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Abstract

We establish the well-posedness of an initial-boundary value problem for
a general class of linear time-fractional, advection-diffusion-reaction equa-
tions, allowing space- and time-dependent coefficients as well as initial data
that may have low regularity. Our analysis relies on novel energy meth-
ods in combination with a fractional Gronwall inequality and properties of
fractional integrals.
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1. Introduction

The main scope of this paper is to investigate the existence and uniques-
ness of the weak solution of a linear, time-fractional problem of the form

Ou —V - (/ﬁV@,}_au — Fo}u — éu) +ad} u+bu=g (1.1)

for x € Q and 0 < t < T. The parameter « in the fractional derivative
lies in the range 0 < o < 1, and the spatial domain Q@ C R? (d > 1) is
bounded and Lipschitz. The transport coeflicients F and é, the reaction
coefficients a and b, as well as the source term g, are assumed to be known
functions of x and ¢, whereas the generalized diffusivity x = k(x) may
depend only on x but is permitted to be a real, symmetric positive-definite
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matrix. In (1.1), =V - (kV0} “u) is the non-local diffusion term, whereas
V. (F)atl*au + éu) is the non-local/local advection term, and ad; ~“u + bu
is the non-local/local reaction term.

We impose homogeneous Dirichlet boundary conditions,

u(z,t) =0 forzedand 0<t<T, (1.2)

and the initial condition

u(z,0) = ug(x) for z € Q. (1.3)
The Riemann-Liouville fractional derivative [33] of order 1 — « is defined
via the fractional integral of order a: with () =t*"!/ (a) we have

t
o} (x,t) = 0,Z%(x,t) where I%(x,t) = ot — s)v(x, s)ds.
0

We denote by WIf(Q) the usual Sobolev space of functions whose partial
derivatives of order k or less belong to L,(£2). The following regularity
assumptions on the coefficients will be used:

ke L (™  F,Gec?(o,T;wh ()7,

a,be CH[0,T;L ().
In addition, to ensure that the spatial operator v~ —V-(kVv) is uniformly
elliptic on 2, we assume that the minimal eigenvalue of k(z) is bounded
away from zero, uniformly for x € €.
Based on physical models of various subdiffusive transport processes,
different classes of time-fractional PDEs arise as special cases of (1.1), in-
cluding

(1.4)

—

fractional Fokker—Planck equations [4, 10, 16, 30], when G = 0,

a=b=0and g =0;

fractional reaction-diffusion equations [11, 12], when F=G=o0;

fractional cable equations [19], when F=G=0;

fractional advection-dispersion (or fractional convection-diffusion)

equations [25], when F' = F(z), G =0 and a = b = 0.
Consider the simplest non-trivial case, when x is the identity matrix with
F=G=0,a=0b=0and g =0, so that (1.1) reduces to the frac-
tional subdiffusion equation: dyu — V20 *u = 0. Let  denote a Dirichlet
eigenfunction of the Laplacian on €2, with corresponding eigenvalue > 0,
that is, —V2 = in Q with | = 0. For the special choice of
initial data wg = (z), the solution of the initial-boundary value prob-
lem (1.1)—(1.3) has the separable form wu(z,t) = E,(— t*) (x), where
Ey(z) = ,_0%"/ (1+na)is the Mittag-Le er function [33]. Notice that
O'u=0(t* ™) ast 0. Moreover, we can extend the classical method of
separation of variables for the heat equation to construct a series solution
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for arbitrary initial data ug € Lo(€2), and the regularity properties of the
solution u follow from this representation [28].

Such an explicit construction is no longer possible for the solution of the
general equation (1.1). Instead, we proceed by formally integrating (1.1)
in time, multiplying both sides by a test function v, and applying the first
Green identity over {2 to arrive at the weak formulation

t
u(t),v + kYO u(s) — F(s)0)u(s) — G(s)u(s), Vo ds
0
t t

+ a(s)0 " %u(s) + b(s)u(s),v ds = ug,v +  g(s),v ds (1.5)

0 0
for all v € H} (), where we have suppressed the dependence of the func-
tions on r, and where -,- denotes the inner product in Lg(£2) or Lo(2)%.

Numerical methods for particular cases of (1.1) were extensively stud-
ied over the last two decades, see for example [1, 18, 23, 36, 38] for finite
differences, [14, 20, 31] for continuous and discontinuous finite elements,
and also see [8, 13] for more references. However, due to various types
of mathematical difficulties, proof of the well-posedness of the continuous
problem is almost missing despite its importance, apart from the case [28]
when FF = G =0 and a = b = 0. In this paper, we address these funda-
mental questions. A related paper [21] treats the fractional Fokker—Planck
equation (that is, the case G = 0 and a = b = 0) via a different, and
somewhat simpler, chain of estimates that, for instance, does not use the
quadratic operator Qf defined below in Section 2.

If the coefficients F and a are independent of ¢, and if G=0andb= 0,
then by applying the fractional integration operator Z'= to both sides
of (1.1) we obtain .

Cotu —V - (kVu— Fu) +au = g, (1.6)
where ©0fu = T'=*0,u denotes the Caputo fractional derivative [33] and
where g = T'~%g. Existence and uniqueness results for (1.6) were studied
by several authors, including Zacher [39], Alikhanov [2], Sakamoto and
Yamamoto [34] and Kubica and Yamamoto [17]. Further, the reader can
refer to [15, 22, 27, 35]. Some of these papers include results for time-
dependent coefficients, but in that case (1.6) is no longer equivalent to (1.1).

