s)/2) ( T(N) 2s/N
¢t < meas(§2) %t 275 (N +2s)/2) (I‘(N/z)) ) (1.7)

Cox = 2”
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where “meas(€2)” denotes the Lebesgue measure of the set 2 and that the
embedding X§(Q) < Lf() is not compact if ¢ = 2.
Now, fix » > 0 and put

N-—-2s

2% 2: s

AF = L Azi(i) "

%CZ(QT)q/Q + (QT)is/QgTS cgi 2rN
5\7’ - min{)‘:v 5‘7’}7

where c:, cq are given by (1.6) and (1.7).

The main result of our paper is the following theorem.

THEOREM 1.1. Fix q €]1,2[. Then, there exists u* > 0, where

2—q

2
T — 2
>F 5 N—-2s

e (O N d (B ) s (1)
ci 2’3" 9% & BN\

s

and cq, co: are given by (1.7) and (1.6), such that for each A €]0, A, [ and
p €]0, u*[ problem (P ,) admits at least one positive weak solution. Let
A =1 and u, be the positive weak solution. Then,

1
o 2% 2
|l < (—) ,
Coi
and the mapping

1 9 1/ o ,u/
po= s lugll” = = uy|*sdr — = u,|4dx
sl = 52 [ Jupliae =2 [

is negative and strictly decreasing in |0, p*[.

The proof of Theorem 1.1 was obtained by the variational method,
that is, via a local minimum result Theorem 2.1. We also observe that, [3,
Theorem 2.1] establishes, in particular, the existence of A > 0 such that
problem (P, ,) admits a solution for each ;i €]0,A] and no solution for
w > A. However, no estimate of A was pointed out in [3].

Finally, we obtain the following existence result of two solutions, where
an estimate of parameters is also pointed out.

THEOREM 1.2. Fix q €]1,2[. Then there exists u* > 0, where

2—q

N-2 2

_2
1 9 1) ?
=L mind | —25 L
cj2%5* 952 28 3N\ &

s
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and cq, co are given by (1.7) and (1.6), such that for each p €]0, u*[ problem

{(Am = uf%2u + plul=2u, i 2,

P
u =0, in RV \ Q, ()

T2
admits at least two positive solutions u,, and w,, such that ||u,| < (%)
28

and wy, > uy,.

We observe that the solution obtained in Theorem 1.1 is a local mini-
mum for considered functional. So, to obtain the second solution is enough
to apply the mountain pass theorem arguing as in part of the proof of [3,
Theorem 1.1].

EXAMPLE 1.1. Fix N =3, s = 1/2, and let Q@ = {z € R3: |z < 1}.
Then, the problem
(=A)2u = [ul® + a2, in Q,
u =0, in RV \ Q,
719/6

admits at least two solutions with p €]0, W[. Actually, we have 2} = 3,
N—-2s

2s
0=1/2 0 = ()" = () () -7,

23

_2

2% 2
(22*;7;2;> = %. So this result is obtained by Theorem 1.2.

C,
23

2. Preliminaries

We present some definitions on differentiability of functionals and refer
the reader to [4], Section 2. Let (X, -) be a real Banach space. We denote the
dual space of X by X*, while (-,-) stands for the duality pairing between
X* and X. A functional I : X — R is called Gateaux differentiable at
u € X if there is ¢ € X* (denoted by I'(u)) such that

lim J8F I ey e x

t—0+ t
It is called continuously Gateaux differentiable if it is Gateaux differentiable
for any u € X and the functional u — I(u) is a continuous map from X to
its dual X*.

Now, let &, ¥ : X — R be two continuously Géateaux differentiable
functionals and put
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I=0-0.
Fix ry, 79 € [—00,+00], with 71 < ry, and we say that the functional I
verify the Palais Smale condition cut off lower at r; and upper at r9 (in
short PS) —condltlon) if any sequence {u,} such that

(

(1) {I(un)} is bounded,
(2) T oo 1 ()l [+ = 0,

(3) r1 < ®(uy) <1y Vn €N,
has a convergent subsequence.

When we fix ry = —o0, that is, ®(u,) < 72 Vn € N, we denote this type
of Palais-Smale condition with (P.S)["2). When, in addition, ro = +o00, it is
the classical Palais-Smale condition.

