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Abstract

We review some fractional free boundary problems that were recently
considered for modeling anomalous phase-transitions. All problems are of
Stefan type and involve fractional derivatives in time according to Caputo’s
definition. We survey the assumptions from which they are obtained and
observe that the problems are nonequivalent though all of them reduce to
a classical Stefan problem when the order of the fractional derivatives is
replaced by one. We further show that a simple heuristic approach built
upon a fractional version of the energy balance and the classical Fourier’s
law leads to a natural generalization of the classical Stefan problem in which
time derivatives are replaced by fractional ones.
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1. Introduction

This note addresses time-fractional free boundary problems of Stefan
type that were recently considered in the literature as possible models for
anomalous phase-transitions. Some of them consist simply of a Stefan prob-
lem in which the usual time derivatives are replaced by fractional ones,
whereas others involve extra assumptions or include new terms when com-
pared with a classical Stefan problem. All of them reduce to a usual Stefan
problem when the fractional order of time derivatives is replaced by one.
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Our interest is on phase-transitions that exhibit a characteristic dif-
fusion time proportional to tγ/2 with γ ∈ (0, 1), instead of the classical

behavior determined by t1/2. The anomalous diffusion is presumed to be
caused by the effects of the process past history on its present state, and
related free boundary problems are investigated.

The question that motivates this note is: Is there any fractional version
of the classical Stefan problem that is more suitable in applications than
the others? In order to answer this question, if possible, we investigate the
physical hypothesis or mathematical assumptions leading to the fractional
problems addressed here.

We consider a melting process for a phase-change material occupying
a physical region Ω that is initially insulated. For simplicity, we assume
the material to be initially solid at the phase change temperature, which
we suppose equal to zero. We assume that the phase-change process is
originated by a constant temperature prescribed at some part of the domain
boundary, and that a liquid region is separated from a solid one by a sharp
interface at any time. The melting process is described by the evolution in
time of the temperature distribution and the location of the melt front.

To present ideas in a simple way, we further assume that Ω is a thin
long cylinder with a heated base, hence the phase-change problem can be
formulated in the one-dimensional semi-infinite domain (0,∞).

Consider that the lateral boundary of Ω remains insulated for all times.
Then, the simplest model for the melting process described above is given
by a Stefan problem [1]. Let s : (0,∞) → R be the location of the interface
(free boundary) and u : (0,∞) → R be the material temperature. We
denote by u� the temperature in the liquid region, thus

u(x, t) = u�(x, t) if 0 < x < s(t) and u(x, t) = 0 otherwise, for all t > 0.
(1.1)

The Stefan problem establishes that the liquid temperature u� is described
by the

Heat equation :
∂u�
∂t

(x, t) = α
∂2u�
∂x2

(x, t) 0 < x < s(t), t > 0, (1.2)

and the interface movement is characterized by the

Stefan condition : ρlṡ(t) = −k
∂u�
∂x

(s(t)−, t) t > 0. (1.3)

The coefficient α in (1.2) is the thermal diffusivity, given by α := k
ρc .

The parameters ρ, k, c, and l represent the material density, the thermal
conductivity, the specific heat, and the latent heat in the liquid phase. All
of them are assumed to be constant. The remaining conditions in the Stefan
problem are
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s(0) = 0, u�(x, 0) = 0 x > 0, u�(0, t) = u0 and u�(s(t), t) = 0 t > 0,
(1.4)

where u0 > 0 is a constant temperature prescribed at the fixed boundary
x = 0.

The heat equation (1.2) and the Stefan condition (1.3) are derived from
the following physical assumptions:

First principle of thermodynamics:

∂

∂t

∫ b

a
e(x, t) dx = q(a, t)− q(b, t),

for all t > 0 and every (a, b) ⊂ (0,∞),

(1.5)

Fourier’s law:

q(x, t) = −k
∂u�
∂x

(x, t) for all 0 < x < s(t) and t > 0, (1.6)

where e is the energy per unit mass and q is the heat flux. The latter is
assumed to be zero in the solid phase.