To recast the weak formulation (1.5) as a Volterra integral equation, we
introduce two bounded linear operators, firstly Ki(t) : H () — H ()
defined by

Ki(t)yv,w = kVo,Vw — F(t)vo,Vw + a(t)v,w for v, w € H}(Q),
and secondly Ks(t): La(Q)  H~1(Q) by
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Ky(tv,w = b(t)v,w — G(t)v,Vw for v € Ly(Q) and w € HL(Q).

The variational problem (1.5), subject to the initial condition (1.3), can
then be written more succinctly as
t t
u(t) + Ki(s)0 %u(s) + Ko(s)u(s) ds= f(t) wuo+  g(s)ds. (1.7)
0 0
Assuming u is sufficiently regular that (Z%u)(0) = 0, and using a dash to
indicate a derivative in time, integration by parts leads to

t K1(5)0%u(s) ds = Ky (t)T%u(t) — t K,(s)Z%(s)ds
0 0
= t alt —8)Kq(t) — t oz —8)K (2)dz u(s)ds,
0 s
with K (t) : HY(Q)  H Q) given by
K, (Hv,w =— F ()v,Vw + a(t)v,w .
Thus, u satisfies
u(t)+  K(t,s)u(s)ds = f(t) for0<t<T, (1.8)
0
1

where K(t,s) : H}(Q)  H () is the weakly-singular, operator-valued
kernel
t

K(t,s) = o(t—s)K(t)+ Ka(s) — alz —8)K (%) dz. (1.9)
S
Following some technical preliminaries in Section 2, we apply the Gal-
erkin method in Section 3 to project the problem (1.8) to a finite di-
mensional subspace X C H&(Q), thereby obtaining an approximate so-
lution ux : [0,7]  X. Using delicate energy arguments and a fractional
Gronwall inequality, we prove a priori estimates for ux that are uniform
with respect to the dimension of X, allowing us in Section 4 (Theorems 4.1
and 4.2) to establish the existence and uniqueness of a weak solution u to
the original problem (1.1)—(1.3), provided (1.4) holds.
The regularity of the weak solution u will be studied in a companion
paper [29].

2. Preliminaries and notations

Our subsequent analysis makes frequent use of two quadratic operators
defined, for >0 and 0 <t < T, by
t t
(1) = ) ,IM ds and Qb( ,t) = ) " 2ds.
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These operators coincide when p = 0 because Z° = , and so we write
Q' = 9% = QY. If we put (t) = 0 for t > T, then the Laplace trans-
form (2) = OTe*Zt (t)dt is an entire function and Z# (z) = z=#* (z), so
it follows by the Plancherel Theorem that

coS 2
of( 1) = =12
0
assuming that is real-valued; see also [32, Theorem 2]. Note that because
u € L1(0,T), the fractional integral defines a bounded linear operator

" Lp((0,7); La(R))  Lp((0,7); La(Q)) for1<p< . (2.2)
Also, "t = TIFI because = 4 forp>0and > 0; here,

denotes the Laplace convolution.
The next four lemmas establish key inequalities satisfied by @} and Qf.

y " (iy) *dy >0, (2.1)

LEMMA 2.1. If0<a<1and >0, then

t
o Qr( ,t) o
. A ds Sm‘i‘ oF( 1), (2.3)
2te
Q5 ( 1) < T Q% ( 1), (24)
QF( ) <2t*Q°( 1), (2.5)
t N taQO( ,t) o
o ,I ds §m+ Ql( ,t) (26)

P r oo f. The first three inequalities are proved by Le, McLean and
Mustapha [20, Lemma 3.2]. The fourth inequality follows from (2.3) and

(2.5). O
For the next result, note that if € W} ((O,T);X ) for a normed

space X, then :[0,7] X is absolutely continuous and
(OZ* —TI%; )(t)= (0) 4(t) for0<t<T. (2.7)

LEMMA 2.2. If0 < a <1, then for € Ly((0,t), L2(12)),

t

Q3( ,t) <2 ot —5)QT( ,s)ds.
0

Proof. Assume first that € Wi ((0,7),L2()) and let = I .
Since (0) = 0, the Caputo fractional derivative of is

Cop =1V )=(T"" )~ (0) 1a=(T") =
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Recalling an identity of Alikhanov [3, Corollaryl],
2 (),% (1) =9 ( @)

t 1 S d 2
n o' — (q)dgq ds,
2 (1-a) o (t=s)t" o (-9
we see that
2 10 =29y . >C%p( =11 ?)), (2.8)

and thus
Il( Ia 2) :IZ( Ia 2) :Il+al'lfa( Ia 2)
<or'te( 1% ) =21°T'( I ),
which is equivalent to the desired inequality.

Now let € Ly((0,T), L2(92)), and choose ,, € W ((0,T), L2(€2)) such
that OT A1) — () 2dt  Oasn . Using (2.2) with © = « and
p = 2, it follows that QY( ,,t) QY( ,t) and QF( n,t) Q3( 1),
uniformly for ¢ € [0, 7], which implies the result in the general case. |

The next lemma will eventually enable us to establish pointwise (in
time) estimates for u(t).

LEMMA 2.3. Let 0 < o < a < 1. If the function :[0,7]  L2(9)
is continuous with (0) = 0, and if its restriction to (0,7 is differentiable
with  (t) <Ct#for0<t<T,then (t)2<2 o () Q% ,t).

