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Abstract

In this paper, the existence of two nontrivial solutions for a fractional
problem with critical exponent, depending on real parameters, is estab-
lished. The variational approach is used based on a local minimum the-
orem due to G. Bonanno. In addition, a numerical estimate on the real
parameters is provided, for which the two solutions are obtained.
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1. Introduction and main result

In this paper we consider the fractional problem{
(−Δ)su = λ(|u|2∗s−2u+ μ|u|q−2u) in Ω,

u = 0, in RN \ Ω, (Pλ,μ)

where Ω is a non-empty bounded open subset of the Euclidean space (RN , |·
|), N > 2s, with Lipshcitz boundary ∂Ω, 0 < s < 1, 2∗s = 2N

N−2s , 1 < q < 2,

λ, μ are positive parameters. Servadei and Valdinoci [21] study a fractional
problems with a critical growth, which presents several difficulties. Indeed,
the Palais-Smale condition, as well as the weak lower semi-continuity of
the associated functional may fail because the Sobolev embedding is not
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compact. To be precise, consider the problem{
(−Δ)su = |u|2∗s−2u+ g(u), in Ω,

u = 0, in RN \ Ω, (D)

where Ω is a non-empty bounded open subset of the Euclidean space
(RN , | · |), N ≥ 2s, with boundary of class C1, and g : R → R is a non-zero
continuous lower-order perturbation of |u|2∗s−2u. 0 ≤ g(u) ≤ μut for all
u ∈ R, for some μ > 0 and 0 < t < 2∗s. A typical example for g is that
g(u) = μ|u|t. Servadei and Valdinoci [21] study the problem (D) when
g ≡ 0 following the well-known nonexistence result [10]. In particular, they
established that, when g(u) = μ|u|t, problem (D) admits a solution for
suitable values of μ, provided that 1 ≤ t < 2∗s. Hence, a lower-order per-
turbation, which is linear or super-linear at zero, can reverse the situation
highlighted by Pohozaev. For other result of this type of problem, we refer
the reader to [7, 19, 15, 13, 14, 22] and references therein.

Subsequently, Barrios et al. [3] study a fractional equation with critical
growth and a sub-linear perturbation following the idea of Garćıa-Azorero
and Peral [11]. They proved that for the problem (D) with 0 < t < 1,
g(u) = μut there is Λ > 0 such that for each μ ∈]0,Λ[ the problem has at
least two weak solutions. Moreover, they also proved that if μ > Λ, the
previous problem admits no solution (see [3, Theorem 1.1]) and if μ = Λ
the previous problem admits at least one solution.

In this paper, we investigate fractional problems with critical exponent.
In this case, the Palais-Smale condition and the weak lower semi-continuity
of the associated functional may fail and direct method theorems cannot
be used to obtain nontrivial solutions. Our approach is due to Bonanno
[4, 5] to ensures the existence of one positive solution. Then, as a conse-
quence, the existence of two positive solutions are obtained. Firstly, we
give the framework of the problem, and we establish Lemma 3.1 which is
fundamental in the proof of Theorem 1.1.

The nonlocal operator (−Δ)s is defined as follows:

(−Δ)su(x) := C(N, s) lim
ε→0+

∫
RN\Bε(x)

u(x)− u(y)

|x− y|N+2s
dy, x ∈ RN ,

where Bε(x) is the ball centered at x ∈ RN with radius ε and C(N, s) is
the following (positive) normalization constant:

C(N, s) :=

(∫
RN

1− cos(ζ1)

|ζ|n+2s
dζ

)
,

with ζ = (ζ1, ζ
′), ζ ′ ∈ RN−1, see Section 2 of [17].

Denote by Hs(RN ) the usual fractional Sobolev space endowed with
the so-called Gagliardo norm
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‖g‖Hs(RN ) = ‖g‖L2(RN ) +

(∫
RN×RN

|g(x) − g(y)|2
|x− y|n+2s

dx dy

)1/2

, (1.1)

while Xs
0(Ω) is the function space defined as

Xs
0(Ω) =

{
u ∈ Hs(RN ) : u = 0 a.e. in RN \ Ω} . (1.2)

We refer to [20] for a general definition of Xs
0(Ω) and its properties.

We can consider the following norm

‖v‖ =

(∫
RN×RN

|v(x)− v(y)|2
|x− y|n+2s

dx dy

)1/2

.

We also recall that (Xs
0(Ω), ‖ · ‖) is a Hilbert space, with scalar product

(u, v) =

∫
RN×RN

(u(x)− u(y)) (v(x)− v(y))

|x− y|n+2s
dx dy . (1.3)

See for instance [20, Lemma 7].
Observe that by [9, Proposition 3.6] we have the following identity

‖u‖ = ‖(−Δ)s/2u‖L2(RN ). (1.4)

We say that u ∈ Xs
0(Ω) is a weak solution of (Pλ,μ) if for every ϕ ∈ Xs

0(Ω),
one has ∫

RN×RN

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x− y|n+2s
dxdy

= λμ

∫
Ω
uq−2uϕdx+ λ

∫
Ω
u2

∗
s−2uϕdx.

