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Abstract

We establish the well-posedness of an initial-boundary value problem for
a general class of linear time-fractional, advection-diffusion-reaction equa-
tions, allowing space- and time-dependent coefficients as well as initial data
that may have low regularity. Our analysis relies on novel energy meth-
ods in combination with a fractional Gronwall inequality and properties of
fractional integrals.
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1. Introduction

The main scope of this paper is to investigate the existence and uniques-
ness of the weak solution of a linear, time-fractional problem of the form

∂tu−∇ ·
(
κ∇∂1−α

t u− �F∂1−α
t u− �Gu

)
+ a∂1−α

t u+ bu = g (1.1)

for x ∈ Ω and 0 < t ≤ T . The parameter α in the fractional derivative
lies in the range 0 < α < 1, and the spatial domain Ω ⊆ Rd (d ≥ 1) is

bounded and Lipschitz. The transport coefficients �F and �G, the reaction
coefficients a and b, as well as the source term g, are assumed to be known
functions of x and t, whereas the generalized diffusivity κ = κ(x) may
depend only on x but is permitted to be a real, symmetric positive-definite
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matrix. In (1.1), −∇ · (κ∇∂1−α
t u) is the non-local diffusion term, whereas

∇ ·
(
�F∂1−α

t u+ �Gu
)
is the non-local/local advection term, and a∂1−α

t u+ bu
is the non-local/local reaction term.

We impose homogeneous Dirichlet boundary conditions,

u(x, t) = 0 for x ∈ ∂Ω and 0 ≤ t ≤ T , (1.2)

and the initial condition

u(x, 0) = u0(x) for x ∈ Ω. (1.3)

The Riemann–Liouville fractional derivative [33] of order 1 − α is defined
via the fractional integral of order α: with ωα(t) = tα−1/Γ(α) we have

∂1−α
t v(x, t) = ∂tIαv(x, t) where Iαv(x, t) =

� t

0
ωα(t− s)v(x, s) ds.

We denote byW k
p (Ω) the usual Sobolev space of functions whose partial

derivatives of order k or less belong to Lp(Ω). The following regularity
assumptions on the coefficients will be used:

κ ∈ L∞(Ω)d×d, �F , �G ∈ C2
(
[0, T ];W 1

∞(Ω)d
)
,

a, b ∈ C1
(
[0, T ];L∞(Ω)

)
.

(1.4)

In addition, to ensure that the spatial operator v �→ −∇·(κ∇v) is uniformly
elliptic on Ω, we assume that the minimal eigenvalue of κ(x) is bounded
away from zero, uniformly for x ∈ Ω.

Based on physical models of various subdiffusive transport processes,
different classes of time-fractional PDEs arise as special cases of (1.1), in-
cluding

• fractional Fokker–Planck equations [4, 10, 16, 30], when �G = 0,
a = b = 0 and g = 0;

• fractional reaction-diffusion equations [11, 12], when �F = �G = 0;

• fractional cable equations [19], when �F = �G = 0;
• fractional advection-dispersion (or fractional convection-diffusion)

equations [25], when �F = �F (x), �G = 0 and a = b = 0.

Consider the simplest non-trivial case, when κ is the identity matrix with
�F = �G = 0, a = b = 0 and g = 0, so that (1.1) reduces to the frac-
tional subdiffusion equation: ∂tu−∇2∂1−α

t u = 0. Let ϕ denote a Dirichlet
eigenfunction of the Laplacian on Ω, with corresponding eigenvalue λ > 0,
that is, −∇2ϕ = λϕ in Ω with ϕ|∂Ω = 0. For the special choice of
initial data u0 = ϕ(x), the solution of the initial-boundary value prob-
lem (1.1)–(1.3) has the separable form u(x, t) = Eα(−λtα)ϕ(x), where
Eα(z) =

)∞
n=0 z

n/Γ(1+nα) is the Mittag–Leffler function [33]. Notice that
∂m
t u = O(tα−m) as t → 0. Moreover, we can extend the classical method of

separation of variables for the heat equation to construct a series solution
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for arbitrary initial data u0 ∈ L2(Ω), and the regularity properties of the
solution u follow from this representation [28].

Such an explicit construction is no longer possible for the solution of the
general equation (1.1). Instead, we proceed by formally integrating (1.1)
in time, multiplying both sides by a test function v, and applying the first
Green identity over Ω to arrive at the weak formulation

�u(t), v� +
� t

0

*
κ∇∂1−α

s u(s)− �F (s)∂1−α
s u(s)− �G(s)u(s),∇v

+
ds

+

� t

0

*
a(s)∂1−α

s u(s) + b(s)u(s), v
+
ds = �u0, v� +

� t

0
�g(s), v� ds (1.5)

for all v ∈ H1
0 (Ω), where we have suppressed the dependence of the func-

tions on x, and where �·, ·� denotes the inner product in L2(Ω) or L2(Ω)
d.

Numerical methods for particular cases of (1.1) were extensively stud-
ied over the last two decades, see for example [1, 18, 23, 36, 38] for finite
differences, [14, 20, 31] for continuous and discontinuous finite elements,
and also see [8, 13] for more references. However, due to various types
of mathematical difficulties, proof of the well-posedness of the continuous
problem is almost missing despite its importance, apart from the case [28]

when �F = �G = 0 and a = b = 0. In this paper, we address these funda-
mental questions. A related paper [21] treats the fractional Fokker–Planck

equation (that is, the case �G = 0 and a = b = 0) via a different, and
somewhat simpler, chain of estimates that, for instance, does not use the
quadratic operator Qμ

1 defined below in Section 2.

If the coefficients �F and a are independent of t, and if �G = 0 and b = 0,
then by applying the fractional integration operator I1−α to both sides
of (1.1) we obtain

C∂α
t u−∇ · (κ∇u− �Fu) + au = g̃, (1.6)

where C∂α
t u = I1−α∂tu denotes the Caputo fractional derivative [33] and

where g̃ = I1−αg. Existence and uniqueness results for (1.6) were studied
by several authors, including Zacher [39], Alikhanov [2], Sakamoto and
Yamamoto [34] and Kubica and Yamamoto [17]. Further, the reader can
refer to [15, 22, 27, 35]. Some of these papers include results for time-
dependent coefficients, but in that case (1.6) is no longer equivalent to (1.1).

To recast the weak formulation (1.5) as a Volterra integral equation, we
introduce two bounded linear operators, firstly K1(t) : H

1
0 (Ω) → H−1(Ω)

defined by

�K1(t)v,w� = �κ∇v,∇w� − ��F (t)v,∇w� + �a(t)v,w� for v, w ∈ H1
0 (Ω),

and secondly K2(t) : L2(Ω) → H−1(Ω) by
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�K2(t)v,w� = �b(t)v,w� − � �G(t)v,∇w� for v ∈ L2(Ω) and w ∈ H1
0 (Ω).