P r oo f. For a =1, equality holds:
¢
2 1()Qi( 1) =2 , ds= (1) %

For 0 < a < 1, put (t) = Z¢ gnd note that (t) < Ct*#. By
following similar arguments, one can show that (2.8) holds with  in place
of , that is 2 ,7% = T'7*( 7% 2) for almost all t+ > 0. Now,
applying the operator Z'! to both sides, and using Z* (0) = (0) = 0, we
observe that

V(1 () =29%( ,t) fort>0. (2.9)
Since =7' =I'"> |
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t 2
(1) * < , relt=e) (s) ds

< 1—a(t — s)ds 1ot —5) (s) %ds
0 0

— 2_a(t)Il—oz T 2 (t),

and hence the desired result follows immediately after using (2.9). O
LEMMA 2.4. If0<pu< <1, then Qy( ,t) <220 ~MWQL( |¢).

P roof. See Le, McLean and Mustapha [20, Lemma 3.1]. O

We will make essential use of the following fractional Gronwall inequal-
ity.

LEMMA 2.5. Let > 0 and T > 0. Assume that a and b are non-
negative, non-decreasing functions on the interval [0,T]. If q : [0,7] R
is an integrable function satisfying

t

0 <q(t) <a(t) +b(t) (t—s)q(s)ds for0<t<T,
0
then
q(t) <a(t)E (b(t)t ) for0<t<T.
P r oo f. See Dixon and McKee [9, Theorem 3.1]. O

Let M denote the operator of pointwise multiplication by ¢, that is,
(M )(t) =t (t), and note the commutator property

MTF — THM = ', (2.10)
for any real > 0. We will need the following estimates involving the linear
operator B" defined (for suitable and ) by

t

(B" )(t)= (@)I" (t) - . (s)I" (s)ds. (2.11)

LEMMA 2.6. If € W! ((0,7);L (Q)%) and € W{((0,7);L2(Q2)),
then there is a constant C (depending only on , p and T) such that
for0<t<T,
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Q" (B" 1) <CQL( 1), (2.12)
QUMB" )+ QYT'B" | t) < CH2QL( 1), (2.13)
QY ((MB" ) ,t) <COY((M ), t) +CQLM 1) +CO5( ,t). (2.14)

P r o o f. The assumption on  implies that
t
(B )(0) 2<C @ )) 2 +C (T )(s) 2ds,
0

and (2.12) follows after integrating in time. By the Cauchy—Schwarz in-
equality,
t
(MB* )(t) >+ (Z'B" )(t) > < (B" )(t) 2+t (B" )(s) *ds,
0

and (2.13) follows after integrating in time. The third identity in (2.10)
implies that

MB' = (IFM +pIttt )= MIY( I*)
and therefore, differentiating with respect to t,
(MB" ) = (I'M +pZtt )+ (TPM ) +pI* )= (T +M)( " ).
Thus, noting that (Z¥*M ) =Z*(M ) by (2.7), with

T () 2= THIM )(t) * <tQh( L)
and ZY( M )(t) 2 < CtQh( ,t), we have
(MB" ) (t) 2<C IMM )(t) > +C THM ) ()
+C (T" )(t) 2+ CtOh( 1),

so (2.14) follows after integrating in time. O

3. The projected equation

Suppose that X is a finite-dimensional subspace of Hg(2), equipped
with the induced norm: v x = w HY( ) We define a bounded linear

operator Kx(t,s) : X X in terms of K(t,s) in (1.9) by
Kx(t,s)v,w = K(t,s)v,w forv,we X and0<s<t<T,
and let fx(t) denote the Lo-projection onto X of f(t) from (1.7), that is,
fx@t),w = f(t),w forweXand0<t<T.
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In this way, we arrive at a finite dimensional reduction of the Volterra

equation (1.8), .

ux(t)+  Kx(t,s)ux(s)ds = fx(t) for0<t<T. (3.1)
0
In the next theorem, we outline a self-contained proof of existence and

uniqueness under relaxed assumptions on the coefficients in the fractional
PDE (1.1). Similar results for scalar-valued kernels are shown by Linz [24,
§3.4], Becker [5], and Brunner [6].

Henceforth, C' will denote a generic constant that may depend on the
coefficients in (1.1), the spatial domain €2, the time interval [0, T, the frac-
tional exponent «, the parameter , and the integer m in (1.4). However,
any dependence on the subspace X is indicated explicitly by writing Cx.
We let Y = C([0,T]; X) with the norm v y =maxg + 7 v(t) x.

THEOREM 3.1. Assume that the coefficients in (1.1) satisfy
kel (™ Few!(0,7:;L (%), GeL ((0,7);L ()7,
ac W' ((0,7;L (), beL ((0,7):;L ().

Assume, in addition, that the source term g : (0,7]  La(2) is a measur-
able function satisfying
gt) <Mt ' for0<t<T, (3.2)

where M and  are positive constants, and that the initial data ug € Lo().
Then, the weakly-singular Volterra integral equation (3.1) has a unique
solution ux € Y, and moreover uyxy y < Cx fx y <Cx( uwy + M).

P r oo f. Our assumptions on ug and ¢ ensure that fx € Y. The
kernel (1.9) has the form

. K(t,s) = o(t—s)G(t,s)+ H(t,s),
where )

G(t,s) =Ki(t)— (a)(t—s) oK (s+(t—s)y)dy
0
and H(t,s) = Ka(s) for 0 < s <t < T. Our assumptions on the coefficients
of the fractional PDE (1.1) ensure that G and H are continuous mappings
from the closed triangle = {(¢,s) : 0 < s <t < T} into the space of
bounded linear operators H}(Q2)  H (). Likewise,
Kx(t,s) = alt— )G (t,5) + Hx(t,s),
where Gx (t,s): X X and Hx(t,s): X X are defined by

Gx(t,s)v,w = G(t,s)v,w and Hx(t,s)v,w = H(t,s)v,w
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for (t,s) € and v, w € X. Since X is finite dimensional, Gx and Hx
are continuous functions from  into the space of bounded linear opera-
tors X  X. Hence, there is a positive constant x such that