Let

Φ(u) =
||u||2
2

, Ψ(u) =

∫
Ω

(
1

2∗s
|u(x)|2∗s + μ

1

q
|u(x)|q

)
dx (1.5)

for all u ∈ Xs
0(Ω). Recall that, by Sobolev embedding

||u||Lt(Ω) ≤ ct||u||, u ∈ Xs
0(Ω), t ∈ [1, 2∗s ].

The best Sobolev constant is

c2∗s = 2−2sπ−sΓ((N − 2s)/2)

Γ((N + 2s)/2)

(
Γ(N)

Γ(N/2)

)2s/N

, (1.6)

which obtained in [8]. Due to (1.6), as a simple consequence of Hölder’s
inequality, it follows that

ct ≤ meas(Ω)
2∗s−t

2∗st 2−2sπ−sΓ((N − 2s)/2)

Γ((N + 2s)/2)

(
Γ(N)

Γ(N/2)

)2s/N

, (1.7)
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where “meas(Ω)” denotes the Lebesgue measure of the set Ω and that the
embedding Xs

0(Ω) ↪→ Lt(Ω) is not compact if t = 2∗s.
Now, fix r > 0 and put

λ∗
r =

r

μ
q c

q
q(2r)q/2 +

(2r)2
∗
s/2

2∗s
c
2∗s
2∗s

, λ̃r =
1

c
2∗s
2∗s

( s

2rN

)N−2s
2s

,

λ̄r = min{λ∗
r , λ̃r},

where c2∗s , cq are given by (1.6) and (1.7).

The main result of our paper is the following theorem.

Theorem 1.1. Fix q ∈]1, 2[. Then, there exists μ∗ > 0, where

μ∗ =
(

q

cqq

1

2
q+2
2

)⎛⎜⎝min

⎧⎪⎨⎪⎩
⎛⎝ 2∗s
2

2∗s+2
2 c

2∗s
2∗s

⎞⎠ 2
2∗s−2

;
s

3N

(
1

c
2∗s
2∗s

)N−2s
2s

⎫⎪⎬⎪⎭
⎞⎟⎠

2−q
2

and cq, c2∗s are given by (1.7) and (1.6), such that for each λ ∈]0, λr[ and
μ ∈]0, μ∗[ problem (Pλ,μ) admits at least one positive weak solution. Let
λ = 1 and uμ be the positive weak solution. Then,

||uμ|| <
(

2∗s
c
2∗s
2∗s

) 1
2∗s−2

,

and the mapping

μ �→ 1

2
‖uμ‖2 − 1

2∗s

∫
Ω
|uμ|2∗sdx− μ

q

∫
Ω
|uμ|qdx

is negative and strictly decreasing in ]0, μ∗[.

The proof of Theorem 1.1 was obtained by the variational method,
that is, via a local minimum result Theorem 2.1. We also observe that, [3,
Theorem 2.1] establishes, in particular, the existence of Λ > 0 such that
problem (Pλ,μ) admits a solution for each μ ∈]0,Λ] and no solution for
μ > Λ. However, no estimate of Λ was pointed out in [3].

Finally, we obtain the following existence result of two solutions, where
an estimate of parameters is also pointed out.

Theorem 1.2. Fix q ∈]1, 2[. Then there exists μ∗ > 0, where

μ∗ =
(

q

cqq

1

2
q+2
2

)⎛⎜⎝min

⎧⎪⎨⎪⎩
⎛⎝ 2∗s
2

2∗s+2
2 c

2∗s
2∗s

⎞⎠ 2
2∗s−2

;
1

3N

(
1

c
2∗s
2∗s

)N−2
2

⎫⎪⎬⎪⎭
⎞⎟⎠

2−q
2
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and cq, c2 are given by (1.7) and (1.6), such that for each μ ∈]0, μ∗[ problem{
(−Δ)su = |u|2∗s−2u+ μ|u|q−2u, in Ω,

u = 0, in RN \ Ω, (Pμ)

admits at least two positive solutions uμ and wμ such that ‖uμ‖ <

(
2∗s
c
2∗s
2∗s

) 1
2∗s−2

and wμ > uμ.

We observe that the solution obtained in Theorem 1.1 is a local mini-
mum for considered functional. So, to obtain the second solution is enough
to apply the mountain pass theorem arguing as in part of the proof of [3,
Theorem 1.1].

Example 1.1. Fix N = 3, s = 1/2, and let Ω =
{
x ∈ R3 : |x| ≤ 1

}
.

Then, the problem{
(−Δ)1/2u = |u|3 + μ|u|1/2, in Ω,

u = 0, in RN \Ω,
admits at least two solutions with μ ∈]0, π19/6

64/3
[. Actually, we have 2∗s = 3,

q = 1/2, c2∗s =
(

1
2π2

)1/3
, cq =

(
1
6π

)1/3
, s
3N

(
1

c
2∗s
2∗s

)N−2s
2s

= 2π4

9 ,(
2∗s

2
2∗s+2

2 c
2∗s
2∗s

) 2
2∗s−2

= 9π4

8 . So this result is obtained by Theorem 1.2.