Assumption (1.5) implies:

Energy conservation law :
∂e

∂t
(x, t) =

∂q

∂x
(x, t) 0 < x < s(t), t > 0, (1.7)

Global energy conservation :
∂

∂t

∫ ∞

0
e(x, t) dx = q(0, t) t > 0. (1.8)

Notice that q(∞, t) = 0 for all t > 0. Considering that e = ρcu� + ρl in the
liquid region, equation (1.2) arises from a plain combination of (1.6) and
(1.7). Condition (1.3) is then obtained from the global balance (1.8). A
detailed derivation of the Stefan problem can be found in [1].

It is worth mentioning that liquid infiltration in unsaturated porous
media can be analogously described by a Stefan-like problem in which con-
dition (1.3) characterizes the movement of the wet front, see e.g. [8, 10].

The Stefan problem predicts a melt front advancement given by s(t) ∼
t1/2. However, interface movement given by s(t) ∼ tγ/2 with γ �= 1 has been
observed in phase-transitions and liquid infiltration in non-homogeneous
domains, [9, 14, 41, 42]. For example, numerical experiments by Voller [42]
(see also [41]) show phase-change processes with an interface location given
by s(t) ∼ tγ/2 with γ ∈ (0, 1) in two dimensional domains in which the char-
acteristic lenght of the heterogeneities is comparable with the characteristic
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lenght of the domain itself. Examples of diffusion-like processes with char-
acteristic time of diffusion proportional to tγ/2 with γ �= 1 abound in real
world applications, see e.g. the monograph [22] and references therein.

At present, there exists a vast literature on modeling anomalous trans-
port processes in fixed domains by fractional differential equations. A re-
cent survey is given in [37]. Equations involving fractional integrals or
derivatives of non-integer order in time have shown to be suitable mod-
els for anomalous transport with diffusion time scale ∼ tγ/2, γ ∈ (0, 1),
and a comprehensive mathematical theory for them is nowadays available,
see e.g. [12, 23]. However, modeling anomalous phase-transitions by frac-
tional free boundary problems is, so far, less developed. For example, sev-
eral (nonequivalent) time-fractional Stefan-like problems were proposed as
possible models for one-dimensional phase-change processes that exhibit a
characteristic time of diffusion ∼ tγ/2 with γ ∈ (0, 1), e.g. [18, 28,43].

Fractional order models usually arise as a consequence of the physical
assumptions that, hopefully, describe the anomalous transport process un-
der consideration. In Section 2 we make a brief review of time-fractional
Stefan-like problems recently studied in the literature, survey the assump-
tions from which they are obtained, and observe that they are nonequiva-
lent. In particular, the latter suggests that the way in which “memory” is
accounted for in a model is a sensitive issue.

Furthermore, in Section 3 we derive a time-fractional Stefan-like prob-
lem from a heuristic approach based on a time-fractional version of condi-
tion (1.5) and the classical Fourier’s law. We obtain a fractional “model”
analogous to the classical Stefan problem since we recover the same gov-
erning equation (1.2) and condition on the interface (1.3) now with time-
fractional derivatives instead of classical ones. This approach is moti-
vated by the observation that the classical continuity equation may no
longer be suitable in highly heterogeneous domains, see [44], where trans-
port processes may experience “waiting times” do to particle trapping,
see [41]. Time-fractional conservation equations were also considered in
[5], where the relation with non-local transport theory with memory ef-
fects is discussed. In this way, we provide a new approach to derive
some fractional problems that are of interest in pure and applied fields,
[2, 3, 6, 7, 13,16,19,21,25,33,38–40].

2. Brief review on time-fractional Stefan problems

At present, different approaches at dealing with anomalous phase-tran-
sitions by time-fractional Stefan-like problems coexist in the literature.
This section is devoted to a brief overview of them and provides a shortcut
on the available research on the subject.



A NOTE ON MODELS FOR ANOMALOUS . . . 171

The fractional order problems discussed below may seem, on the sur-
face, pretty similar. However, the assumptions from which they are ob-
tained are quite different from the physical point of view. In particular,
this leads to nonequivalent models, as we show here.

Let γ ∈ (0, 1). We denote by ∂γ

∂tγ the left-sided Caputo fractional deriv-
ative of order γ, given by

∂γf

∂tγ
(t) =

1

Γ(1− γ)

∫ t

0
(t− t′)−γ df

dt′
(t′) dt′ t ≥ 0, (2.1)

for any f ∈ C1([0,∞)), where Γ is the Gamma function. We notice that
formula (2.1) can be naturally extended to the larger class of absolutly con-
tinuous functions and refer to [12] for a detailed exposition on the Caputo
fractional derivative.