Kx(t,s)v x < x olt—8) v x for(t,s)e andve X,

so we can define the Volterra operator Lx : Y Y by
t
Kxv(t)=  Kx(t,s)v(s)ds for0<t<T andveY.
0

We see that Kxv y < x 14a(T) v y. In fact, using the semigroup

property,
t

alt=s) (s)ds= oy (1),
0

we obtain the following estimate for the operator norm of the nth power
of X,
¢

K% v v < }L(Omta% na(t —8)ds =% 14na(T) forn>1.
0
It follows that the sum Rx = , _;(—1)""1K% defines a bounded linear

operator with

Rx v v < 1+na(T) % = Eo( xT%) — 1.

n=1

The existence and uniqueness of ux € Y is seen by noting
ux + Kxux = fx ifand only if ux = fx — Rxfx,

from which we also deduce the a priori estimate claimed in the theorem.
O

For a scalar, weakly-singular, second-kind Volterra equation, it is known
that if fx admits an expansion in powers of ¢ and t%, then so does the
solution uyx; see Lubich [26, Corollary 3|, and also Brunner, Pedas and
Vainikko [7, Theorem 2.1] (with = 1—a). To outline a proof that a similar
result holds for systems of Volterra equations, let CI' = C7([0,T]; X)
denote the space of continuous functions v : [0,7] X that are C" on the
half-open interval (0,77 and for which the seminorm

Vi = sup 7 v (¢ x Is finite for 1 < 5 < m.
| |J, p J
o<t T

We make C7' into a Banach space by defining the obvious norm:
m

Vma= Vy+ |]ja
j=1
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THEOREM 3.2. Let m > 1, and strengthen the assumptions (1.4) by
requiring

F,Gecm™ (0,7, W' ()% and a,beC™([0,T);L (Q)).

If ug € Lo(2) and g : (0,7 X is O™ with ¢U=V(t) < Mt for
1<i<m,thenuy € CJ' and ux mao <Cx fx mao <Cx( uy + M).

P roof Our assumptions on uy and ¢ imply that fx € CJ'. Using
the substitution z = s + (¢t — s)y in (1.9), we find that if j + £ < m and
0<s<t<T, then

K (8, + 05) K (t,s)v o) S Cx(t—s)2" 17k y i) forve HY (),
and, since X is finite dimensional,
OO+ 05 Kx(t,s)v  <Cx(t—5)*"" v x forveX.
Hence, the Volterra operator Ky : C'  Cl' is compact [37, Theorem 6.1].
Theorem 3.1 implies that the homogeneous equation, ux + Kxux = 0,

has only the trivial solution ux = 0, and therefore the inhomogeneous
equation uy + Kxux = fx is well-posed not only in Y but also in C}*. O

Our goal in the remainder of this section is to obtain bounds for wx (t)
and Vuy(t) with constants that are independent of X. Our proof relies
on a sequence of technical lemmas. To simplify our estimates, we rescale the
time variable, if necessary, so that the minimal eigenvalue of x is bounded
below by unity:

min (/i(ac)) >1 forxeq. (3.3)

In this way, kVo, Vv > Vo 2 for v € H}(S), and we see from (2.1) that
for (real-valued) € C([0,T7; Hg(S2)),

t

2
KINMV |V ds = cos(_1/2) y * KV (iy),V (iy) dy

0 0
2
> M y h Vv (zy) 2dy,
SO p " 0
KIMV ¥V  ds > IV L,V ds = QY (V ,t). (3.4)
0 0

Since (1.7) is equivalent to (1.8), if v € X then
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t
Kx(t,s)ux(s)ds,v
0
t t

= Ki(s)0 ux,v ds+ Ky(s)ux(s),v ds
0 0

= k(Z°Vux)(t),Vv — (Biux)(t),Vv + (Boux)(t),v ,
t
Bi ()= F(s)9,7% (s)+Gls) (s) ds,
‘, (3.5)
By (t) = a(s)0 (s) +b(s) (s) ds.
0
Assuming € CL([0,T]; X ), we may integrate by parts and use the nota-
tion (2.11) to write
By =B+ B}, and B;= B + Bj. (3.6)
Thus, the solution of (3.1) satisfies

where

ux(t),v + kVI%ux(t),Vo — (Biux)(t),Vv + (Byux)(t),v

= fx(t),v forvelX, (3.7)
which yields the following estimates (with C' independent of X).

LEMMA 3.1. For 0 <t < T, the solution ux of the Volterra equa-
tion (3.1) satisfies the a priori estimates

O (ux,t) + Q5 (Vux,t) < Ct*Q%(fx,1)
Qo(uth) + Q?(VUX,t) < CQO(vat)'

and

Proof. From (3.7),
uX(t),v + KVIauX(t),V’U S% Vv 2+% g1Ux(t) 2—|—% BQ’U,X(t) 2

—1—% v 24 fx(@),v .
Choosing v = Z%x (t) we have kVZI%ux(t),Vv = xkVou,Vov > Vv 2
because of (3.3). Thus, after canceling the term % Vo 2 and integrating
in time, we see that

Qf (ux,t) + 203 (Vux,t) < 3Q°(Biux, t) + Q% (Boux, t) + $ Q5 (ux,t)
t

+ . fx(s),IT%x(s) ds. (3.8)
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Using the representation (3.6) and the achieved estimate (2.12),
Q"(Byux,t) < 2Q°(BSux,t) + 2Q"(Blux, 1)
< CQ5 (ux,t) + CQy(ux, 1) < CQ3(ux, 1),
where, in the final step, we used Lemma 2.4. In the same way,

Q"(Baux,t) < CQS(ux,t).