2. Preliminaries

We present some definitions on differentiability of functionals and refer
the reader to [4], Section 2. Let (X, ·) be a real Banach space. We denote the
dual space of X by X∗, while 〈·, ·〉 stands for the duality pairing between
X∗ and X. A functional I : X → R is called Gâteaux differentiable at
u ∈ X if there is ϕ ∈ X∗ (denoted by I ′(u)) such that

lim
t→0+

I(u+ tv)− I(u)

t
= 〈I ′(u), v〉, ∀v ∈ X.

It is called continuously Gâteaux differentiable if it is Gâteaux differentiable
for any u ∈ X and the functional u �→ I(u) is a continuous map from X to
its dual X∗.

Now, let Φ, Ψ : X → R be two continuously Gâteaux differentiable
functionals and put
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I = Φ−Ψ.

Fix r1, r2 ∈ [−∞,+∞], with r1 < r2, and we say that the functional I
verify the Palais-Smale condition cut off lower at r1 and upper at r2 (in

short (PS)
[r2]
[r1]

-condition) if any sequence {un} such that

(1) {I(un)} is bounded,
(2) limn→+∞ ||I ′(un)||X∗ = 0,
(3) r1 < Φ(un) < r2 ∀n ∈ N,

has a convergent subsequence.
When we fix r2 = −∞, that is, Φ(un) < r2 ∀n ∈ N, we denote this type

of Palais-Smale condition with (PS)[r2]. When, in addition, r2 = +∞, it is
the classical Palais-Smale condition.

Now, we recall the following local minimum theorem.

Theorem 2.1 ([5], Theorem 3.3). Let X be a real Banach space and
let Φ, Ψ : X → R be two continuously Gâteaux differentiable functionals
such that infX Φ = Φ(0) = Ψ(0) = 0. Assume that there are r ∈ R and
ũ ∈ X, with 0 < Φ(ũ) < r, such that

supu∈Φ−1(]−∞,r[)Ψ(u)

r
<

Ψ(ũ)

Φ(ũ)
(2.1)

and, for each λ ∈
]
Φ(ũ)
Ψ(ũ) ,

r
supu∈Φ−1(]−∞,r[)Ψ(u)

[
, the functional Iλ = Φ − λΨ

satisfies (PS)[r]-condition.

Then, for each λ ∈
]
Φ(ũ)
Ψ(ũ) ,

r
supu∈Φ−1(]−∞,r[)Ψ(u)

[
, there is uλ ∈ Φ−1(]0, r[)

(hence, uλ �= 0) such that Iλ(uλ) ≤ Iλ(ũ) for all u ∈ Φ−1(]0, r[) and I ′(uλ) =
0.

The following computations are useful in proving some estimates on the
norm of some truncated functions. Precisely, fix an element x0 ∈ Ω (where
Ω ⊂ RN is of class C1, and choose τ > 0 in such a way that

B(x0, τ) := {x ∈ RN : |x− x0| ≤ τ} ⊂ Ω, (2.2)

Now let σ ∈ (0, 1) and t0 ∈ R, and define uσt0 ∈ Hs(RN ) as follows:

uσt0 :=

⎧⎪⎨⎪⎩
0 if x ∈ RN \B(x0, τ)

t0
(1−σ)τ (τ − |x− x0|) if x ∈ B(x0, τ) \B(x0, στ)

t0 if x ∈ B(x0, στ),

(2.3)

where B(x0, r) denotes the N -dimensional ball with center x0 ∈ Ω and
radius r > 0. Set
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ν0 := 1 +
1

λ̃1

, (2.4)

where

λ̃1 := inf
u∈H1

0 (Ω)\{0}

‖∇u‖2L2(Ω)

‖u‖2
L2(Ω)

.

The following result holds:

Proposition 2.1 ([16], Proposition 1.16). Let σ, s ∈ (0, 1), t0 ∈ R,
and τ be such that (2.2) is verified. Let uσt0 be the function given in (2.3),

SN−2 be the Lebesgue measure of the unit sphere in RN−1, and Γ(t) :=∫ +∞
0 zt−1e−zdz t > 0, be the usual Gamma function. Then uσt0 ∈ Hs(RN ),
and one has(∫

RN×RN

|uσt0(x)− uσt0(y)|2
|x− y|N+2s

dxdy

)1/2

<
|t0|

(1− σ)

√
πN/2τN−2(1− σN )

Γ(1 + N
2 )

κ1κ2,

where

κ1 :=

⎧⎪⎪⎨⎪⎪⎩
2ν0 if N = 1(
π + 4

1+2s

)
ν0 if N = 2

Sn−2

(
π
2 + 2

1+2s

)
ν0 if N ≥ 3

and κ2 :=
1

2(1 − s)
+

2

s

with ν0 given in (2.4).

3. Proof of the main results

Firstly, we establish the following result.

Lemma 3.1. Let Φ and Ψ be the functional defined in (1.5) and fix
r > 0. Then, for each λ ∈]0, λ̄r[ the functional Iλ = Φ − λΨ satisfies the
(PS)[r]-condition.

P r o o f. Fix λ as in the conclusion and let {un} ⊆ Xs
0(Ω) be a se-

quence such that

(1) {Iλ(un)} is bounded,
(2) limn→+∞ ||I ′λ(un)||Xs

0 (Ω)∗ = 0,

(3) Φ(un) < r ∀n ∈ N.