In [43], Voller, Falcini, and Garra proposed a fractional model for the
melting process described in Section 1, on a general bounded domain Ω.
They consider that Ω is initially insulated, and allow it to loose heat through
the liquid boundary once the melting process has begun. The model is de-
rived from a global energy balance and a constitutive equation that accounts
for memory by means of a nonlocal-in-time definition of the heat flux.

The argument developed in [43] still holds true when the spatial domain
is (0,∞), as considered in Section 1. For simplicity, we describe the ideas
in [43] for this special case.

The model in [43] is derived from the global energy balance∫ s(t)

0
(ρcu�(x, t) + ρl) dx =

∫ t

0
q̂(0, t′) dt′ ∀ t > 0, (2.2)

where the (nonlocal) heat flux q̂ is assumed to account for memory accord-
ing to

q̂(x, t) =
τ1−γ

Γ(γ)

∂

∂t

∫ t

0
(t− t′)γ−1q(x, t′) dt′ 0 < x < s(t), t > 0. (2.3)

In (2.3), q denotes a (local) flux given by Fourier’s law (1.6) in the liquid
phase and by zero in the solid one, and the parameter τ > 0 represents a
constant relaxation time. Notice that assumption (2.2) is weaker than (1.5),
and that (2.2) does not (necessarily) imply the local energy conservation
law (1.7).

The governing equation for the material temperature in the liquid phase
and the condition describing the melt front movement obtained in [43] are
given by

∂γu

∂tγ
(x, t) = ατ1−γ ∂

2u�
∂x2

(x, t) 0 < x < s(t), t > 0, (2.4)

and



172 A.N. Ceretani

ρl
∂γs

∂tγ
(t) = −τ1−γk

∂u�
∂x

(s(t)−, t) t > 0, (2.5)

respectively.

Differently from the usual approach given by (1.2) and (1.3), the frac-
tional model given by (2.4) and (2.5) prescribes a material temperature
and a location of the interface coupled through the fractional differential
operator in the governing equation. This becomes evident when we rewrite
(2.4) taking into account the definition of u given in (1.1):

ρc

Γ(1− γ)

t∫
s−1(x)

(t− t′)−γ ∂u�
∂t′

(x, t′) dt′ = kτγ−1 ∂
2u�
∂x2

(x, t), (2.6)

for all 0 < x < s(t) and t > 0. In particular, this coupling breaks down the
classical Neumann’s method to find explicit similarity solutions to fractional
Stefan-like problems involving (2.4) and (2.5). To the best of our knowl-
edge, the only explicit solution to this sort of problems is given in [39] for the
limit case of vanishing specific heat and predicts a melt font advancement
proportional to tγ/2. The aforementioned coupling also becomes challenging
the weak solvability of free boundary problems involving (2.4) and (2.5).
Some advances in this direction were recently given in [13]. Looking for
approximate solutions (both numerical and analytical) is an active area of
research, [3, 6, 7, 16,19,25,33,38,40].

Free boundary problems involving fractional heat equation (2.4) and
fractional Stefan condition (2.5) were considered in several works at dealing
with anomalous diffusive-like processes, e.g. [2,3,6,7,16,19,21,25,33,38–40].
A remarkable contribution from Voller, Falcini, and Garra was to identify
a definition for the heat flux and a suitable classical global balance leading
to a transparent generalization of the classical model to a fractional one.
However, the presence of the time derivative in the right-hand side of the
constitutive equation (2.3) is still challenging to endow (2.3) a physical
meaning, see [11]. In next Section 3 we shall see that equation (2.4) and
condition (2.5) can also be obtained from a different approach based on
a fractional version of the conservation principle (1.5) and the classical
Fourier’s law (1.6).

Other approach to generalize Stefan problems to the fractional frame-
work consists of replacing the time derivatives in (1.2) and (1.3) by frac-
tional ones by means of the Caputo operator, and simultaneously neglecting
definition (1.1) for the material temperature. Stefan condition is still re-
placed by (2.5) and the heat equation (1.2) is now substituted by
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∂γu

∂tγ
= ατ1−γ ∂

2u�
∂tγ

0 < x < s(t), t > 0,

where u(x, t) = u�(x, t) for 0 < x < s(t), t > 0,

(no condition on u(x, t) for x > s(t)).