The variational problem (1.5), subject to the initial condition (1.3), can
then be written more succinctly as

u(t) +

� t

0

�
K1(s)∂

1−α
s u(s) +K2(s)u(s)

	
ds = f(t) ≡ u0 +

� t

0
g(s) ds. (1.7)

Assuming u is sufficiently regular that (Iαu)(0) = 0, and using a dash to
indicate a derivative in time, integration by parts leads to� t

0
K1(s)∂

1−α
s u(s) ds = K1(t)Iαu(t)−

� t

0
K �

1(s)Iαu(s) ds

=

� t

0



ωα(t− s)K1(t)−

� t

s
ωα(z − s)K �

1(z) dz

�
u(s) ds,

with K �
1(t) : H

1
0 (Ω) → H−1(Ω) given by

�K �
1(t)v,w� = −��F �(t)v,∇w� + �a�(t)v,w�.

Thus, u satisfies

u(t) +

� t

0
K(t, s)u(s) ds = f(t) for 0 ≤ t ≤ T , (1.8)

where K(t, s) : H1
0 (Ω) → H−1(Ω) is the weakly-singular, operator-valued

kernel

K(t, s) = ωα(t− s)K1(t) +K2(s)−
� t

s
ωα(z − s)K �

1(z) dz. (1.9)

Following some technical preliminaries in Section 2, we apply the Gal-
erkin method in Section 3 to project the problem (1.8) to a finite di-
mensional subspace X ⊆ H1

0 (Ω), thereby obtaining an approximate so-
lution uX : [0, T ] → X. Using delicate energy arguments and a fractional
Gronwall inequality, we prove a priori estimates for uX that are uniform
with respect to the dimension of X, allowing us in Section 4 (Theorems 4.1
and 4.2) to establish the existence and uniqueness of a weak solution u to
the original problem (1.1)–(1.3), provided (1.4) holds.

The regularity of the weak solution u will be studied in a companion
paper [29].

2. Preliminaries and notations

Our subsequent analysis makes frequent use of two quadratic operators
defined, for μ ≥ 0 and 0 ≤ t ≤ T , by

Qμ
1 (φ, t) =

� t

0
�φ,Iμφ� ds and Qμ

2 (φ, t) =

� t

0
�Iμφ�2 ds.
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These operators coincide when μ = 0 because I0φ = φ, and so we write
Q0 = Q0

1 = Q0
2. If we put φ(t) = 0 for t > T , then the Laplace trans-

form φ̂(z) =

 T
0 e−ztφ(t) dt is an entire function and ,Iμφ(z) = z−μφ̂(z), so

it follows by the Plancherel Theorem that

Qμ
1 (φ, T ) =

cos(πμ/2)

π

� ∞

0
y−μ�φ̂(iy)�2 dy ≥ 0, (2.1)

assuming that φ is real-valued; see also [32, Theorem 2]. Note that because
ωμ ∈ L1(0, T ), the fractional integral defines a bounded linear operator

Iμ : Lp

(
(0, T );L2(Ω)

)
→ Lp

(
(0, T );L2(Ω)

)
for 1 ≤ p ≤ ∞. (2.2)

Also, Iμ+ν = IμIν because ωμ ∗ ων = ωμ+ν for μ > 0 and ν > 0; here, ∗
denotes the Laplace convolution.

The next four lemmas establish key inequalities satisfied by Qμ
1 and Qμ

2 .

Lemma 2.1. If 0 < α < 1 and � > 0, then����� t

0
�φ,Iαψ� ds

���� ≤ Qα
1 (φ, t)

4�(1− α)2
+ �Qα

1 (ψ, t), (2.3)

Qα
2 (φ, t) ≤

2tα

1− α
Qα

1 (φ, t), (2.4)

Qα
1 (φ, t) ≤ 2tα Q0(φ, t), (2.5)����� t

0
�φ,Iαψ� ds

���� ≤ tαQ0(φ, t)

2�(1− α)2
+ �Qα

1 (ψ, t). (2.6)

P r o o f. The first three inequalities are proved by Le, McLean and
Mustapha [20, Lemma 3.2]. The fourth inequality follows from (2.3) and
(2.5). �

For the next result, note that if φ ∈ W 1
1

(
(0, T );X

)
for a normed

space X, then φ : [0, T ] → X is absolutely continuous and

(∂tIαφ− Iα∂tφ)(t) = φ(0)ωα(t) for 0 < t ≤ T . (2.7)

Lemma 2.2. If 0 < α ≤ 1, then for φ ∈ L2

(
(0, t), L2(Ω)

)
,

Qα
2 (φ, t) ≤ 2

� t

0
ωα(t− s)Qα

1 (φ, s) ds.

P r o o f. Assume first that φ ∈ W 1
1

(
(0, T ), L2(Ω)

)
and let ψ = Iαφ.

Since ψ(0) = 0, the Caputo fractional derivative of ψ is

C∂α
t ψ = I1−α(ψ�) = (I1−αψ)� − ψ(0)ω1−α = (I1φ)� = φ.
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Recalling an identity of Alikhanov [3, Corollary1],

2
*
ψ(t),C∂α

t ψ(t)
+
= C∂α

t

(
�ψ�2

)
(t)

+
α

2Γ(1 − α)

� t

0

1

(t− s)1−α


� s

0

ψ�(q) dq
(t− q)α

�2

ds,

we see that

2�φ,Iαφ� = 2�C∂α
t ψ,ψ� ≥ C∂α

t

(
�ψ�2

)
= I1−α(�Iαφ�2)�, (2.8)

and thus

I1
(
�Iαφ�2

)
= I2

(
�Iαφ�2

)�
= I1+αI1−α

(
�Iαφ�2

)�
≤ 2I1+α

(
�φ,Iαφ�

)
= 2IαI1

(
�φ,Iαφ�

)
,

which is equivalent to the desired inequality.
Now let φ ∈ L2

(
(0, T ), L2(Ω)

)
, and choose φn ∈ W 1

1

(
(0, T ), L2(Ω)

)
such

that

 T
0 �φn(t) − φ(t)�2 dt → 0 as n → ∞. Using (2.2) with μ = α and

p = 2, it follows that Qα
1 (φn, t) → Qα

1 (φ, t) and Qα
2 (φn, t) → Qα

2 (φ, t),
uniformly for t ∈ [0, T ], which implies the result in the general case. �

The next lemma will eventually enable us to establish pointwise (in
time) estimates for u(t).

Lemma 2.3. Let 0 ≤ μ < α ≤ 1. If the function φ : [0, T ] → L2(Ω)
is continuous with φ(0) = 0, and if its restriction to (0, T ] is differentiable
with �φ�(t)� ≤ Ct−μ for 0 < t ≤ T , then �φ(t)�2 ≤ 2ω2−α(t)Qα

1 (φ
�, t).

P r o o f. For α = 1, equality holds:

2ω1(t)Q1
1(φ

�, t) = 2

� t

0
�φ�, φ� ds = �φ(t)�2.