In particular, from Φ(un) < r for all n ∈ N we obtain that {un} is bounded
in Xs

0(Ω). So, going to a subsequence if necessary. We can assume
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un ⇀ u0 in Xs
0(Ω),

un → u0 in Lt(Ω),

un → u0 a.e. on Ω,

where 1 < t < 2∗s and, taking (1) into account, limn→∞ Iλ(un) = c. More-
over, {un} is bounded in L2∗s (Ω) by Sobolev embedding.

First step. We prove that u0 is a weak solution of problem (Pλ,μ).

Since {un} is bounded in L2∗s (Ω), it follows that {u2∗s−1
n } is bounded in

L
2∗s

2∗s−1 (Ω). Indeed, one has∫
Ω
|u2∗s−1

n |
2∗s

2∗s−1 dx ≤
∫
Ω
|un|2∗sdx.

Therefore, it follows that

u2
∗
s−1

n ⇀ u
2∗s−1
0 in L

2∗s
2∗s−1 .

In fact, since un → u0 a.e. x ∈ Ω, we obtain u
2∗s−1
n → u

2∗s−1
0 a.e. x ∈ Ω,

and that, together with the boundedness of {u2∗s−1
n } in L

2∗s
2∗s−1 , ensures the

weak convergence of u
2∗s−1
n to u

2∗s−1
0 in L

2∗s
2∗s−1 (see Willem [6, Remark (iii)]).

Moreover, since un → u0 in Lq(Ω), define the composition operator Au =
uq−1 from Lq to Lq/(q−1), one has that

uq−1
n → uq−1

0 in L
q

q−1 (Ω).
So, in particular,

uq−1
n ⇀ uq−1

0 in L
q

q−1 (Ω).

Due to what was seen before, that is,

un ⇀ u0 in Xs
0(Ω),

u2
∗
s−1

n ⇀ u
2∗s−1
0 in L

2∗s
2∗s−1 ,

uq−1
n ⇀ uq−1

0 in L
q

q−1 ,

one has

lim
n→∞

(∫
RN×RN

(un(x)− un(y))(v(x) − v(y))

|x− y|n+2s
dxdy

−λ

∫
Ω
un(x)

2∗s−1v(x)dx− λμ

∫
Ω
un(x)

q−1v(x)dx

)
=

∫
RN×RN

(u0(x)− u0(y))(v(x) − v(y))

|x− y|n+2s
dxdy − λ

∫
Ω
u0(x)

2∗s−1v(x)dx

− λμ

∫
Ω
u0(x)

q−1v(x)dx
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for all v ∈ Xs
0(Ω). Therefore, owing to (2) we obtain that

0 =

∫
RN×RN

(u0(x)− u0(y))(v(x) − v(y))

|x− y|n+2s
dxdy − λ

∫
Ω
u
2∗s−1
0 v(x)dx

−λμ

∫
Ω
uq−1
0 v(x)dx

for all v ∈ Xs
0(Ω), that is, u0 is a weak solution of (Pλ,μ).

Second step. We prove that

Iλ(u0) > −r. (3.1)

In fact, by Sobolev embeddings

Ψ(u) =

∫
Ω

(
1

2∗s
|u(x)|2∗s + μ

1

q
|u(x)|q

)
dx

=
μ

q
‖u‖qLq(Ω) +

1

2∗s
||u||2∗s

L2∗s (Ω)

≤ μ

q
cqq||u||q +

1

2∗s
c
2∗s
2∗s ||u||

2∗s

and

Ψ(u) ≤ μ

q
cqq||u||q +

1

2∗s
c
2∗s
2∗s ||u||

2∗s , ∀u ∈ Xs
0(Ω).

Therefore, for all u ∈ Xs
0(Ω) such that ||u|| ≤ √

2r one has

Iλ(u) = Φ(u)− λΨ(u) ≥ ||u||2
2

− λ

(
μ

q
cqq||u||q +

1

2∗s
c
2∗s
2∗s ||u||

2∗s
)

≥ −λ

(
μ

q
cqq(2r)

q/2 +
1

2∗s
c
2∗s
2∗s (2r)

2∗s/2
)

= −λ
r

λ∗
r

> −r.

So, taking into account (3) and that Φ is sequentially weakly lower-semicontinuous,
we have

||u0|| ≤ lim inf
n→∞ ||un|| ≤

√
2r

and, hence,

Iλ(u0) > −r.

Third step. Put vn = un − u0. We point that one has

c = Φ(u0)− λΨ(u0) + lim
n→∞

(
1

2
||vn||2 − λ

∫
Ω

1

2∗s
|vn|2∗sdx

)
. (3.2)

In fact, one has

||un||2 = ||vn + u0||2 = ||vn||2 + ||u0||2 + 2(vn, u0),

so, it follows that

||un||2 = ||vn||2 + ||u0||2 + o(1).
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Moreover, the Brezis-Lieb Lemma (see [6, Theorem 1]), leads to∫
Ω
|un|2∗sdx =

∫
Ω
|vn|2∗sdx+

∫
Ω
|u0|2∗sdx+ o(1).