Now, we recall the following local minimum theorem.

THEOREM 2.1 ([5], Theorem 3.3). Let X be a real Banach space and
let ®, ¥ : X — R be two continuously Gateaux differentiable functionals
such that infx ® = ®(0) = ¥(0) = 0. Assume that there are r € R and
u € X, with 0 < ®(a) < r, such that

SUPyed—1(|—oor) Y(1)  W(0)

< po

r o (a)

and, for each \ € ] iggg, supueé_l(]r—oo,r[) T [, the functional I, = ® — \¥
satisfies (PS)"l-condition.

Then, for each A € } (1) r [ there is uy € ®1(]0,r[)

(2.1)

U (d)’ sup,cqp— 1(—oo0,r]) W (u)
(hence, uy # 0) such that I(uy) < I\(@) for allu € ®~1(]0,7[) and I' (uy) =
0.

The following computations are useful in proving some estimates on the
norm of some truncated functions. Precisely, fix an element xg € £ (where
Q c RV is of class C', and choose 7 > 0 in such a way that

B(zo,7) i={z e RN : |z —zo| < 7} C Q, (2.2)
Now let o € (0,1) and ¢y € R, and define u, € H*(RY) as follows:
0 if z € RN\ B(xo,7)
ug = Gf—OJ)T(T — |z —x9|) ifx € B(xo, 1)\ B(xg,0T) (2.3)
to if x € B(xg,07),

where B(zg,r) denotes the N-dimensional ball with center zy € Q and
radius 7 > 0. Set
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1
v =14+ —, 2.4
0 T (2.4)
where

- . HVUHL2(Q
A= a2
weri@\oy [ul? 12(0)

The following result holds:

ProposITION 2.1 ([16], Proposition 1.16). Let o, s € (0,1), ¢ty € R,
and T be such that (2.2) is verified. Let uf be the function given in (2
Sn_o be the Lebesgue measure of the unit sphere in R¥N=! and I'(t) :
0 gt1le=%dz t > 0, be the usual Gamma function. Then ug € H5(RV),

0
and one has

(e o 1/2 —
( [ e SAC dy) Pl [BENR oY)
RVxRN T — gV (1-0) 1+ %) o

where

21/0 ifN=1
Kl = <7T+ﬁ)l/o if N =2 and kg == ——— + —
Suz(3+ 15w NZ3

with vy given in (2.4).

3. Proof of the main results

Firstly, we establish the following result.

LEMMA 3.1. Let ® and ¥ be the functional defined in (1.5) and fix
r > 0. Then, for each A\ €]0,\,| the functional Iy = ® — AV satisfies the
(PS)l")-condition.

Proof Fix A as in the conclusion and let {u,} C X§(Q2) be a se-
quence such that

(1) {Ix(un)} is bounded,

(2) Timy s oo || 13 (un) [ x5 2 = 0

(3) ®(up) <r VneN.
In particular, from ®(u,) < r for all n € N we obtain that {u,} is bounded
in X;(€2). So, going to a subsequence if necessary. We can assume
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up, — up in X3(92),
U, — ug in L(Q),
Uy — Ug a.e. on €,

where 1 < ¢ < 2% and, taking (1) into account, lim, ,~ I)(uy,) = ¢. More-
over, {u,} is bounded in L% (Q2) by Sobolev embedding.
First step. We prove that ug is a weak solution of problem (P ,).
Since {uy,} is bounded in L% (), it follows that {u%z_l} is bounded in

o*

LTil(Q) Indeed, one has
2% .
/ JuZs 12T T do < / |y, | % dex.
Q Q
Therefore, it follows that o

* *__ s
il ugs Uin L%-1,
. | 2r—1
In fact, since u, — ug a.e. = € ), we obtain u;* = — uy°
2*

and that, together with the boundedness of {u%zfl} in LZ-1, ensures the
2*

a.e. T € Q,

weak convergence of uz ! to ug;_l in LZ-1 (see Willem [6, Remark (iii)]).
Moreover, since u, — ug in L4(2), define the composition operator Au =
w?™! from L7 to L9/@=1)_ one has that

ul™t — ugfl in Lﬁ(Q)
So, in particular, .

ud™t —~ ug_l in La—1(Q).