For 0 < α < 1, put ψ(t) = Iαφ� and note that �ψ(t)� ≤ Ctα−μ. By
following similar arguments, one can show that (2.8) holds with φ� in place
of φ, that is 2�φ�,Iαφ�� = I1−α(�Iαφ��2)�, for almost all t > 0. Now,
applying the operator I1 to both sides, and using Iαφ�(0) = ψ(0) = 0, we
observe that

I1−α
(
�Iαφ��2

)
(t) = 2Qα

1 (φ
�, t) for t > 0. (2.9)

Since φ = I1φ� = I1−αψ,
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�φ(t)�2 ≤

� t

0
ω1−α(t− s)�ψ(s)� ds

�2

≤
� t

0
ω1−α(t− s) ds

� t

0
ω1−α(t− s)�ψ(s)�2 ds

= ω2−α(t)I1−α
�
�Iαφ��2

�
(t),

and hence the desired result follows immediately after using (2.9). �

Lemma 2.4. If 0 ≤ μ ≤ ν ≤ 1, then Qν
2(φ, t) ≤ 2t2(ν−μ)Qμ

2 (φ, t).

P r o o f. See Le, McLean and Mustapha [20, Lemma 3.1]. �

We will make essential use of the following fractional Gronwall inequal-
ity.

Lemma 2.5. Let β > 0 and T > 0. Assume that a and b are non-
negative, non-decreasing functions on the interval [0, T ]. If q : [0, T ] → R
is an integrable function satisfying

0 ≤ q(t) ≤ a(t) + b(t)

� t

0
ωβ(t− s)q(s) ds for 0 ≤ t ≤ T ,

then
q(t) ≤ a(t)Eβ

(
b(t)tβ

)
for 0 ≤ t ≤ T .

P r o o f. See Dixon and McKee [9, Theorem 3.1]. �

Let M denote the operator of pointwise multiplication by t, that is,
(Mφ)(t) = tφ(t), and note the commutator property

MIμ − IμM = μIμ+1, (2.10)

for any real μ ≥ 0. We will need the following estimates involving the linear
operator Bμ

ψ defined (for suitable ψ and φ) by

(Bμ
ψφ)(t) = ψ(t)Iμφ(t)−

� t

0
ψ�(s)Iμφ(s) ds. (2.11)

Lemma 2.6. If ψ ∈ W 1∞
(
(0, T );L∞(Ω)d

)
and φ ∈ W 1

1

(
(0, T );L2(Ω)

)
,

then there is a constant C (depending only on ψ, μ and T ) such that
for 0 ≤ t ≤ T ,
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Q0(Bμ
ψφ, t) ≤ CQμ

2 (φ, t), (2.12)

Q0(MBμ
ψφ, t) +Q0(I1Bμ

ψφ, t) ≤ Ct2Qμ
2 (φ, t), (2.13)

Q0
(
(MBμ

ψφ)
�, t

)
≤ CQμ

2

(
(Mφ)�, t

)
+ CQμ

2 (Mφ, t) +CQμ
2 (φ, t). (2.14)

P r o o f. The assumption on ψ implies that

�(Bμ
ψφ)(t)�

2 ≤ C�(Iμφ)(t)�2 + C

� t

0
�(Iμφ)(s)�2 ds,

and (2.12) follows after integrating in time. By the Cauchy–Schwarz in-
equality,

�(MBμ
ψφ)(t)�

2 + �(I1Bμ
ψφ)(t)�

2 ≤ t2�(Bμ
ψφ)(t)�

2 + t

� t

0
�(Bμ

ψφ)(s)�
2 ds,

and (2.13) follows after integrating in time. The third identity in (2.10)
implies that

MBμ
ψφ = ψ

(
IμMφ+ μIμ+1φ

)
−MI1(ψ�Iμφ)

and therefore, differentiating with respect to t,

(MBμ
ψφ)

� = ψ�(IμMφ+μIμ+1φ
)
+ψ

(
(IμMφ)�+μIμφ

)
−(I1+M)(ψ�Iμφ).

Thus, noting that (IμMφ)� = Iμ(Mφ)� by (2.7), with

�Iμ+1φ(t)�2 = �I1(Iμφ)(t)�2 ≤ tQμ
2 (φ, t)

and �I1(ψ�Iμφ)(t)�2 ≤ CtQμ
2 (φ, t), we have

�(MBμ
ψφ)

�(t)�2 ≤ C�Iμ(Mφ)(t)�2 + C�Iμ(Mφ)�(t)�2

+ C�(Iμφ)(t)�2 + CtQμ
2 (φ, t),

so (2.14) follows after integrating in time. �

3. The projected equation

Suppose that X is a finite-dimensional subspace of H1
0 (Ω), equipped

with the induced norm: �v�X = �v�H1
0 (Ω). We define a bounded linear

operator KX(t, s) : X → X in terms of K(t, s) in (1.9) by

�KX(t, s)v,w� = �K(t, s)v,w� for v, w ∈ X and 0 ≤ s ≤ t ≤ T ,

and let fX(t) denote the L2-projection onto X of f(t) from (1.7), that is,

�fX(t), w� = �f(t), w� for w ∈ X and 0 ≤ t ≤ T .
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In this way, we arrive at a finite dimensional reduction of the Volterra
equation (1.8),

uX(t) +

� t

0
KX(t, s)uX(s) ds = fX(t) for 0 ≤ t ≤ T . (3.1)

In the next theorem, we outline a self-contained proof of existence and
uniqueness under relaxed assumptions on the coefficients in the fractional
PDE (1.1). Similar results for scalar-valued kernels are shown by Linz [24,
§3.4], Becker [5], and Brunner [6].

Henceforth, C will denote a generic constant that may depend on the
coefficients in (1.1), the spatial domain Ω, the time interval [0, T ], the frac-
tional exponent α, the parameter η, and the integer m in (1.4). However,
any dependence on the subspace X is indicated explicitly by writing CX .
We let Y = C([0, T ];X) with the norm �v�Y = max0≤t≤T �v(t)�X .

Theorem 3.1. Assume that the coefficients in (1.1) satisfy

κ ∈ L∞(Ω)d×d, �F ∈ W 1
∞
(
(0, T );L∞(Ω)d

)
, �G ∈ L∞

(
(0, T );L∞(Ω)d

)
,

a ∈ W 1
∞
(
(0, T );L∞(Ω)

)
, b ∈ L∞

(
(0, T );L∞(Ω)

)
.

Assume, in addition, that the source term g : (0, T ] → L2(Ω) is a measur-
able function satisfying

�g(t)� ≤ Mtη−1 for 0 < t ≤ T , (3.2)
whereM and η are positive constants, and that the initial data u0 ∈ L2(Ω).
Then, the weakly-singular Volterra integral equation (3.1) has a unique
solution uX ∈ Y , and moreover �uX�Y ≤ CX�fX�Y ≤ CX(�u0�+M).