Since un → u0 in Lq(Ω), one has∫
Ω
|un|qdx =

∫
Ω
|u0|qdx+ o(1).

Hence, by

c = lim
n→∞(Φ(un)− λΨ(un)),

one has

c = Φ(un)− λΨ(un) + o(1)

=
1

2
||un||2 − λ

1

2∗s

∫
Ω
|un|2∗sdx− λμ

1

q

∫
Ω
|un|qdx+ o(1)

=
1

2
||vn||2 + 1

2
||u0||2 − λ

1

2∗s

∫
Ω
|vn|2∗sdx− λ

1

2∗s

∫
Ω
|u0|2∗sdx

− λμ
1

q

∫
Ω
|u0|qdx+ o(1)

= Φ(u0)− λΨ(u0) +
1

2
||vn||2 − λ

1

2∗s

∫
Ω
|vn|2∗sdx+ o(1).

Hence, (3.2) is proved.

Fourth step. We prove the following

lim
n→∞

(
||vn||2 − λ

∫
Ω
|vn|2∗sdx

)
= 0. (3.3)

From (2) we have limn→∞〈I ′(un), un〉 = 0. Then,

‖un‖2 − λ

∫
Ω
|un|2∗s−1undx− λμ

∫
Ω
|un|q−1undx = o(1).

Therefore, as seen in the proof of (3.2). Taking into account that∫
Ω
|un|q−1undx =

∫
Ω
|u0|q−1u0dx+ o(1),

owing to the fact that |un|q−1 → |u0|q−1 in L
q

q−1 (Ω) (by the first step) and
un → u0 in Lq(Ω), one has

||vn||2 + ||u0||2 − λ

∫
Ω
|vn|2∗sdx− λ

∫
Ω
|u0|2∗sdx− λμ

∫
Ω
|u0|qdx = o(1),

that is,

||vn||2 − λ

∫
Ω
|vn|2∗sdx = −||u0||2 + λ

∫
Ω
|u0|2∗sdx+ λμ

∫
Ω
|u0|qdx+ o(1).
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Since u0 is a weak solution of (Pλ,μ), one has

||u0||2 − λ

∫
Ω
|u0|2∗sdx− λμ

∫
Ω
|u0|qdx = 0.

Therefore,

||vn||2 − λ

∫
Ω
|vn|2∗sdx = o(1),

and (3.3) is proved.

Conclusion. Finally, we observe that ||vn||2 is bounded in R since {un}
is bounded in Xs

0(Ω). Thus, there is a subsequence, called again ||vn||2,
which converges to b ∈ R. Hence,

lim
n→∞ ||vn||2 = b.

If b = 0 we have proved the lemma. In fact, we have that limn→∞ ||un −
u0|| = 0, that is, un strongly converges to u0 in Xs

0(Ω).
Assume that b �= 0, arguing by contradiction. From (3.3) we obtain

lim
n→∞λ

∫
Ω
|vn|2∗sdx = b.

Now, taking into account that∫
Ω
|vn|2∗sdx ≤ c

2∗s
2∗s ||vn||

2∗s ,

and passing to the limit, one has b
λ ≤ c

2∗s
2∗s b

2∗s/2 and then, since b �= 0, one

has

b ≥
(
1

λ

)N−2s
2s
(

1

c2∗s

)N/s

.

Now, taking (3.1) in to account, from (3.2) we have

c = Φ(u0)− λΨ(u0) +
1

2
b− 1

2∗s
b > −r +

(
1

2
− 1

2∗s

)
b = −r +

bs

N
,

that is,

c > −r +
bs

N
.

On the other hand, since 1
2∗s
|ξ|2∗s + μ1

q |ξ|q ≥ 0 for all ξ ∈ R, one has

Φ(un)− λΨ(un) < r

for all n ∈ N. Hence, we have

c ≤ r.
Thus,

−r +
sb

N
< c ≤ r.

It follows that bs
N < 2r, that is,

b <
2rN

s
.
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Therefore, one has (
1

λ

)N−2s
2s
(

1

c2∗s

)N/s

≤ b <
2rN

s
,

so, it follows that 1
λ < (2rNs c

N/s
2∗s )

2s
N−2s . Hence, one has

λ >
1

c
2∗s
2∗s

( s

2rN

)N−2s
2s

= λ̃r,

and this is a contradiction. �

Now, we give the proof of Theorem 1.1.

P r o o f o f T h e o r em 1.1. Let

r = min

⎧⎪⎨⎪⎩
⎛⎝ 2∗s
2

2∗s+2
2 c

2∗s
2∗s

⎞⎠ 2
2∗s−2

;
1

3N

(
1

c
2∗s
2∗s

)N−2
2

⎫⎪⎬⎪⎭
and

μ∗ =
(

q

cqq

1

2
q+2
2

)
r

2−q
2 .