Due to what was seen before, that is,

up, — up in XG(92),
23

2%¥—1 2;-1 in Lzz_l’

Up?® — Uy

wd ™!

q—1 . 4
n - —ug o in La-T,

one has

i ([ o) =) =l

n—00 ‘.%' _ y‘n+23

—)\/Qun(x)zz1v(x)dm—)\,u/ﬂun(m)q1v(x)dm>

_ / (uo(x) — uo(y))(v(z) — v(y))

- |z — y|nts

dxdy — )\/ uo(x)% o) de
)

—)\u/ﬂuo(x)q_lv(x)dx
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for all v € X§(2). Therefore, owing to (2) we obtain that

B (uo(@) — uo(y))(v(z) — v(y)) edy — w2y (z)ds
0_/szwa dxdy )\/QO (x)d

|z —y|"+>

)\,u/ ug_lv(:c)d:c
Q
for all v € X§(£2), that is, ug is a weak solution of (P ).
Second step. We prove that
Iy(ug) > —r. (3.1)
In fact, by Sobolev embeddings

W(w) = / (5510 + g fut)) o

1 2%
H ullfoiy + 57 1ull 2 g
S
1 «
= ot |l

u
< Bedlul|? 4+
< Beflul” + 5

and

Vo) < Eellullr + -l v e X3
8

Therefore, for all u € X§(€2) such that ||u|| < v/2r one has
u i .
() = 0) ~ 200 2 P (Begiago+ 2l

1 * *
> )\ (ch(Qr)q/2 + 2—§c§§(27“)25/2) = )\F > —7.

So, taking into account (3) and that @ is sequentially weakly lower-semicontinuous,
we have

[luo|| < liminf ||uy,|| < V2r
n—oo

and, hence,
Iy(ug) > —r.
Third step. Put v, = u, — ug. We point that one has
_ : Lo Lo
c=D(ug) — AV(up) + nh_)Iglo <§||vn|| - )\/Q 2—§|vn d:c> . (3.2)

In fact, one has
llunll® = [lon +uol|* = |[vn]|* + [Juo||* + 2(vn, uo),
so, it follows that
lunll® = loall* + [[uo|[* + o(1).
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Moreover, the Brezis-Lieb Lemma (see [6, Theorem 1]), leads to

/\un\%dx:/ \vn\%dﬁ/ luo|% dz + o(1).
Q Q Q

Since u,, — ugp in L(Q2), one has

/|un|qd:c:/ |ug|?dx 4 o(1).
Q Q

c= Hm (®(up) — AU (u)),

n—oo

Hence, by

one has

¢ = ®(up) — AV (up) + o(1)

1, .o .1 . 1
= Ll AL [ e — ik [ unlde + o(1)

2 25 Q q.JQ
1 1 1 " 1 "
—||vn||2+—||uo||2x—/ o %d:cA—/ fup % da
2 2 2 Jo 2 Jo

1
vy [ Juoftdz + o)

qJ0

1 1 X
= B(un) ~ MW(uo) + glonll? = Ag: [ [ouldo +o(1),

Hence, (3.2) is proved.
Fourth step. We prove the following

lim (||vn||2)\/ |vn
n—oo Q
From (2) we have lim;,_,oo (I’ (up), un) = 0. Then,
Ry N VN !
Therefore, as seen in the proof of (3.2). Taking into account that

/|un|q und:c—/|u0|q uod:ero()

owing to the fact that |u,|?"! — |up|?~! in LF(Q) (by the first step) and
U — ug in L1(QY), one has

ol ffaol P = A [ foulPode = A [ ol = M [ fuoltdz = of0),
Q Q Q

that is,

||vn||2A/Q|vn|23dw=||uo||2+A/Q|uo|2?d:c+m/9|uo|de+o<1>.

% d:c> = 0. (3.3)
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Since ug is a weak solution of (P ,), one has

g2 — X / htol 2 i — A / otz = 0.
Q Q
Therefore,
om]I? — A / jon[Zdz = o(1),
Q
and (3.3) is proved.