(2.7)

From the physical point of view, removing the assumption u(x, t) = 0
for x > s(t), t > 0, completely changes the problem nature. However,
satisfactory results were obtained following this approach, see e.g. [6,7,15,
17,20,24,40] (see also [4, 18,26,27,29–32,36]).

An attractive feature of this second type of fractional problems is that
they admit explicit solutions, [18,29]. While on the surface (2.4) and (2.7)
seem similar, the second equation does not (necessarily) couple u and s
through the differential operator in the left-hand side. This feature is key
to find explicit solutions by Neumann’s method, as pointed out by Liu and
Xu in [18] and by Roscani and Santillan Marcus in [29]. Below, we briefly
describe the argument in [18,29] for the problem given by (2.7), (2.5), and
(1.4).

The first step is to notice that the differential equation in (2.7) can be
written as

∂γu

∂tγ
(x, t) = ατ1−γ ∂

2u

∂x2
(x, t) x > 0, t > 0, (2.8)

which admits solutions u of the form

u(x, t) = a+ bW
(
− x

λtγ/2
,−γ

2
, 1
)

x > 0, t > 0, (a, b ∈ R) (2.9)

where λ := τ (1−γ)/2αγ/2 and W is the Wright function, given by

W (z, μ, ν) =

∞∑
k=0

zk

k! Γ(μk + ν)
z ∈ R, μ > −1, ν ∈ R.

Then, a solution of similarity type to (2.7)-(2.5)-(1.4) is obtained by con-

sidering u given by (2.9), s in the form s(t) = σλtγ/2 (σ ∈ R), and selecting
a, b, and σ in order to fulfill (2.5) and (1.4). In this way, the following
solution is obtained:

u�(x, t) = u0

⎛⎝1−
1−W

(
− x

λtγ/2
,−γ

2 , 1
)

1−W
(
−σ,−γ

2 , 1
)

⎞⎠ , s(t) = σλtγ/2,

for 0 < x < s(t), t > 0,

(2.10)

where the parameter σ > 0 is defined as the solution to a specific transcen-
dental equation (see details in [18, 29]). So far, the only explicit solutions
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to fractional free boundary problems involving (2.7) and (2.5) are obtained
from this method.

It is worth mentioning that the function u given by (2.10) does not
satisfy (2.6): Taking the time derivative of u in (2.10), we obtain

∂u

∂t
(x, t) =

(γu0
2λ

) W ′
(
− x

λtγ/2
,−γ

2 , 1
)
xt−1+γ/2

1−W (−σ,−γ/2, 1)
< 0 for all x > 0, t > 0,

since 0 < W (−x,−γ/2, 1) < 1 for all x > 0 and W (−x,−γ/2, 1) is strictly
decreassing for x > 0 (see [29]). Here, W ′ denotes the derivative of W with
respect to the first argument. In addition, we observe that t′ < t provided
that 0 < t′ < s−1(x), for any 0 < x < s(t) and t > 0. Therefore,

(t− t′)−γ ∂u

∂t′
(x, t′) < 0 for all 0 < t′ < s−1(x), 0 < x < s(t), t > 0.

From this, we observe that u, given by (2.10), does not satisfy (2.6) since

ρc

Γ(1− γ)

t∫
s−1(x)

(t− t′)−γ ∂u�
∂t′

(x, t′) dt′

= τ1−γk
∂2u�
∂x2

(x, t)− ρc

Γ(1− γ)

s−1(x)∫
0

(t− t′)−γ ∂u

∂t′
(x, t′) dt′,

for all 0 < x < s(t) and t > 0 (see (2.7)), and the second term in the
right-hand side does not vanish identically.

In particular, the above shows that the fractional Stefan problems given
by (2.7)-(2.5)-(1.4) with u given by (1.1), and (2.4)-(2.5)-(1.4) are not equiv-
alent for γ ∈ (0, 1). In addition, we observe that solutions to these problems
may account for memory in a different way since the latter neglects (1.1).
Further relations between the two problems seem, so far, not to have been
considered in the literature (e.g., how “close” are they? does it depend on
the value of γ?).

At present, most models at dealing with anomalous diffusion in domains
with free or moving boundaries are like the (nonequivalent) problems (2.4)-
(2.5)-(1.4) with u given by (1.1), or (2.7)-(2.5)-(1.4).