Fix 0 < μ < μ∗, and one has λ̄r > 1. Indeed,

λ̃r =
1

c
2∗s
2∗s

( s

2rN

)N−2s
2s

≥ 1

c
2∗s
2∗s [(2N)/s]

2s
N−2s

⎡⎣ s
3N

(
1

c
2∗s
2∗s

)N−2s
2s

⎤⎦
2s

N−2s

=

(
3

2

) 2s
N−2s

> 1

and

λ∗
r =

1

μ
q c

q
q2q/2r

q−2
2 + 22

∗
s/2

2∗s
c
2∗s
2∗sr

2∗s−2
2

≥ 1

μ
q c

q
q2q/2r

q−2
2 + 22

∗
s/2

2∗s
c
2∗s
2∗s

⎡⎣( 2∗s

2
2∗s+2

2 c
2∗s
2∗s

) 2
2∗s−2

⎤⎦
2∗s−2

2

>
1

μ∗
q cqq2q/2r

q−2
2 + 1

2

= 1.

From Lemma 3.1, the functional Iλ = Φ−λΨ satisfies the (PS)[r]-condition
for all λ ∈]0.λ̄r[.

Now, fix λ < λ̄r = min{λ∗
r , λ̃r}. We claim that there is v0 ∈ Xs

0(Ω),
with 0 < Φ(v0) < r, such that
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supu∈Φ−1(]−∞,r[)Ψ(u)

r
<

Ψ(v0)

Φ(v0)
. (3.4)

To this end, taking into account that ||u||Lt(Ω) ≤ ct||u||, u ∈ Xs
0(Ω), one

has

supu∈Φ−1(]−∞,r[)Ψ(u)

r
≤

supu∈Φ−1(]−∞,r[)

(
μ
q ‖u‖qLq(Ω) +

1
2∗s
‖u‖2∗s

L2∗s (Ω)

)
r

≤
supu∈Φ−1(]−∞,r[)

(
μ
q c

q
q‖u‖q + 1

2∗s
c
2∗s
2∗s‖u‖2

∗
s

)
r

≤
μ
q c

q
q(2r)q/2 +

1
2∗s
c
2∗s
2∗s (2r)

2∗s/2

r
=

1

λ∗
r

.

Hence, one has
supu∈Φ−1(]−∞,r[)Ψ(u)

r
≤ 1

λ∗
r

<
1

λ
.

Now, put a function vσδ as in (2.3). By Proposition 1.1, one has

Φ(vσδ ) <
1

2

δ2

(1− σ)2
πN/2τN−2(1− σN )

Γ(1 + N
2 )

κ1κ2,

where Γ is the Gamma function. Moreover, one has

Ψ(vσδ ) =

∫
Ω

(
1

2∗s
|vσδ (x)|2

∗
s + μ

1

q
|vσδ (x)|q

)
dx

≥
∫
B(x0,στ)

(
1

2∗s
|δ|2∗s + μ

1

q
|δ|q
)
dx

≥
(

1

2∗s
|δ|2∗s + μ

1

q
|δ|q
)

πN/2

Γ(1 +N/2)
(στ)N

and, hence
Ψ(vσδ )

Φ(vσδ )
≥ 2(στ)2(1− σ)2

δ2τN−2(1− σN )κ1κ2

(
1

2∗s
|δ|2∗s + μ

1

q
|δ|q
)
.

From

lim
t→0+

|t|q
t2

= +∞
it follows that

lim sup
t→0+

(
1
2∗s
|t|2∗s + μ1

q |t|q
)

t2
= +∞.

So, there is a δ̄ > 0 such that

2(στ)2(1− σ)2

τN−2(1− σN )κ1κ2

(
1
2∗s
|δ̄|2∗s + μ1

q |δ̄|q
)

δ̄2
>

1

λ
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and Φ(vσ
δ̄
) < r. Therefore,

supu∈Φ−1(]−∞,r[)Ψ(u)

r
<

1

λ
<

2(στ)2(1− σ)2

τN−2(1− σN )κ1κ2

(
1
2∗s
|δ̄|2∗s + μ1

q |δ̄|q
)

δ̄2

≤ Ψ(vσ
δ̄
)

Φ(vσ
δ̄
)

with 0 < Φ(vσ
δ̄
) < r. Hence, our claim is proved.

Finally, from Theorem 2.1 then functional Φ − λΨ admits a critical
point uλ,μ such that 1

2 ||uλ,μ‖2 > 0, which is a positive weak solution for

problem (Pλ,μ). In particular, by choosing λ = 1 < λ̄r, a positive weak
solution uμ for problem (Pμ) is obtained. Moreover, one has

1

2
‖uμ‖2 < r,

from which

1

2
‖uμ‖2 <

⎛⎝ 2∗s
2

2∗s+2
2 c

2∗s
2∗s

⎞⎠ 2
2∗s−2

,

that is,

‖uμ‖ <

(
2∗s
c
2∗s
2∗s

) 1
2∗s−2

.

Now, since uμ is a global minimum for I1 in Φ−1(]0, r[) again from
Theorem 2.1, and vσ

δ̄
∈ Φ−1(]0, r[), one has

I1(uμ) ≤ I1(v
σ
δ̄ ).

Taking into account that
Ψ(vσ

δ̄
)

Φ(vσ
δ̄
)
>

1

λ
= 1,

one has

I1(uμ) ≤ I1(v
σ
δ̄ ) < 0.