Conclusion. Finally, we observe that ||v,||? is bounded in R since {u,}
is bounded in X§(2). Thus, there is a subsequence, called again ||v,||?,
which converges to b € R. Hence,

lim ||v,|[* = b.
n—oo

If b = 0 we have proved the lemma. In fact, we have that lim, . ||u, —
up|| = 0, that is, u, strongly converges to ug in X§(£2).
Assume that b # 0, arguing by contradiction. From (3.3) we obtain

lim )\/ o | d = b.
n—oo Q
Now, taking into account that

/Q fon|%d < i lug|%,

and passing to the limit, one has g < cgg b%:/2 and then, since b # 0, one

has N y
=8 N/s
— A\ Cox

Now, taking (3.1) in to account, from (3.2) we have

1 1 1 1 bs
C—(I)(UO)*)\\I’(Uo)+§b*2—:b>*T+ (52—Z)b—’l“+_w,
that is,

N
c>—r+ —.
N

On the other hand, since 2|¢[% + u%\ﬁ!q > 0 for all £ € R, one has
D(up) — AU (uy,) < r

for all n € N. Hence, we have

c<r.
Thus,

+8b< <
—r+—<c<r.
N <

It follows that sz < 2r, that is,
2rN

S

b <
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1\ 5 1\ M 2N
N S b < )
A cox s

2

Therefore, one has

so, it follows that % < (%cﬁ/ Bk =) Hence, one has
1 s NQ—SQS _
A> ( ) X\,
ch QTN "
and this is a contradiction. O

Now, we give the proof of Theorem 1.1.

Proof of Theorem 1.1. Let

2% -2 —
, 2 ’ 1 (1)°?
T = Imin _2§+2 2 9 3N 2;

2202§

* q 1 2—g
= _ r o2 .
: (2>

Fix 0 < 1 < p*, and one has A, > 1. Indeed,

and

N—-2s

kY 1 S 2s
= 4 )
" Cgi QTN

E]

2s

1 3\ N—-2s 1
> = | — >
= N2 e (2>

LN /] o | s 1 ”
Cox [(2N)/s]V=2 | 5 21
2%

and
1

A=
i 22;/2 ok 252

Conl 2
2% C2x

E]

—2
©.a 2 a—=
ch2‘1/ r 2z 4+

>

_2 7732
2% 2
woagapyis y i 2 |\
ch r 23 622 2_5_2*+2 o*

1

/L_*C‘JQq/QT% + 1 =L
q Ca 2

From Lemma 3.1, the functional Iy = ® — AW satisfies the (PS)[)-condition
for all A €]0.\[.

Now, fix A < A, = min{\:, \,}. We claim that there is vy € X§(Q),
with 0 < ®(vp) < r, such that
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SUPyed—1(]—co,r|) \I/(’U,) ( ) (3 4)
r ®(vo) '
To this end, taking into account that HuHLt < ¢ilul], u € X§(Q), one
has
SUPyed—1(]—o0,r[) \Il(u) < SUPued—1(]—oco,r)) (%HUH(IJJI( HU’HLQ* Q))
r B T
SUPyed—1(]—oc0,r[) ( Hqu + *CQ* U 2:)
B r
Bej2r) i + G (2%
< 2 _ 1
< " =

Hence, one has
SUPy a1 (]—oo,r) ¥ (1) PR
— < .
r A A
Now, put a function v§ as in (2.3). By Proposition 1.1, one has
1 62 alN2eN=2(1 - o)

2(1-0  TO+Y)

where I' is the Gamma function. Moreover, one has

v0) = [ (GIE@F +ugl@l) do

d(vy) < K1K2,

> [ (G ) da
B(zo,0T) 2
1 * aN/2
> [ —|5]% 159 ) =———— N
> (08 + 1210) 7 o)
and, hence
\I](Ug) > 2(0-7—)2(1 70_)2 i|5|2’3‘ +,U,l|5|q
D(vg) — PTN=2(1 — oN)kiko \ 28 q ’
From
lim w = 400
t—0t+ t2
it follows that
(142 + ki)
lim sup > 5 = 4o0.
t—0+ 13

So, there is a § > 0 such that
1|52 15

2orp— o (EOF +uildl)

TN=2(1 — oN)k1k2 52 A
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and ®(vf) < r. Therefore,

SUPued—1(J—co,) V(1) 1 2(07)%(1 — 0)? (%’5\2: + M$\5’q>
r < TN=2(1 — oN)k1ko 52

S
g
S~—

(v

<
~ (v

)

i

with 0 < ®(v§) < r. Hence, our claim is proved.