Recently, Roscani, Bollati, and Tarzia introduced a third approach in
[28] that leads to a new fractional Stefan-like problem for one-dimensional
phase-transitions. The model in [28] is given by (1.4),

∂γu

∂tγ
(x, t) +

lc−1(t− s−1(x))−γ

Γ(1− γ)
= τ1−γα

∂2u�
∂x2

(x, t),

for all 0 < x < s(t), t > 0,

(2.11)
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and

ρls′(t) = −τ1−γk
∂̂1−γ

∂t1−γ
u(s(t)−, t) t > 0, (2.12)

where u is defined by (1.1) and ∂̂1−γ

∂t1−γ denotes the Riemann-Liouville frac-
tional derivative of order 1 − γ. We recall that the Riemann-Liouville

fractional operator ∂̂δ

∂tδ
, δ ∈ (−1, 1), is defined by

∂̂δf

∂tδ
:=

⎧⎨⎩
1

Γ(1−δ)
∂
∂t

∫ t
0 (t− t′)−δf(t′) dt′ if 0 ≤ δ < 1,

1
Γ(−δ)

∫ t
0 (t− t′)−δ−1f(t′) dt′ if −1 < δ < 0,

(2.13)

see [12]. Observe that ∂̂δ

∂tδ
is a differential operator for δ ∈ (0, 1), whereas

it is an integral operator for δ ∈ (−1, 0).

The fractional equation (2.11) and condition (2.12) are obtained from
the non-classical constitutive equation (2.3) in combination with a classical
local energy balance. Notice that, even when the heat flux is assumed to
account for memory in the same way in Roscani’s et al. and Voller’s et al.
approaches, the former considers a local energy balance in the liquid region
instead of the (weaker) global balance assumed in the second one, see (2.2).
The existence of solutions to the problem introduced in [28] was not yet
investigated.

3. A heuristic approach leading to
a time-fractional Stefan problem

This section is aimed to provide another approach to derive the time-
fractional Stefan problem obtained in [43] (see the first problem discussed
in Section 2), which involves equation (2.4) and condition (2.5). It consists
of considering a fractional time derivative, instead of the usual one, in the
classical approach described in Section 1 (see (1.5) and (1.6)).

All through this section, the temperature u� and the heat flux q in the
liquid phase are assumed to be sufficiently smooth to make the following
computations meaningful. In addition, we suppose that s is an increasing
function (i.e., the melt front can only advance in time).

We consider the following mathematical generalization of the physical
principle (1.5):

∂γ

∂tγ

∫ b

a
e(x, t) dx = τ1−γ(q(a, t) − q(b, t)),

for all t > 0 and every (a, b) ⊂ (0,∞),

(3.1)

where e is the energy per unit mass and q is the heat flux, which we suppose
given by the Fourier’s law (1.6) in the liquid region and by zero in the solid
one. The parameter τ > 0 in (3.1) represents a constant relaxation time.
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We assume that the energy is given by the enthalpy of the system, that
is,

e(x, t) = ρcu�(x, t) + ρl if 0 < x ≤ s(t), t > 0, and e(x, t) = 0 otherwise.

We further note that (3.1) implies the following fractional version of the
energy conservation law (1.7):

∂γe

∂tγ
(x, t) = τ1−γ ∂q

∂x
(x, t) 0 < x < s(t), t > 0, (3.2)

which combined with the Fourier’s law (1.6) yields

∂γu

∂tγ
(x, t) = ατ1−γ ∂

2u�
∂x2

(x, t) 0 < x < s(t), t > 0. (3.3)

Here, we have taken into account that ∂γ(ρc)
∂tγ = 0 since ρc is constant.

Assumption (3.1) also implies the following fractional version of the
global energy balance (1.8):

∂γ

∂tγ

∫ ∞

0
e(x, t) dx = τ1−γq(0, t) t > 0. (3.4)

We observe that

∂γ

∂tγ

∞∫
0

e(x, t) dx =
1

Γ(1− γ)

∫ t

0
(t− t′)−γ ∂

∂t′

⎛⎜⎝ s(t)∫
0

(ρcu�(x, t
′) + ρl) dx

⎞⎟⎠ dt′

=
ρc

Γ(1− γ)

t∫
0

(t− t′)−γ

⎛⎜⎝u�(s(t′)−, t′)ṡ(t′) + s(t′)∫
0

∂u�
∂t′

(x, t′) dx

⎞⎟⎠dt′ + ρl
∂γs

∂tγ
(t).