Next, fix 0 < μ1 < μ2. One has

I1(uμ1) = min
u∈Φ−1(]0,r[)

(
1

2
‖u‖2 − 1

2∗s

∫
Ω
|u|2∗sdx− μ1

1

q

∫
Ω
|u|qdx

)
> min

u∈Φ−1(]0,r[)

(
1

2
‖u‖2 − 1

2∗s

∫
Ω
|u|2∗sdx− μ2

1

q

∫
Ω
|u|qdx

)
= I1(uμ2)

and the conclusion is achieved. �
Now, we want to find a second positive solution of the problem. The

proof of the theorem will be done in several steps.
Fix μ ∈]0, μ∗[. From Theorem 1.1 there exists a positive weak solution

uμ of (Pμ) such that uμ is a local minimum for the functional
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I(u) = Φ(u)−Ψ(u) =
‖u‖2
2

−
∫
Ω
F (u(x))dx,

where F is the primitive of f(t) = t2
∗
s−1 + μtq−1 if t ≥ 0 and f(t) = 0 if

t < 0. Now, consider the problem{
(−Δ)sv = (uμ + v)2

∗
s−1 − u

2∗s−1
μ + μ(uμ + v)q−1 − μuq−1

μ , in Ω,

v = 0, in RN \ Ω.
(3.5)

Clearly, if vμ is a positive weak solution to (3.5), then wμ = uμ + vμ is a
weak solution of (Pμ) such that wμ > uμ > 0. Our aim is to prove that
(3.5) admits at least one positive weak solution. Consider the functional J
defined as

J(v) =
‖v‖2
2

−
∫
Ω
L(x, v(x))dx,

where

L(x, ξ) =

∫ ξ

0
l(x, t)dt

and

l(x, t) = (uμ(x) + t)2
∗
s−1 − [uμ(x)]

2∗s−1 + μ(uμ(x) + t)q−1 − μ [uμ(x)]
q−1

if t ≥ 0 and l(x, t) = 0 if t < 0. Clearly, non-zero critical points of J are
positive weak solution of (3.5). It is easy to check that the functional J(v)
attains its absolute minimum in X at some point v0 ∈ X.

Now, we observe that 0 is a local minimum of J . Indeed, since uμ is a
local minimum of I, one has

I(uμ + v)− I(uμ) ≥ 0

for all v ∈ Xs
0(Ω) such that ‖v‖ < δ for some δ > 0. So, taking into account

that

J(v) =
1

2
‖v−‖2 + I(uμ + v+)− I(uμ) ≥ 0

for all v ∈ Xs
0(Ω), where v+ and v− denotes the positive part and negtive

part of v, respectively. Now, one has J(v) ≥ 0 for all v ∈ Xs
0(Ω) such that

‖v‖ < δ, this result following the same as [2, Lemma 3.4].
Now, we will prove the functional J admits a positive critical point vν

for which wν = uν + vν is the second weak solution of (Pμ), this strategy
following from [3].

We have the following result from [3].
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Lemma 3.2 ([3], Lemma 2.10.). If u = 0 is the only critical point of J
in X, then J satisfies the (PS)c1 condition, provided c1 < c0, where c0 is
defined as

c0 =
s

N
c
N/2s
2∗s .

Here c2∗s denotes the Sobolev constant defined in (1.6).

The last, which we have to show is that there exists a Palais-Smale

sequence below the critical level s
N c

N/2s
2∗s . More precisely, we have the fol-

lowing lemma.

Lemma 3.3. If v0 = 0 is the unique critical point of J , then there
exists a Palais-Smale sequence such that

lim
n→∞J (vn) = c < c0 =

s

N
c
N/2s
2∗s .

P r o o f. We assume for simplicity that 0 ∈ Ω. Consider the best
constant of the Sobolev inclusion defined in (1.6). By [21] for Ω = RN the
best constant is attained by the following function,

Vε(x) = K1

(
ε

ε2 + |x|2
)N−2s

2

, ε > 0,

where K1 = 2
N−2s

2
Γ(N+2s

2 )
Γ(N−2s

2 )
and Vε satisfies the problem (−Δ)su = u

N+2s
N−2s

in RN with N > 2s and

c
N
2s
2∗s =

∫
RN

∣∣∣(−Δ)s/2V1

∣∣∣2 dx =

∫
RN

|V1|2
∗
s dx,

Vε(x) =

(
ε

ε2 + |x|2
)N−2s

2

, ε > 0.

The idea is to perform a truncation with a cutoff smooth function
ρ(x) ≥ 0, such that, ρ(x) = 1 if |x| < R, ρ(x) = 0 if |x| > 2R; where
we take R > 0 in such that {x : |x| ≤ 2R} ⊂ Ω. More precisely, define
vε(x) = ρ(x)Vε(x). For ε small enough, the concentration of Vε will give us
that

sup
t≥0

J (tvε) = cε <
s

N
c
N/2s
2∗s , (3.6)

which is sufficient to have the result.
Now, we have the estimates,∫

Ω

∣∣∣(−Δ)s/2vε

∣∣∣2 dx =

∫
RN

∣∣∣(−Δ)s/2V1

∣∣∣2 dx+O
(
εN−2s

)
,∫

Ω
|vε|2

∗
s dx =

∫
RN

|V1|2
∗
s dx+O

(
εN
)
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and for some positive k,

∫
Ω
|vε|r dx =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
kε

(N−2s)r
2 +O

(
ε
(N−2s)r

2

)
if r < N

N−2s ,

kεN− (N−2s)r
2 | log ε|+O

(
εN− (N−2s)r

2 | log ε|
)

if r = N
N−2s ,

kεN− (N−2s)r
2 +O

(
εN− (N−2s)r

2

)
if r > N

N−2s .