P r o o f. Our assumptions on u0 and g ensure that fX ∈ Y . The
kernel (1.9) has the form

K(t, s) = ωα(t− s)G(t, s) +H(t, s),
where

G(t, s) = K1(t)− Γ(α)(t− s)

� 1

0
ωα(y)K

�
1

(
s+ (t− s)y

)
dy

and H(t, s) = K2(s) for 0 ≤ s ≤ t ≤ T . Our assumptions on the coefficients
of the fractional PDE (1.1) ensure that G and H are continuous mappings
from the closed triangle � = { (t, s) : 0 ≤ s ≤ t ≤ T } into the space of
bounded linear operators H1

0 (Ω) → H−1(Ω). Likewise,

KX(t, s) = ωα(t− s)GX(t, s) +HX(t, s),

where GX(t, s) : X → X and HX(t, s) : X → X are defined by

�GX(t, s)v,w� = �G(t, s)v,w� and �HX(t, s)v,w� = �H(t, s)v,w�
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for (t, s) ∈ � and v, w ∈ X. Since X is finite dimensional, GX and HX

are continuous functions from � into the space of bounded linear opera-
tors X → X. Hence, there is a positive constant γX such that

�KX(t, s)v�X ≤ γXωα(t− s)�v�X for (t, s) ∈ � and v ∈ X,

so we can define the Volterra operator KX : Y → Y by

KXv(t) =

� t

0
KX(t, s)v(s) ds for 0 ≤ t ≤ T and v ∈ Y .

We see that �KXv�Y ≤ γXω1+α(T )�v�Y . In fact, using the semigroup
property, � t

0
ωα(t− s)ωβ(s) ds = ωα+β(t),

we obtain the following estimate for the operator norm of the nth power
of KX ,

�Kn
X�Y→Y ≤ γnX max

0≤t≤T

� t

0
ωnα(t− s) ds = γnXω1+nα(T ) for n ≥ 1.

It follows that the sum RX =
)∞

n=1(−1)n+1Kn
X defines a bounded linear

operator with

�RX�Y→Y ≤
∞!
n=1

ω1+nα(T )γ
n
X = Eα(γXTα)− 1.

The existence and uniqueness of uX ∈ Y is seen by noting

uX +KXuX = fX if and only if uX = fX −RXfX ,

from which we also deduce the a priori estimate claimed in the theorem.
�

For a scalar, weakly-singular, second-kind Volterra equation, it is known
that if fX admits an expansion in powers of t and tα, then so does the
solution uX ; see Lubich [26, Corollary 3], and also Brunner, Pedas and
Vainikko [7, Theorem 2.1] (with ν = 1−α). To outline a proof that a similar
result holds for systems of Volterra equations, let Cm

α = Cm
α

(
[0, T ];X

)
denote the space of continuous functions v : [0, T ] → X that are Cm on the
half-open interval (0, T ] and for which the seminorm

|v|j,α = sup
0<t≤T

tj−α�v(j)(t)�X is finite for 1 ≤ j ≤ m.

We make Cm
α into a Banach space by defining the obvious norm:

�v�m,α = �v�Y +

m!
j=1

|v|j,α.
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Theorem 3.2. Let m ≥ 1, and strengthen the assumptions (1.4) by
requiring

�F , �G ∈ Cm+1
(
[0, T ];W 1

∞(Ω)d
)

and a, b ∈ Cm
(
[0, T ];L∞(Ω)

)
.

If u0 ∈ L2(Ω) and g : (0, T ] → X is Cm with �g(i−1)(t)� ≤ Mtα−i for
1 ≤ i ≤ m, then uX ∈ Cm

α and �uX�m,α ≤ CX�fX�m,α ≤ CX(�u0�+M).

P r o o f. Our assumptions on u0 and g imply that fX ∈ Cm
α . Using

the substitution z = s + (t − s)y in (1.9), we find that if j + k ≤ m and
0 ≤ s < t ≤ T , then--∂k

t (∂t + ∂s)
jK(t, s)v

--
H−1(Ω)

≤ CX(t− s)α−1−k�v�H1
0 (Ω) for v ∈ H1

0 (Ω),

and, since X is finite dimensional,--∂k
t (∂t + ∂s)

jKX(t, s)v
--
X

≤ CX(t− s)α−1−k�v�X for v ∈ X.

Hence, the Volterra operator KX : Cm
α → Cm

α is compact [37, Theorem 6.1].
Theorem 3.1 implies that the homogeneous equation, uX + KXuX = 0,
has only the trivial solution uX = 0, and therefore the inhomogeneous
equation uX +KXuX = fX is well-posed not only in Y but also in Cm

α . �

Our goal in the remainder of this section is to obtain bounds for �uX(t)�
and �∇uX(t)� with constants that are independent of X. Our proof relies
on a sequence of technical lemmas. To simplify our estimates, we rescale the
time variable, if necessary, so that the minimal eigenvalue of κ is bounded
below by unity:

λmin

(
κ(x)

)
≥ 1 for x ∈ Ω. (3.3)

In this way, �κ∇v,∇v� ≥ �∇v�2 for v ∈ H1
0 (Ω), and we see from (2.1) that

for (real-valued) φ ∈ C
(
[0, T ];H1

0 (Ω)
)
,� t

0
�κIμ∇φ,∇φ� ds =

cos(πμ/2)

π

� ∞

0
y−μ�κ∇φ̂(iy),∇φ̂(iy)� dy

≥ cos(πμ/2)

π

� ∞

0
y−μ�∇φ̂(iy)�2 dy,

so � t

0
�κIμ∇φ,∇φ� ds ≥

� t

0
�Iμ∇φ,∇φ� ds = Qμ

1 (∇φ, t). (3.4)

Since (1.7) is equivalent to (1.8), if v ∈ X then
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.� t

0
KX(t, s)uX(s) ds, v

/
=

� t

0

*
K1(s)∂

1−α
s uX , v

+
ds+

� t

0

*
K2(s)uX(s), v

+
ds

=
*
κ(Iα∇uX)(t),∇v

+
−
*
(B1uX)(t),∇v

+
+

*
(B2uX)(t), v

+
,

where

�B1φ(t) =

� t

0

�
�F (s)∂1−α

s φ(s) + �G(s)φ(s)
�
ds,

B2φ(t) =

� t

0

�
a(s)∂1−α

s φ(s) + b(s)φ(s)
�
ds.

(3.5)

Assuming φ ∈ C1
α([0, T ];X

)
, we may integrate by parts and use the nota-

tion (2.11) to write
�B1 = Bα

�F
+B1

�G
and B2 = Bα

a +B1
b . (3.6)

Thus, the solution of (3.1) satisfies

�uX(t), v�+ �κ∇IαuX(t),∇v� −
*
( �B1uX)(t),∇v

+
+

*
(B2uX)(t), v

+
= �fX(t), v� for v ∈ X, (3.7)

which yields the following estimates (with C independent of X).

Lemma 3.1. For 0 ≤ t ≤ T , the solution uX of the Volterra equa-
tion (3.1) satisfies the a priori estimates

Qα
1 (uX , t) +Qα

2 (∇uX , t) ≤ CtαQ0(fX , t)
and

Q0(uX , t) +Qα
1 (∇uX , t) ≤ CQ0(fX , t).

P r o o f. From (3.7),*
uX(t), v

+
+ �κ∇IαuX(t),∇v� ≤ 1

2�∇v�2 + 1
2� �B1uX(t)�2 + 1

2�B2uX(t)�2

+ 1
2�v�

2 +
*
fX(t), v

+
.