Using (2.6) with = fx, =wux and = 1/2, we deduce that
Qf (ux, 1) + 595 (Vux, t) < CQ% (ux,t) + C1*Q°(fx, 1) + 3 Qf (ux, 1).
Hence, applying Lemma 2.2 with = wux, we can show that the func-

tion q(t) = Of (ux,t) + Q5 (Vux,t) satisfies

t

q(t) < Ct*Q°(fx,t) + C ot —5) Q% (ux, s) ds.
0

Since Qf(ux,s) < q(s), Lemma 2.5 implies the first estimate.
To show the second estimate, use — (Biux)(t), Vo = V-Biux(t),v
in (3.7) to obtain

ux(t),v + KVI%ux(t),Vo <10 ?24+3 V- (Bux)(t) >
+% (BQ’U,X)(t) 2+% fx(t) 2.
Choosing v = ux (t), integrating in time, and using (3.4), we have

1Q%ux, 1)+ Q% (Vux,t) < CQY(V-Biux,t)+C Q% (Baux,t)+CQ°(fx, ).

Since

V- (BQux)(t) = (V- F(t))T%ux(t) + F(t) - I°Vux(t)
- Ot (V- F (5))T%ux(s) + F (s)-I%Vux(s) ds (3.9)

it follows that
V- (BRux)(t) > < C T°ux(t) >+ C I°Vux(t) ?
t

+C T%x(s) 2+ TI°Vux(s) ? ds,
0

implying that Q(V - Bux,t) < CQf(ux,t) + CQ3(Vux,t). In the
same way, Q(V - Béux,t) < CQux,t) + CQY(Vuy,t) and therefore,
by Lemma 2.4,

Q%(V - Biux,t) < CQY(ux,t) + CQ (Vux,t).
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Recall Q°(Bauy,t) < CQ%(ux,t) and let q(t) = Q%(ux,t) + QF(Vux,t).
It follows using Lemma 2.2 and (2.5) that

q(t) < CQ5(ux,t) + CQY(Vux,t) + CQ°(fx,1)
t

<CQ(fx,t)+C alt—s) Qf(ux,s)+ Qf (Vux,s) ds
0
t

<CQ(fx,t) +Ct* o(t — 5)q(s) ds.
0

We may now apply Lemma 2.5 to complete the proof. O

The function Mux (t) = tux(t) satisfies a similar estimate to the first
one in Lemma 3.1, but with an additional factor ¢? on the right-hand side.

LEMMA 3.2. The solution ux of (3.1) satisfies
Q% (Mux,t) + Q5 (MVuy,t) < C2T*Q%(fx,t) for0 <t <T.

P r o o f. Multiplying both sides of (3.7) by ¢, and applying the third
identity in (2.10), we find that (since k is independent of ¢)

Mux,v + K(IZ*M+aZ* ) Vux, Vo
= MBjux,Vv + M(fx — Baux),v, (3.10)
whereas integrating (3.7) in time gives
kIt 'Wux, Vo = IlgluX,Vv + Il(fX —ux — Bouyx),v ,

so, after eliminating kZ*t'Vux, Vv ,

Mux,v + KIMVux,Vv = (MfaIl)B’luX,Vv
+ (M —aZ')(fx — Boux) + aZ'ux,v
S% Vv 2—1—% ggux 2—1—% Bjux 2—1—% v 24 (M—aIl)fX—i—aIluX,v ,

where B3 = (M — oZY)B, and By = (M — oZ')By. By choosing

v = I*Muyx, we have kI®*MVux,Vv = kVu,Vv > Vv 2 so, after

canceling the term % Vv ? and integrating in time,

O (Mux,t) + 393 (MVux,t)

< $Q%(Bsux,t) + $Q°(Biux,t) + 595 (Mux, t)
t t
+ (M — oIV fx, I Mux ds + a Tlux, I Muyx ds.
0 0
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Using (2.6), we find that
t

(M —aZ') fx,I*Mux ds < Ct*Q°((M —aZ')fx,t)+ 10 (Mux,1)
0

and
t
IluX,IaM’U,X ds S CtQQO(Il’U,X,t) + %Q?(M’UJXJ),
0
SO

QY (Mux,t) + QY (MVux,t) < Q°(Bsux,t) + Q°(Bjux, t)
+20% (Mux, t) + Ct*Q° (M — aZ') fx,t) + Ct* Q% (T ux, t).
Since
By = (M —aZ")BS + (M —aT")B,,
and
By = (M —aZ")BS + (M — oZ")Bj},
the estimate (2.13) gives
Q°(Bsux, t) + Q°(Byux,t) < Ct?Q% (ux,t) + Ct>Qb(ux, 1)
< Ct* Q5 (ux 1),

where, in the last step, we used Lemma 2.4 with t = o« and = 1. We
easily verify that

Q" (M — aZ') fx,t) < CQ°(fx, 1),
and by Lemma 2.4 with y =0 and =1,
QY (T uy,t) = Qb(ux,t) < t?Q%(ux,1).
Thus, the function q(t) = Qf (Mux,t) + Q5 (MVux,t) satisfies
q(t) < Ct? Q5 (ux,t) + 295 (Mux,t) + Ct*TQ°(fx,t) + Ct>T*Q%(ux, t).
By (2.4) and Lemma 3.1,
205 (ux,t) + t*7Q%ux,t) < Ct* Q% (ux,t) < Ct***Q(fx, 1),

and therefore, using Lemma 2.2 with = Mux,
t

a(t) <O Q(fx, ) + O ol —s)a(s) ds,
0

The result now follows by applying Lemma 2.5. O

LEMMA 3.3. The solution ux of (3.1) satisfies, for 0 <t < T,
Qf (Mux) ,t) + Q5 (MVux) ,t) < Ct*Q%(fx,t) + Ct*Q°(Mfx) ,t).