(3.7)
The key for the estimate (3.6) is

Gλ(x, s) ≥ 1

2∗s
s2

∗
s + uλ(x)s

2∗s−1 +Cuλ(x)
2∗s−lsl, l ∈

(
N

N − 2s
,
N + 2s

N − 2s

)
,

which is a consequence of the following inequality:
By J. Garćıa Azorero and A. I. Peral [12, Lemma A4(4)] if r > 2 then

for given l ∈ (1, r − 1) there exists a constant C > −∞ such that

inf
t>0

{
(1 + t)r − (1 + tr + rt+ rtr−1

)
tl

}
≥ C.

Now, from (3.7) we have

J (tvε) ≤ t2

2

∫
Ω
|(−Δ)s/2vε|2dx− t2

∗
s

2∗s

∫
Ω
|vε|2

∗
s dx−m1t

2∗s−1

∫
Ω
|vε|2

∗
s−1 dx

+ |C|m2∗s−l
1 − tl

∫
Ω
|vε(x)|l dx.

Here we use that 0 < m1 = infx∈B2R
uλ(x). Then

J (tvε) ≤ t2

2

∫
RN

∣∣∣(−Δ)s/2V1

∣∣∣2 dx− t2
∗
s

2∗s

∫
RN

|V1|2
∗
s dx−m1t

2∗s−1kε
N−2s

2

+O
(
ε
N−2s

2

)
.

Consider the function

hε(t) =
t2

2

∫
RN

∣∣∣(−Δ)s/2V1

∣∣∣2 dx− t2
∗
s

2∗s

∫
RN

|V1|2
∗
s dx− Ct2

∗
s−1ε

N−2s
2

+O
(
ε
N−2s

2

)
.

When ε = 0, h0 attains its maximum in [0, 1) at t0 and h0(t0) =
s
N c

N/2s
2∗s by

the relationship between V1 and the best Sobolev constant c2∗s . It is clear
that hε(t) < h0(t); hence we conclude that

max
t>0

hε(t) < h0 (t0) =
s

N
c
N/2s
2∗s .

To finish the proof, we need to analyze the influence of the error term.
If we denote by tε the point where hε attains its maximum, it is easily seen
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that 0 < tε < t0 and tε → t0 as ε → 0. Therefore, we can write tε = t0xε,
where xε → 1 as ε → 0. Taking into account that h′ε(tε) = 0, we get

t0xε

∫
RN

∣∣∣(−Δ)s/2V1

∣∣∣2 dx− t
2∗s−1
0 x2

∗
s−1

ε

∫
RN

|V1|2
∗
s dx

= C (2∗s − 1) t
2∗s−2
0 x2

∗
s−2

ε ε
N−2s

2 .

Using the precise value of t0, after some computations we arrive at

1− x2
∗
s−2

ε = Ax2
∗
s−3

ε ε
N−2s

2s ,
where

A = C (2∗s − 1)

(∫
RN

∣∣(−Δ)s/2V1

∣∣2 dx) −1
2∗s−1

(∫
RN |V1|2∗s dx

)1− 1
2∗s−2

.

By Taylor’s expansion:

(1− xε) (2
∗
s − 2) x2

∗
s−3

ε + o (1− xε) = Ax2
∗
s−3

ε ε
N−2s

2 .

Therefore, 1− xε = Mε
N−2s

2 + o
(
ε
N−2s

2

)
, for M = A

2∗s−2 .

Finally, this identity allows us to prove that

hε (tε) =
s

N
c
N/2s
2∗s − Ct

2∗s−1
0 ε

N−2s
2 +O

(
ε
N−2s

2

)
,

and the conclusion follows. �

End o f p r o o f o f T h e o r em 1.2. Assume that v0 is the unique
critical point of J . Consider the function wε = rεvε, with rε large enough,
such that J(wε) < 0 and the mini-max value

cε = inf
γ∈P

max
t∈[0,1]

J(γ(t)),

where
P = {γ : [0, 1] −→ X : continuous, γ(0) = 0, γ(1) = wε} .

Because v0 = 0 is the local minimum, then 0 ≤ cε < s
N c

N
2s
2∗s . If cε > 0

the Mountain Pass Lemma by Ambrosetti and Rabinowitz, [1], gives us a
second positive critical point, in contradiction with the hypothesis. In the
case cε = 0, we get the same contradiction by using a result by Pucci-Serrin,
[18]. This contradiction finishes the proof. �
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[5] G. Bonanno, G. D’Agùı, and D. O’Regan, A local minimum theorem
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[11] J. Garćıa-Azorero and A. I. Peral, Multiplicity of solutions for elliptic
problems with critical exponent or with a nonsymmetric term. Trans.
Amer. Math. Soc. 323, No 2 (1991), 877–895.
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