Choosing v = IαuX(t) we have �κ∇IαuX(t),∇v� = �κ∇v,∇v� ≥ �∇v�2
because of (3.3). Thus, after canceling the term 1

2�∇v�2 and integrating
in time, we see that

Qα
1 (uX , t) + 1

2Q
α
2 (∇uX , t) ≤ 1

2Q
0( �B1uX , t) + 1

2Q
0(B2uX , t) + 1

2Q
α
2 (uX , t)

+

� t

0

*
fX(s),IαuX(s)

+
ds. (3.8)
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Using the representation (3.6) and the achieved estimate (2.12),

Q0( �B1uX , t) ≤ 2Q0(Bα
�F
uX , t) + 2Q0(B1

�G
uX , t)

≤ CQα
2 (uX , t) + CQ1

2(uX , t) ≤ CQα
2 (uX , t),

where, in the final step, we used Lemma 2.4. In the same way,

Q0(B2uX , t) ≤ CQα
2 (uX , t).

Using (2.6) with φ = fX , ψ = uX and � = 1/2, we deduce that

Qα
1 (uX , t) + 1

2Q
α
2 (∇uX , t) ≤ CQα

2 (uX , t) + CtαQ0(fX , t) + 1
2Q

α
1 (uX , t).

Hence, applying Lemma 2.2 with φ = uX , we can show that the func-
tion q(t) = Qα

1 (uX , t) +Qα
2 (∇uX , t) satisfies

q(t) ≤ CtαQ0(fX , t) + C

� t

0
ωα(t− s)Qα

1 (uX , s) ds.

Since Qα
1 (uX , s) ≤ q(s), Lemma 2.5 implies the first estimate.

To show the second estimate, use −
*
( �B1uX)(t),∇v

+
=

*
∇· �B1uX(t), v

+
in (3.7) to obtain

�uX(t), v�+
*
κ∇IαuX(t),∇v

+
≤ 1

2�v�
2 + 3

2�∇ · ( �B1uX)(t)�2

+ 3
2�(B2uX)(t)�2 + 3

2�fX(t)�2.

Choosing v = uX(t), integrating in time, and using (3.4), we have

1
2Q

0(uX , t)+Qα
1 (∇uX , t) ≤ CQ0(∇· �B1uX , t)+CQ0(B2uX , t)+CQ0(fX , t).

Since

∇ · (Bα
�F
uX)(t) =

(
∇ · �F (t)

)
IαuX(t) + �F (t) · Iα∇uX(t)

−
� t

0

�(
∇ · �F �(s)

)
IαuX(s) + �F �(s) · Iα∇uX(s)

�
ds (3.9)

it follows that

�∇ · (Bα
�F
uX)(t)�2 ≤ C�IαuX(t)�2 + C�Iα∇uX(t)�2

+ C

� t

0

�
�IαuX(s)�2 + �Iα∇uX(s)�2

�
ds,

implying that Q0(∇ · Bα
�F
uX , t) ≤ CQα

2 (uX , t) + CQα
2 (∇uX , t). In the

same way, Q0(∇ · B1
�G
uX , t) ≤ CQ1

2(uX , t) + CQ1
2(∇uX , t) and therefore,

by Lemma 2.4,

Q0(∇ · �B1uX , t) ≤ CQα
2 (uX , t) + CQα

2 (∇uX , t).
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Recall Q0(B2uX , t) ≤ CQα
2 (uX , t) and let q(t) = Q0(uX , t) +Qα

1 (∇uX , t).
It follows using Lemma 2.2 and (2.5) that

q(t) ≤ CQα
2 (uX , t) + CQα

2 (∇uX , t) + CQ0(fX , t)

≤ CQ0(fX , t) + C

� t

0
ωα(t− s)

�
Qα

1 (uX , s) +Qα
1 (∇uX , s)

�
ds

≤ CQ0(fX , t) + Ctα
� t

0
ωα(t− s)q(s) ds.

We may now apply Lemma 2.5 to complete the proof. �

The function MuX(t) = tuX(t) satisfies a similar estimate to the first
one in Lemma 3.1, but with an additional factor t2 on the right-hand side.

Lemma 3.2. The solution uX of (3.1) satisfies

Qα
1 (MuX , t) +Qα

2 (M∇uX , t) ≤ Ct2+αQ0(fX , t) for 0 ≤ t ≤ T .

P r o o f. Multiplying both sides of (3.7) by t, and applying the third
identity in (2.10), we find that (since κ is independent of t)

�MuX , v�+
*
κ(IαM+ αIα+1)∇uX ,∇v

+
= �M �B1uX ,∇v�+ �M(fX −B2uX), v�, (3.10)

whereas integrating (3.7) in time gives

�κIα+1∇uX ,∇v� = �I1 �B1uX ,∇v�+
*
I1(fX − uX −B2uX), v

+
,

so, after eliminating �κIα+1∇uX ,∇v�,

�MuX , v�+ �κIαM∇uX ,∇v� = �(M− αI1) �B1uX ,∇v�
+ �(M− αI1)(fX −B2uX) + αI1uX , v�

≤ 1
2�∇v�2+ 1

2� �B3uX�2+ 1
2�B4uX�2+ 1

2�v�
2+

*
(M−αI1)fX+αI1uX , v

+
,

where �B3φ = (M − αI1) �B1φ and B4φ = (M − αI1)B2. By choosing
v = IαMuX , we have �κIαM∇uX ,∇v� = �κ∇v,∇v� ≥ �∇v�2 so, after
canceling the term 1

2�∇v�2 and integrating in time,

Qα
1 (MuX , t) + 1

2Q
α
2 (M∇uX , t)

≤ 1
2Q

0(B3uX , t) + 1
2Q

0(B4uX , t) + 1
2Q

α
2 (MuX , t)

+

� t

0

*
(M− αI1)fX ,IαMuX

+
ds+ α

� t

0

*
I1uX ,IαMuX

+
ds.
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Using (2.6), we find that� t

0

*
(M−αI1)fX ,IαMuX

+
ds ≤ CtαQ0

(
(M−αI1)fX , t)+ 1

4Q
α
1 (MuX , t)

and � t

0

*
I1uX ,IαMuX

+
ds ≤ CtαQ0(I1uX , t) + 1

4Q
α
1 (MuX , t),

so

Qα
1 (MuX , t) +Qα

2 (M∇uX , t) ≤ Q0(B3uX , t) +Q0(B4uX , t)

+ 2Qα
2 (MuX , t) + CtαQ0

(
(M− αI1)fX , t) + CtαQ0(I1uX , t).

Since
�B3 = (M− αI1)Bα

�F
+ (M− αI1)B1

�G

and
B4 = (M− αI1)Bα

a + (M− αI1)B1
b ,

the estimate (2.13) gives

Q0( �B3uX , t) +Q0(B4uX , t) ≤ Ct2Qα
2 (uX , t) + Ct2Q1

2(uX , t)

≤ Ct2Qα
2 (uX , t),

where, in the last step, we used Lemma 2.4 with μ = α and ν = 1. We
easily verify that

Q0
(
(M− αI1)fX , t) ≤ Ct2Q0(fX , t),

and by Lemma 2.4 with μ = 0 and ν = 1,

Q0(I1uX , t) = Q1
2(uX , t) ≤ t2Q0(uX , t).