Then, taking into account that s is invertible and that the interface is
at the melting temperature, see (1.4), we obtain:

∂γ

∂tγ

∞∫
0

e(x, t) dx =
ρc

Γ(1− γ)

t∫
0

s(t′)∫
0

(t− t′)−γ ∂u�
∂t′

(x, t′) dx dt′ + ρl
∂γs

∂tγ
(t)

=
ρc

Γ(1− γ)

s(t)∫
0

t∫
s−1(x)

(t− t′)−γ ∂u�
∂t′

(x, t′) dt′ dx+ ρl
∂γs

∂tγ
(t).

Thus, we have
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∂γ

∂tγ

∞∫
0

e(x, t) dx = ρc

s(t)∫
0

∂γu

∂tγ
(x, t) dx+ ρl

∂γs

∂tγ
(t)

= τ1−γk

s(t)∫
0

∂2u�
∂x2

(x, t) dx+ ρl
∂γs

∂tγ
(t)

= τ1−γk
∂u�
∂x

(s(t)−, t)− τ1−γk
∂ul
∂x

(0+, t) + ρl
∂γs

∂tγ
(t)

= τ1−γk
∂u�
∂x

(s(t)−, t) + τ1−γq(0+, t) + ρl
∂γs

∂tγ
(t),

since u� satisfies (2.4). Therefore, (3.4) yields

ρl
∂γs

∂tγ
(t) = −τ1−γk

∂u�
∂x

(s(t)−, t) t > 0. (3.5)

Hence, the fractional generalization (3.1) of the physical condition (1.5)
together with Fourier’s law (1.6) predicts a material temperature in the
liquid region described by the fractional heat equation (2.4) and a melt
front advancement characterized by the fractional Stefan condition (2.5).

The argument presented here extends naturally to the case when the
initial material temperature is less than the melting one, thus two-phase
fractional Stefan-like problems can be similarly obtained (see [1] for the clas-
sical derivation). Models for problems with interfaces of non-zero thickness
can be analogously generalized to the fractional context, (see [34, 35] for
classical derivations).

Finally, we notice that the assumptions in [28] (see the third problem
discussed in Section 2) do not imply those considered here. In fact: The
(nonlocal) heat flux (2.3) in combination with a classical energy conserva-
tion law in the liquid phase yields

∂e

∂t
(x, t) =

∂q̂

∂x
(x, t) 0 < x < s(t), t > 0.

Applying the Riemann-Liouville integral ∂γ−1

∂tγ−1 to both sides and taking into
account the definition of q̂ given in (2.3), we have

∂γe

∂tγ
(x, t) =

∂̂γ−1

∂tγ−1

∂

∂x

∂̂1−γ

∂t1−γ
q(x, t) 0 < x < s(t), t > 0,

which in general differs from (3.2) since, as pointed out in [28], we cannot
interchange the first integral operator with the classical spacial derivative
in the right-hand side due to the loss of differentiability of the heat flux q̂
along the interface.
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4. Concluding remarks

We considered time-fractional free boundary problems of Stefan type
that were studied in the recent literature, and discussed them in the light of
modeling anomalous phase-transitions. All problems involve time-fractional
differential operators of order γ ∈ (0, 1) and reduce to a classical Stefan
problem when time derivatives are considered in the usual sense (γ = 1).
However, we saw that they may no longer be equivalent when γ ∈ (0, 1):
Problems obtained by classical (local or global) conservation energy equa-
tions and nonlocal constitutive equations for the heat flux may not be equiv-
alent among them, nor with problems derived from non-classical conserva-
tion laws in combination with local constitutive equations. This suggests
that fractional models should be carefully chosen in order to fit the phys-
ical problem under consideration. We further presented a simple heuristic
approach based on a fractional version of the conservation of energy and
the classical Fourier’s law that leads to a transparent generalization of the
classical one-phase Stefan problem, in which the usual time derivatives are
replaced by fractional ones according to Caputo’s definition. This pro-
vides another interpretation of this kind of problems, in addition to the
already known meaning in terms of nonlocal transport theory. The ap-
proach proposed here can be naturally extended to two-phases problems or
phase-transitions with non-zero thickness interfaces.
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