Finally, from Theorem 2.1 then functional ® — AU admits a critical
point uy, such that %||u,,[/* > 0, which is a positive weak solution for
problem (P ,). In particular, by choosing A = 1 < A, a positive weak
solution u,, for problem (P,) is obtained. Moreover, one has

2
Slleal? <7,

from which

2
1 2\
§H’U’MH2 < 2§+; o ’
2 c2§

that is,

Now, since u,, is a global minimum for I; in ®~1(]0,7[) again from
Theorem 2.1, and v§ € ®-1(]0,7[), one has

I (uy) < Ii(v§).

(v5)
(v5)

Il(uu) < Il(’l)g) < 0.
Next, fix 0 < p1 < p2. One has

1 1 . 1
I = i | —— Ldr — —/ 1q
1(tysy) uecprflllélo,r[)(ﬂ“” 2;/9’“‘ Ty Q!u\ z

> e dr — o | Jultdz ) =T
i (Sl = o [ g [ i) = B

and the conclusion is achieved. OJ

Taking into account that

(S
g

> =1,

A
SO
> =

one has

Now, we want to find a second positive solution of the problem. The
proof of the theorem will be done in several steps.

Fix p €]0, u*[. From Theorem 1.1 there exists a positive weak solution
uy, of (P,) such that u, is a local minimum for the functional
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lul*

) = o)~ ¥w) = 55 [ Plu)ds

where F is the primitive of f(t) = t%~1 4+ ut9=1if t > 0 and f(t) = 0 if
t < 0. Now, consider the problem

(=A)v = (u, +v)%="1 - uf}fl + pu(uy + ) — pudt, in Q,
v=0, in RV \ Q.
(3.5)
Clearly, if v, is a positive weak solution to (3.5), then w, = u, + v, is a
weak solution of (P,) such that w, > w, > 0. Our aim is to prove that

(3.5) admits at least one positive weak solution. Consider the functional J
defined as

J(v) = 5~ QL(:C,U(:C))dx,
where
3
L(z,6) = /O (a, )t
and

U,t) = (u(@) + %7 = [un(@)] 571+ plu(@) + )77 = plug ()]
if t > 0 and I(z,t) = 0 if ¢ < 0. Clearly, non-zero critical points of .J are
positive weak solution of (3.5). It is easy to check that the functional J(v)
attains its absolute minimum in X at some point vy € X.

Now, we observe that 0 is a local minimum of J. Indeed, since u,, is a
local minimum of I, one has

I(uy, +v) —I(u,) >0

for all v € X§(£2) such that ||v]| < d for some 6 > 0. So, taking into account
that
| -
J() = Sl + Iy + v") = I(uy) 2 0

for all v € X5(2), where v and v~ denotes the positive part and negtive
part of v, respectively. Now, one has J(v) > 0 for all v € X§(Q2) such that
||| < 4, this result following the same as [2, Lemma 3.4].

Now, we will prove the functional J admits a positive critical point v,
for which w, = w, + v, is the second weak solution of (P,), this strategy
following from [3].

We have the following result from [3].
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LEMMA 3.2 ([3], Lemma 2.10.). Ifu = 0 is the only critical point of J
in X, then J satisfies the (PS)., condition, provided ¢y < ¢y, where cq is

defined as
c S CN/28
0 = Z7Cox
N %

Here cy: denotes the Sobolev constant defined in (1.6).

The last, which we have to show is that there exists a Palais-Smale

N/

sequence below the critical level Xc;.
lowing lemma.

% More precisely, we have the fol-

LEMmMA 3.3. If vg = 0 is the unique critical point of J, then there

exists a Palais-Smale sequence such that

. S N/2s
lim = = —Cov
i J (vp) =c< ¢ N C2

P roof. We assume for simplicity that 0 € Q. Consider the best
constant of the Sobolev inclusion defined in (1.6). By [21] for Q = RY the

best constant is attained by the following function,
c N;2s
‘/G(IE) = K1 <7€2 i |:E|2> s €> 0,
N—2s I‘( N+23) . N+2s
where K1 = 2 2 F(NEQS) and V, satisfies the problem (—A)%u = u~N-2s
2

in RY with N > 2s and

N

N 2 «
N SN T e
RN RN

N—2s

€ 2

The idea is to perform a truncation with a cutoff smooth function
p(x) > 0, such that, p(x) = 1 if |z| < R, p(z) = 0 if |z| > 2R; where
we take R > 0 in such that {z : || < 2R} C Q. More precisely, define
ve(z) = p(x)Ve(x). For e small enough, the concentration of V; will give us
that

s
sup J (tve) = cc < —cé\i/%, (3.6)
>0 N =

which is sufficient to have the result.