Thus, the function q(t) = Qα
1 (MuX , t) +Qα

2 (M∇uX , t) satisfies

q(t) ≤ Ct2Qα
2 (uX , t) + 2Qα

2 (MuX , t) + Ct2+αQ0(fX , t) + Ct2+αQ0(uX , t).

By (2.4) and Lemma 3.1,

t2Qα
2 (uX , t) + t2+αQ0(uX , t) ≤ Ct2+αQ0(uX , t) ≤ Ct2+αQ(fX , t),

and therefore, using Lemma 2.2 with φ = MuX ,

q(t) ≤ Ct2+αQ0(fX , t) + C

� t

0
ωα(t− s)q(s) ds,

The result now follows by applying Lemma 2.5. �

Lemma 3.3. The solution uX of (3.1) satisfies, for 0 ≤ t ≤ T ,

Qα
1

(
(MuX)�, t

)
+Qα

2

(
(M∇uX)�, t

)
≤ CtαQ0(fX , t) + CtαQ0

(
(MfX)�, t

)
.
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P r o o f. By differentiating (3.10) with respect to t, we have*
(MuX)�, v

+
+

*
κ∇(IαMuX)�,∇v

+
=

*
�B5uX − ακIα∇uX ,∇v

+
+

*
(MfX)� −B6uX , v

+
, (3.11)

where �B5φ = (M �B1φ)
� and B6φ = (MB2φ)

�. Hence,*
(MuX)�, v

+
+

*
κ∇(IαMuX)�,∇v

+
≤ 1

2�∇v�2 + � �B5uX�2 + 1
2�B6uX�2

+ 1
2�v�

2 + C�Iα∇uX�2 +
*
(MfX)�, v

+
.

Putting v = Iα(MuX)�, we can cancel 1
2�∇v�2 because v = (IαMuX)�

by (2.7). Thus, by integrating in time and using (2.6) to show� t

0

*
(MfX)�,Iα(MuX)�

+
ds ≤ CtαQ0

(
(MfX)�, t

)
+ 1

2Q
α
1

(
(MuX)�, t

)
,

and using (3.4), we arrive at the estimate

Qα
1

(
(MuX)�, t

)
+Qα

2

(
(M∇uX)�, t

)
≤ 2Q0( �B5uX , t) +Q0(B6uX , t)

+Qα
2

(
(MuX)�, t

)
+ CQα

2 (∇uX , t) + CtαQ0
(
(MfX)�, t

)
.

Since
�B5uX = (MBα

�F
uX)� + (MB1

�G
uX)�

and
B6uX = (MBα

a uX)� + (MB1
buX)�,

it follows from (2.14) that

Q0( �B5uX , t) +Q0(B6uX , t) ≤ CQα
2

(
(MuX)�, t

)
+CQα

2 (MuX , t)

+ CQα
2 (uX , t).

By Lemmas 2.4, 3.1 and 3.2,

Qα
2 (MuX , t) +Qα

2 (uX , t) ≤ CtαQα
1 (MuX , t) + CtαQα

1 (uX , t)

≤ C(t2+2α + t2α)Q0(fX , t)

and Qα
2 (∇uX , t) ≤ CtαQ0(fX , t). Hence, the function

q(t) = Qα
1

(
(MuX)�, t

)
+Qα

2

(
(M∇uX)�, t

)
satisfies

q(t) ≤ CtαQ0(fX , t) + CtαQ0
(
(MfX)�, t

)
+ CQα

2

(
(MuX)�, t

)
.

Finally, by Lemma 2.2,

Qα
2

(
(MuX)�, t

)
≤ C

� t

0
ωα(t−s)Qα

1

(
(MuX)�, s

)
ds ≤ C

� t

0
ωα(t−s)q(s) ds,

and the desired estimate follows by Lemma 2.5. �
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Lemma 3.4. The solution uX of (3.1) satisfies, for 0 ≤ t ≤ T ,

Q0
(
(MuX)�, t

)
+Qα

1

(
(M∇uX)�, t

)
≤ CQ0(fX , t) + CQ0

(
(MfX)�, t

)
P r o o f. Using −

*
�B5uX ,∇v

+
=

*
∇ · �B5uX(t), v

+
in (3.11), we obtain*

(MuX)�, v
+
+
*
κIα(M∇uX)�,∇v

+
≤ 1

2�v�
2+2�∇· �B5uX�2+2�B6uX�2

+ �(MfX)��2 − α�κIα∇uX ,∇v�.
Choosing v = (MuX)�, integrating in time, and using (3.4) yields

1
2Q

0
(
(MuX)�, t

)
+Qα

1

(
(M∇uX)�, t

)
≤ 2Q0

(
∇ · �B5uX , t

)
+ 2Q0(B6uX , t)

+Q0
(
(MfX)�, t

)
− α

� t

0

*
(M∇uX)�(s), κIα∇uX(s)

+
ds.

Recall from (3.9) that ∇ ·Bα
�F
φ = Bα

∇·�Fφ+Bα
�F ·∇φ, where we have used the

notation

Bα
�F ·∇φ = �F (t) · Iα∇φ−

� t

0

�F �(s) · Iα∇φ(s) ds.

Thus,

∇ · �B5uX = ∇ ·
(
M �B1uX

)�
=

(
M∇ · �B1uX

)�
=

(
M∇ ·Bα

�F
uX

)�
+
(
M∇ · B1

�G
uX

)�
=

(
MBα

∇·�FuX
)�
+
(
MBα

�F ·∇uX
)�

+
(
MB1

∇· �GuX
)�
+

(
MB1

�G·∇uX
)�
,

and so, by (2.14),

Q0
(
∇ · �B5uX , t

)
+Q0(B6uX , t) ≤ CQα

2

(
(MuX)�, t

)
+ CQα

2 (MuX , t)

+ CQα
2 (uX , t) + CQα

2

(
(M∇uX)�, t

)
+ CQα

2 (M∇uX , t) + CQα
2 (∇uX , t).

By (2.3),� t

0

*
(M∇uX)�(s), κIα∇uX(s)

+
ds ≤ 1

2Q
α
1

(
(M∇uX)�, t

)
+ CQα

1 (∇uX , t),

and thus the function q(t) = Q0
(
(MuX)�, t

)
+Qα

1

(
(M∇uX)�, t

)
satisfies

q(t) ≤ CQα
2

(
(MuX)�, t

)
+ CQα

2 (MuX , t) +CQα
2 (uX , t)

+ CQα
2

(
(M∇uX)�, t

)
+ CQα

2 (M∇uX , t) + CQα
2 (∇uX , t)

+ CQ0
(
(MfX)�, t

)
+ CQα

1 (∇uX , t)

≤ CQα
2

(
(MuX)�, t

)
+ CtαQα

1 (MuX , t) + CtαQα
1 (uX , t)

+ CQα
2

(
(M∇uX)�, t

)
+ Ct2+αQ0(fX , t) + CtαQ0(fX , t)

+ CQ0
(
(MfX)�, t

)
+ CQ0(fX , t),
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where, in the second step, we used Lemmas 2.2, 3.1 and 3.2. A further
application of Lemmas 3.1 and 3.2 yields

q(t) ≤ CQ0
(
(MfX)�, t

)
+CQ0(fX , t) + CQα

2

(
(MuX)�, t

)
+ CQα

2

(
(M∇uX)�, t

)
.