WELL-POSEDNESS OF TIME-FRACTIONAL ... 933

P r o o f. By differentiating (3.10) with respect to ¢, we have

(Muyx),v + rV(Z*Mux),Vv = Bsux — akI®Vuyx, Vv
+ (fo) —BGUX,’U s (3.11)
where Bs = (MB; ) and Bs = (MB; ). Hence,

(Mux),v + kV(I*Muyx),Vv <3 Vv 2+ Bsux >+ 1 Beux ?
+1 0240 1°Vux 24+ (Mfx),v .
Putting v = Z%(Mux) , we can cancel 3 Vv % because v = (ITMux)

by (2.7). Thus, by integrating in time and using (2.6) to show
t

) (Mfx) , I*(Mux) ds < Ct*Q°(Mfx) ,t) + 1 0F (Mux) ,t),

and using (3.4), we arrive at the estimate

O (Mux) ,t) + QS (MVuy) ,t) < 20°(Bsux,t) + Q°(Bsux, t)
+ 9% ((Mux) ,t) + CQ% (Vux,t) + Ct*Q° (Mfx) ,t).
Since
Bsux = (MB%ux) + (MBLux)
and
Bsux = (MBgux) + (MBjux),
it follows from (2.14) that

Q"(Bsux,t) + Q°(Bsux,t) < CQ5 ((Mux) ,t) + CQ3 (Mux, 1)
+ CO5 (ux,t).
By Lemmas 2.4, 3.1 and 3.2,
QF (Mux,t) + Q5 (ux,t) < Ct*Qf (Mux,t) + Ct*Of (ux,t)
< O + ) Q°(fx, 1)
and Q5 (Vux,t) < Ct*Q°(fx,t). Hence, the function
q(t) = Q7 (Mux) ,t) + Q5 (MVux) , 1)
satisfies
q(t) < Ct*Q"(fx,t) + Ct* Q" (M fx) ,t) + C Q3 (Mux) ,1t).

Finally, by Lemma 2.2,
t t

Q%((MUX) ,t) <C . a(tfs)Qf‘((MuX) ,s) ds < C , o(t—5)q(s) ds,

and the desired estimate follows by Lemma 2.5. O
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LEMMA 3.4. The solution ux of (3.1) satisfies, for 0 <t < T,

Q" (Mux) ,t) + Of (MVux) ,t) < CQ°(fx,t) + CQ°(Mfx) ,1)

Proof Using — Bsux,Vv = V- §5ux(t),v in (3.11), we obtain

(MUX),U + KIQ(MVUX),VU S% v 2—|—2 V-§5’U,X 2—|—2 BguX 2
+ (fo) R— kI*Vux,Vuv .
Choosing v = (Muy) , integrating in time, and using (3.4) yields

%QO((M’U,X) ,t) + Q?((MVUX) ,t) S 2QO(V . g5Ux,t) + 2QO(B6UX,t)
t
+ QU (Mfx),t) —a  (MVux) (s),kI*Vux(s) ds.
0

Recall from (3.9) that V- B}, = B“
notation

T B;V , where we have used the

t

V =F(t)-I°V — F(s)-I°V (s)ds.
0
Thus,

V- Bsux = V- (MBjux) = (MV - Bjux)
= (MV - Bfux) + (MV - Blux)
= (MB® Lux) + (MBS Vux)
+ (MB' jux) + (MB}, Vux) ,
and so, by (2.14),
Q(V - Byux, t) + Q°(Bsux, t) < CQ5 ((Mux) ,t) + CQS (Mux,t)

+ CQS (ux,t) + CQF (MVux) ,t) + CQY(MVux,t) + CQO3(Vux,t).

By (2.3),
t
(MVux) (s), kI*Vux(s) ds < 397 ((MVux) ,t) + COf(Vux,t),

an(oi thus the function q(t) = Q°((Mux) ,t) + O (MVuy) ,t) satisfies
q(t) < CQ§((Mux) ,t) + C QS (Mux,t) + CO3 (ux,t)
+ CQ5((MVux) ,t) + CQ§(MVux,t) + CQ3 (Vux,1)
+CQ"((Mfx) ,t) + COF(Vux,t)
< CO5((Mux) ,t) + Ct*OF (Mux,t) + Ct*Qf (ux, 1)
+CQ5 (MVux) ,t) + Ct**Q(fx, 1) + Ct*Q(fx, 1)
+CQ((Mfx) ,t) +CQ°(fx, 1),
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where, in the second step, we used Lemmas 2.2, 3.1 and 3.2. A further
application of Lemmas 3.1 and 3.2 yields

a(t) < CQ°((Mfx) .t) +CQ°(fx,t) + C QS (Mux) )
Lemma 2.2 implies that Q% ((Mux) ,t) + Q% ((MVux), t) is bounded by
t

C . ot —5) QF (Mux),s) + QF (MVux),s) ds

<C ot —s)a(s)ds,
0

where we used Q‘f‘((/\/lux) ,s) < CtO‘QO((MuX) ,s), which follows by
Lemma 2.4. Finally, Lemma 2.5 implies the desired estimate. O

The preceding lemmas yield the main result for this section.