Now, we have the estimates,

/ ‘(*A)s/%e‘? dr = / ‘(7A)s/2‘/1 ‘2 do 4+ 0 ().
0 o

/|v€|2:d:c:/ |V1|2:d:c+0(eN)
Q RN
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and for some positive k,

e G I <
vel"dr = ke~ e loge| +O (V™ o5 loge if r= 2N,
N—-2s
Q s)r s)r
k?GN*%JrO(eN*(N = ) it r> —N]XQS.
(3.7)
The key for the estimate (3.6) is
]_ * * * N N 2

Crlw8) 2 2_2825 +up(@)s* T Cup(x) 7!, e (N 25’ N j 22)

which is a consequence of the following inequality:
By J. Garcia Azorero and A. 1. Peral [12, Lemma A4(4)] if » > 2 then
for given [ € (1,7 — 1) there exists a constant C' > —oo such that

148 — (14t +rt+rt" 1
inf{(+) (14t +rt 47 )}ZC.

t>0 t!

Now, from (3.7) we have

t% . . "
J (tve) < —/\ s/zvslzdx——*/ |ve| % dm—mltzsl/ |t da:
25 Jo Q
2=l _ 4 !
+ |C|mi® t/]vg(x)] dr.
Q

Here we use that 0 < m; = infzep,, ux(z). Then

t2 /2 2 t2: 9% 2% _1 N—2s
J(we)g—/ ‘(—A)S vl( dm——/ VA% d — myt%~Lke' 2
2 RN 2; RN

+0 (6N52S) .

Consider the function

t s/2v, | £ 2% 21
he(t) = = ‘(—A) vl( de — [ W% de — ct%Le
2 RN 2; RN

N—2s

+ O (61\7525) .
When ¢ = 0, hg attains its maximum in [0,1) at ¢ty and ho(tg) = cé\i/ % py

the relationship between V1 and the best Sobolev constant cp:. It is clear
that he(t) < ho(t); hence we conclude that
_ 5 N/2s
Iglfg( he(t) < hg (to) NCQ*
To finish the proof, we need to analyze the influence of the error term.

If we denote by t. the point where h. attains its maximum, it is easily seen
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that 0 < t. < tg and t. — tg as € — 0. Therefore, we can write t. = tgx.,
where z. — 1 as ¢ — 0. Taking into account that h.(t.) = 0, we get

toxe/ (( A)S/Qvl‘ dr —t5 " 21/ Vi[* do
RN

—23

= C (28— 1)ty a2

6

Using the precise value of tg, after some computations we arrive at

* * N—2s
1*562 -2 A:czs 3¢

(Ja |27 aa) T

— 1
(fRN |V1|2z d.’E) 25—2
By Taylor’s expansion:

(1-— xe) (27 — 2) 53 401 — ) = Az~

Therefore, 1 — Me P + o (e g ) for M = 2*
Finally, this 1dent1ty allows us to prove that

he (t0) = % N2 ofB T 40 (eNEQs) ,

and the conclusion follows. O

where

A=C(2-1)

2°

End of proof of Theorem 1.2. Assume that vg is the unique
critical point of J. Consider the function w. = r.v., with r. large enough,
such that J(we) < 0 and the mini-max value

ce = inf max J ,

‘ Y€EP t€(0,1] (v(8))
where

P={y:[0,1] — X : continuous, v(0) = 0,v(1) = w}.
N

Because vy = 0 is the local minimum, then 0 < ¢ < ch*. If ¢ > 0
the Mountain Pass Lemma by Ambrosetti and Rabinowitz, [1] gives us a
second positive critical point, in contradiction with the hypothesis. In the
case ¢. = 0, we get the same contradiction by using a result by Pucci-Serrin,

[18]. This contradiction finishes the proof. O
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