Lemma 2.2 implies that Qα
2

(
(MuX)�, t

)
+Qα

2

(
(M∇uX)�, t

)
is bounded by

C

� t

0
ωα(t− s)

�
Qα

1

(
(MuX)�, s

)
+Qα

1

(
(M∇uX)�, s

)�
ds

≤ C

� t

0
ωα(t− s)q(s) ds,

where we used Qα
1

(
(MuX)�, s

)
≤ CtαQ0

(
(MuX)�, s

)
, which follows by

Lemma 2.4. Finally, Lemma 2.5 implies the desired estimate. �

The preceding lemmas yield the main result for this section.

Theorem 3.3. Assume that the coefficients satisfy (1.4), that the
initial data u0 ∈ L2(Ω) and that the source term satisfies (3.2). Then,
the solution uX of the projected Volterra equation (3.1) satisfies (with C
independent of X)

�uX(t)�2 + tα�∇uX(t)�2 ≤ C
(
�u0�2 +M2t2η

)
for 0 ≤ t ≤ T .

P r o o f. The function φ = MuX satisfies �φ�(t)� ≤ Ctα by Theo-
rem 3.2 so, applying Lemma 2.3 with μ = 0, we see that Lemma 3.3
gives

t2�uX(t)�2 = �MuX(t)�2 ≤ Ct1−αQα
1

(
(MuX)�, t

)
≤ CtQ0(fX , t) + CtQ0

(
(MfX)�, t

)
.

Define gX : [0, T ] → X by �gX (t), v� = �g(t), v� for v ∈ X, and observe that
fX = u0 + I1gX and (MfX)� = fX +Mf �

X = fX +MgX . We find using
(3.2) that

Q0(fX , t) +Q0
(
(MfX)�, t

)
≤ C

� t

0



�u0�2 + �I1g�2 + �Mg�2

�
ds

≤ Ct
(
�u0�2 +M2t2η

)
,

(3.12)
so the estimate for the first term �uX(t)�2 follows at once. Similarly, ap-
plying Lemma 2.3 with φ = M∇uX followed by Lemma 3.4, we have

t2+α�∇uX(t)� = tα�M∇uX(t)�2 ≤ CtQα
1

(
(M∇uX)�, t

)
≤ CtQ0(fX , t) +CtQ0

(
(MfX)�, t

)
,

implying the estimate for the second term tα�∇uX(t)�2. �
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4. The weak solution

We will now establish that the weak formulation (1.5) of the initial-
boundary value problem (1.1)–(1.3) is well-posed. The proof relies on our
estimates from Section 3 and also the following local Hölder continuity
properties of uX .

Lemma 4.1. If 0 < δ ≤ t1 < t2 ≤ T , then

�uX(t2)− uX(t1)�2 ≤ Cδ−2t2
(
�u0�2 +M2t2η2

)
(t2 − t1)

and

�Iα∇uX(t2)−Iα∇uX(t1)� ≤ C
(
�u0�+Mtη2

)�
δα−2(t2−t1)+δ−α/2(t2−t1)

α
	
.

P r o o f. The Cauchy–Schwarz inequality implies that

�uX(t2)− uX(t1)�2 =
----� t2

t1

u�X(s) ds

----2 ≤ (t2 − t1)

� t2

t1

�u�X(s)�2 ds,

and by the second inequality of Lemma 3.1, together with Lemma 3.4,� t2

t1

�u�X(s)�2 ds =
� t2

t1

s−2�(MuX )�(s)− uX(s)�2 ds

≤ 2δ−2

� t2

0

(
�(MuX)��2 + �uX�2

)
ds

= 2δ−2
�
Q0

(
(MuX)�, t2

)
+Q0(uX , t2)

	
≤ Cδ−2

�
Q0

(
MfX)�, t2

)
+Q0(fX , t2)

	
.

The first result now follows from (3.12). To prove the second, we write

Iα∇uX(t2)− Iα∇uX(t1) =

� t1−δ/2

0

�
ωα(t2 − s)− ωα(t1 − s)

	
∇uX(s) ds

+

� t1

t1−δ/2

�
ωα(t2 − s)−ωα(t1 − s)

	
∇uX(s) ds+

� t2

t1

ωα(t2 − s)∇uX(s) ds,

and deduce from Theorem 3.3 that

�Iα∇uX(t2)− Iα∇uX(t1)� ≤ C
(
�u0�+Mtη2

)(
I1 + I2 + I3),

where
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I1 =

� t1−δ/2

0

�
ωα(t1 − s)− ωα(t2 − s)

	
s−α/2 ds,

I2 =

� t1

t1−δ/2

�
ωα(t1 − s)− ωα(t2 − s)

	
s−α/2 ds,

I3 =

� t2

t1

ωα(t2 − s)s−α/2 ds.

By the mean value theorem,

ωα(t1 − s)− ωα(t2 − s) = (t2 − t1)|ωα−1(ξ)| with t1 − s < ξ < t2 − s,

and if 0 < s < t1 − δ/2 then t1 − s > δ/2 so

I1 ≤ (t2 − t1)|ωα−1(δ/2)|
� t1−δ/2

0

ds

sα/2

≤


2

δ

�2−α 1− α

1− α/2

(t1 − δ/2)1−α/2

Γ(α)
(t2 − t1).

Moreover,

I2 ≤ (δ/2)−α/2

� t1

t1−δ/2

�
ωα(t1 − s)− ωα(t2 − s)

	
ds

= (2/δ)α/2
�
ωα+1(t2 − t1) + ωα+1(δ/2) − ωα+1(t2 − t1 + δ/2)

	
≤ (2/δ)α/2ωα+1(t2 − t1)

and I3 ≤ δ−α/2

 t2
t1

ωα(t2 − s) ds = δ−α/2ωα+1(t2 − t1). �

Our existence theorem is stated as follows. Note the weak continuity
at t = 0 asserted in part 5; we show in the companion paper [29] that the

solution u is continuous on the closed interval [0, T ] provided u0 ∈ Ḣμ(Ω)
for some μ > 0.

Theorem 4.1. Assume that the coefficients satisfy (1.4), that the
source term satisfies (3.2), and that the initial data u0 ∈ L2(Ω). Then,
the initial-boundary value problem (1.1)–(1.3) has a weak solution u. More
precisely, there exists a function u : [0, T ] → L2(Ω) with the following
properties:

(1) The restriction u : (0, T ] → L2(Ω) is continuous.
(2) If 0 < t ≤ T , then u(t) ∈ H1

0 (Ω) with

�u(t)� + tα/2�∇u(t)� ≤ C
(
�u0�+Mtη

)
.
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(3) The functions Iαu and B2u are continuous from the closed inter-

val [0, T ] to L2(Ω). Likewise, Iα∇u and �B1u are continuous from [0, T ]
to L2(Ω)

d.

(4) At t = 0 we have Iαu = B2u = 0, Iα∇u = �B1u = 0 and u(0) = u0.
(5) If t → 0, then �u(t), v� → �u(0), v� for each v ∈ L2(Ω).
() For 0 ≤ t ≤ T and v ∈ H1

0 (Ω),

�u(t), v� +
*
κ(Iα∇u)(t),∇v

+
−

*
( �B1u)(t),∇v

+
+ �(B2u)(t), v� = �f(t), v�.