THEOREM 3.3. Assume that the coefficients satisfy (1.4), that the
initial data ug € Lo(2) and that the source term satisfies (3.2). Then,
the solution ux of the projected Volterra equation (3.1) satisfies (with C
independent of X )

ux(t) 2 4 Vux(t) 2 §C( up 2+ M?#? ) for0<t<T.

Proof The function = Mux satisfies (t) < Ct* by Theo-
rem 3.2 so, applying Lemma 2.3 with © = 0, we see that Lemma 3.3
gives

2 ux(t) 2= Mux(t) > < Ct'2Qf (Mux) ,t)

< CtQ%(fx,t) + CtQ° (Mfx) ,t).
Define gx : [0,7] X by gx(t),v = g(t),v for v € X, and observe that
fx =up+T'gx and (Mfx) = fx + Mfy = fx + Mgx. We find using

(3.2) that
t

Q' (fx.t)+ Q°((Mfx),t) <C u 24+ I'g 2+ Mg ? ds
0

< Ct( ug >+ M),

3.12
so the estimate for the first term wux (¢) 2 follows at once. Slmﬂarlgf, ap2

plying Lemma 2.3 with = MVuy followed by Lemma 3.4, we have
21 Vuyx(t) =t* MVux(t) ? < CtQf((MVux) ,t)
< CtQ(fx,t) + CtQ° (Mfx) ,t),

implying the estimate for the second term t* Vux(t) 2. O
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4. The weak solution

We will now establish that the weak formulation (1.5) of the initial-
boundary value problem (1.1)—(1.3) is well-posed. The proof relies on our
estimates from Section 3 and also the following local Holder continuity
properties of ux.

LEMMA 4.1. If0< <t <ty <T, then

] ux(t2) —ux(t1) 2 < C “Ha( g 2+ M?t; )(ta — t1)
an

IoVux (t2)~I°Vux(t1) < C( ug +Mty) “2(ta—t1)+ ~Y2(ta—t1)* .

P r o o f. The Cauchy—Schwarz inequality implies that
2
ux(ts) —ux(t) 2= ux(s)ds < (ta—t)  ux(s) 2ds,
and by the second inequalitytlof Lemma 3.1, together v;ilth Lemma 3.4,
’ ux(s) 2ds = . 572 (Muy) (s) —ux(s) *ds
t t )
<2 72 . ( Mux) ?+ ux ?)ds

=2 72 Q"(Mux) ,t2) + Q°(ux, t2)
<C 7?2 Q" (Mfx) ,ta) + Qfx,t2)

The first result now follows from (3.12). To prove the second, we write

t1— /2
IO‘VuX(tg) — I“Vux(tl) = a(tg - S) - a(tl - S) VUX(S) ds
0
t1 t2
+ alta—3s)— o(t1 —s) Vux(s)ds+ alta — s)Vux(s)ds,
t1— /2 t1

and deduce from Theorem 3.3 that
I°Vux(t2) — I°Vux(t1) <C( uy + Mty) (1 + I + I3),

where
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t1— /2
I, = altt —8) — olta —9) 57a/2 ds,
0
t1
I = altt —8) — olta —9) so/2 ds,
t1— /2
t2
Is = alty — 8)s™2 ds.

t1
By the mean value theorem,

a(tl—s)— a(tQ—S)Z(tg—tl)’ a—l( )’ with ¢t —s < <ty —s,
and if 0 <s<t; — /2thent; —s> /2so0
t1— /2 ds
I < (t2 = t1)| a-1( /2)] 72
0 S
2 T l—a (t— /2)l02
< —
- 1—a/2 ()

(ta —t1).

Moreover,
t1
L<( /27 alti —8) — oty —s) ds
t1— /2

=(2/ )% apilte—t)+ as1( /2) = anilta—ti+ /2)
<(2/ )% aqilta —t)

and I; < —°/2 ttf alta —s)ds= ~9/2 o 4(ts —t1). U

Our existence theorem is stated as follows. Note the weak continuity
at t = 0 asserted in part 5; we show in the companion paper [29] that the
solution u is continuous on the closed interval [0, 7] provided uy € H*(2)
for some 1 > 0.

THEOREM 4.1. Assume that the coefficients satisfy (1.4), that the
source term satisfies (3.2), and that the initial data ug € Lo(S2). Then,
the initial-boundary value problem (1.1)—(1.3) has a weak solution u. More
precisely, there exists a function u : [0,7] Ly(Q2) with the following
properties:

(1) The restriction w: (0,7]  La(§2) is continuous.

(2) If 0 < t < T, then u(t) € H}(Q) with

u(t) +t2 Vu(t) <CO(ug + Mt ).
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(3) The functions Z%u and Bsu are continuous from the closed inter-
val [0,T] to Ly(Q). Likewise, Z*Vu and Byu are continuous from [0,T]
to LQ(Q)d

(4) At t =0 we have % = Bou = 0, Z°Vu = Byu = 0 and u(0) = ug.

(5) Ift 0, then wu(t),v u(0),v for each v € La(92).

() For 0 <t <T and v € H}(Q),

)

u(t),v + K(IVu)(t),Vv — (Biu)t),Vv + (Bau)(t),v = f(t),v .

(4.1)
Proof. Let 1, 9, 3,...beasequence of functions spanning a dense
subspace of H}(€2). For each integer n > 1, let X,, = span{ 1, 2,..., n}

and for brevity denote the solution of (3.7) with X = X,, by u,, = ux, and
likewise write f, = fx, so that

Un(t),v + K(Z*Vuy,)(t), Vo — (Byuy)(t), Vv + (Bauy)(t),v = fu(t),v
4.2
forve X, and 0 <t <T. We see from Theorem 3.3 and Lemma( 4.%

that, whenever 0 < < T, the sequence of functions u,, is bounded and
equicontinuous in C'([ ,T]; L2(f2)). By choosing a sequence of values of
tending to zero we can select a subsequence, again denoted by wu,, such
that wu,(t) converges in La(Q2) for 0 < ¢ <T. We may therefore define
u(t) = lim wu,(t) for0<t<T,
and this function satisfies Pr%perty 1 because, given any fixed € (0,7, the
limit is uniform for ¢t € [ , 7. Similarly, the functions Z*Vu,, are bounded
and equicontinuous in C([ ,T]; L2(?)?) so ZVu : (0,7 Ly(Q)? is
continuous. In fact, it will follow from (4.4) below that Z*Vu(t) 0
ast 0,50 Z°Vu:[0,T] Ly(Q)?is continuous.
By Theorem 3.3,
un(t) <C(ug +Mt) for0<t<T,
so by sending n we conclude that u(t) < C( uy + Mt ) Also, for
0<t<T,

| un(t),v | < C un(t) gicy v -1 )SCt_O‘/2( wy +Mt ) v g1
and sending n it follows that
| u(t),v | <Ct?(ug +Mt ) v g1y forallve LyQ),
so u(t) € HY(Q) with u(t) Hi() < Ct=*/2( wg + Mt ), establishing

Property 2.
Since wu(t) is bounded, Z%u is continuous on [0,7] with
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t
Tu(t) < ot —3s) u(s) ds
o, (4.3)
<C (tfs)o‘_l( U +M5)dS§C( ug + Mt )to‘,
0
and similarly
t
IVu(t) <C (t— s)o‘_ls_o‘/2( ug +Ms )ds < C( ug + Mt )to‘/Q.

0
(4.4)
Likewise, for n > 1,

Toun(t) <C(ug +Mt)t* and I°Vu,(t) <C(ug +Mt )t/
) (45)
Continuity of Bju and Bau follow from (2.11) and (3.6), completing the
proof of property 3, with
t
(Biu)(t) + (Bou)(t) <C (Z*u)(t) +C  ( (Z%uw)(s) + wu(s) )ds
0
< C( uy + M) te.
(4.6)
Property 4 follows from the estimates (4.3), (4.4) and (4.6).
If0< <t<T, then
t
(Z%up)(t) — (Z%u)(t) < alt —s) up(s) —u(s) ds
0
t

<C (t- s)o‘_l( ug +Ms )ds+  (t— $)27 1w, (s) — u(s) ds
0

<C *(uw +M )Jra_l(tf )¢ max Un(s) —u(s) ,

showing that Z%u,(t)  Z%u(t) in Lo(2), uniformly for ¢t € [ ,T]. In fact,
the convergence is uniform for ¢ € [0,7], owing to the estimates (4.3) and
(4.5). Therefore, we see using (2.11) and (3.6) that, for v € H}(Q),

(Biuy)(t), Vo (Biu)(t),Vv  and  (Bauy)(t),v (Bou)(t),v .
Since f,, ; = f, ; for j <n, we have
lim fu(t), ; = f(t), ; forallj>1and0<t<T,

and therefore f,(t),v f(t),v for all v € Ly(2). Thus, by sending
n in (4.2), it follows that (4.1) holds for v € H}(Q) and 0 <t < T. In
light of (4.6) and (4.4), the variational equation (4.1) is satisfied when ¢ = 0
if and only if u(0),v = wup,v for all v € H}(S2), which is the case if and
only if we define u(0) = ug. Moreover, if ¢ 0 then w(t),v f0),v =
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up,v , for each v € HE(Q), and hence by density for each v € Lg(f),
establishing Properties 5 and 6. |

REMARK 4.1. Since our estimates rely on Lemma 2.1, the constant C'
in part 2 of Theorem 4.1 becomes unbounded as « 1. However, this
behavior appears to be an artifact of our method of proof. In the limiting
case when a = 1 and (1.1) reduces to a parabolic PDE, a simple energy ar-
gument combined with the classical Gronwall inequality yields the a prior:

estimate .

u(t) <C wug + g(s) ds for0<t<T;
0
see also the alternative analysis [21] of the fractional Fokker—Planck equa-
tion.

THEOREM 4.2. The weak solution of the initial-boundary value prob-
lem (1.1)—~(1.3) is unique. More precisely, under the same assumptions
as Theorem 4.1, there is at most one function u that satisfies (4.1) and
is such that uw and Z%u belong to Lg((O,T);Lg(Q)), and Z%Vu belongs
to Lo ((0,T); Lo (Q)%).

P r o o f. The problem is linear, so it suffices to show that if ug = 0 and
g(t) 0 then u(t) 0. Thus, suppose that

w(t),v + K(ZVu)(t),Vv — (Biu)t),Vv + (Bau)(t),v =0
for 0 <t < T and v € H}(Q). Proceeding as in the proof of (3.8), we have

% (u,t) + $03(Vu,t) < 1Q°(Byu, t) + $Q°(Bou,t) + 395 (u, t)
< 0Q5(u, ),
where the final step used (2.11), (2.12) and Lemma 2.4. Thus, applying
Lemma 2.2, the function q(t) = O (u,t) + Q% (Vu,t) satisfies
t

q(t) < CQ(Vu,t) <€ 4t = s)als) ds,

and therefore q(t) = 0 for 0 < ¢t < 7 by Lemma 2.5. In particular,
QY (u,T) = 0, so if we put u(t) = 0 for t > T then the Laplace transform
of u satisfies u(iy) = 0 for — <y < by (2.1), implying that u(t) = 0
for0<t<T. O
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