(4.1)

P r o o f. Let ψ1, ψ2, ψ3, . . . be a sequence of functions spanning a dense
subspace of H1

0 (Ω). For each integer n ≥ 1, let Xn = span{ψ1, ψ2, . . . , ψn}
and for brevity denote the solution of (3.7) with X = Xn by un = uX , and
likewise write fn = fX , so that

�un(t), v�+�κ(Iα∇un)(t),∇v�−�(B1un)(t),∇v�+�(B2un)(t), v� = �fn(t), v�
(4.2)

for v ∈ Xn and 0 < t ≤ T . We see from Theorem 3.3 and Lemma 4.1
that, whenever 0 < δ < T , the sequence of functions un is bounded and
equicontinuous in C

(
[δ, T ];L2(Ω)

)
. By choosing a sequence of values of δ

tending to zero we can select a subsequence, again denoted by un, such
that un(t) converges in L2(Ω) for 0 < t ≤ T . We may therefore define

u(t) = lim
n→∞un(t) for 0 < t ≤ T ,

and this function satisfies Property 1 because, given any fixed δ ∈ (0, T ), the
limit is uniform for t ∈ [δ, T ]. Similarly, the functions Iα∇un are bounded
and equicontinuous in C

(
[δ, T ];L2(Ω)

d
)
so Iα∇u : (0, T ] → L2(Ω)

d is
continuous. In fact, it will follow from (4.4) below that �Iα∇u(t)� → 0
as t → 0, so Iα∇u : [0, T ] → L2(Ω)

d is continuous.
By Theorem 3.3,

�un(t)� ≤ C
(
�u0�+Mtη

)
for 0 < t ≤ T ,

so by sending n → ∞ we conclude that �u(t)� ≤ C
(
�u0�+Mtη

)
. Also, for

0 < t ≤ T ,

|�un(t), v�| ≤ C�un(t)�H1
0 (Ω)�v�H−1(Ω) ≤ Ct−α/2

(
�u0�+Mtη

)
�v�H−1(Ω)

and sending n → ∞ it follows that

|�u(t), v�| ≤ Ct−α/2
(
�u0�+Mtη

)
�v�H−1(Ω) for all v ∈ L2(Ω),

so u(t) ∈ H1
0 (Ω) with �u(t)�H1

0 (Ω) ≤ Ct−α/2(�u0� + Mtη
)
, establishing

Property 2.
Since �u(t)� is bounded, Iαu is continuous on [0, T ] with
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�Iαu(t)� ≤
� t

0
ωα(t− s)�u(s)� ds

≤ C

� t

0
(t− s)α−1

(
�u0�+Msη

)
ds ≤ C

(
�u0�+Mtη

)
tα,

(4.3)

and similarly

�Iα∇u(t)� ≤ C

� t

0
(t− s)α−1s−α/2

(
�u0�+Msη

)
ds ≤ C(�u0�+Mtη

)
tα/2.

(4.4)
Likewise, for n ≥ 1,

�Iαun(t)� ≤ C
(
�u0�+Mtη

)
tα and �Iα∇un(t)� ≤ C

(
�u0�+Mtη

)
tα/2.
(4.5)

Continuity of �B1u and B2u follow from (2.11) and (3.6), completing the
proof of property 3, with

�( �B1u)(t)� + �(B2u)(t)� ≤ C�(Iαu)(t)� + C

� t

0

(
�(Iαu)(s)� + �u(s)�

)
ds

≤ C
(
�u0�+M

)
tα.

(4.6)
Property 4 follows from the estimates (4.3), (4.4) and (4.6).

If 0 ≤ δ < t ≤ T , then

�(Iαun)(t)− (Iαu)(t)� ≤
� t

0
ωα(t− s)�un(s)− u(s)� ds

≤ C

� δ

0
(t− s)α−1

(
�u0�+Msη

)
ds+

� t

δ
(t− s)α−1�un(s)− u(s)� ds

≤ Cδα
(
�u0�+Mδη

)
+ α−1(t− δ)α max

δ≤s≤t
�un(s)− u(s)�,

showing that Iαun(t) → Iαu(t) in L2(Ω), uniformly for t ∈ [δ, T ]. In fact,
the convergence is uniform for t ∈ [0, T ], owing to the estimates (4.3) and
(4.5). Therefore, we see using (2.11) and (3.6) that, for v ∈ H1

0 (Ω),*
( �B1un)(t),∇v

+
→

*
( �B1u)(t),∇v

+
and

*
(B2un)(t), v

+
→

*
(B2u)(t), v

+
.

Since �fn, ψj� = �f, ψj� for j ≤ n, we have

lim
n→∞�fn(t), ψj� = �f(t), ψj� for all j ≥ 1 and 0 ≤ t ≤ T ,

and therefore �fn(t), v� → �f(t), v� for all v ∈ L2(Ω). Thus, by sending
n → ∞ in (4.2), it follows that (4.1) holds for v ∈ H1

0 (Ω) and 0 < t ≤ T . In
light of (4.6) and (4.4), the variational equation (4.1) is satisfied when t = 0
if and only if �u(0), v� = �u0, v� for all v ∈ H1

0 (Ω), which is the case if and
only if we define u(0) = u0. Moreover, if t → 0 then �u(t), v� → �f(0), v� =
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�u0, v�, for each v ∈ H1
0 (Ω), and hence by density for each v ∈ L2(Ω),

establishing Properties 5 and 6. �

Remark 4.1. Since our estimates rely on Lemma 2.1, the constant C
in part 2 of Theorem 4.1 becomes unbounded as α → 1. However, this
behavior appears to be an artifact of our method of proof. In the limiting
case when α = 1 and (1.1) reduces to a parabolic PDE, a simple energy ar-
gument combined with the classical Gronwall inequality yields the a priori
estimate

�u(t)� ≤ C



�u0�+

� t

0
�g(s)� ds

�
for 0 ≤ t ≤ T ;

see also the alternative analysis [21] of the fractional Fokker–Planck equa-
tion.

Theorem 4.2. The weak solution of the initial-boundary value prob-
lem (1.1)–(1.3) is unique. More precisely, under the same assumptions
as Theorem 4.1, there is at most one function u that satisfies (4.1) and
is such that u and Iαu belong to L2

(
(0, T );L2(Ω)

)
, and Iα∇u belongs

to L2

(
(0, T );L2(Ω)

d
)
.

P r o o f. The problem is linear, so it suffices to show that if u0 = 0 and
g(t) ≡ 0 then u(t) ≡ 0. Thus, suppose that

�u(t), v� +
*
κ(Iα∇u)(t),∇v

+
−

*
( �B1u)(t),∇v

+
+ �(B2u)(t), v� = 0

for 0 < t ≤ T and v ∈ H1
0 (Ω). Proceeding as in the proof of (3.8), we have

Qα
1 (u, t) +

1
2Q

α
2 (∇u, t) ≤ 1

2Q
0( �B1u, t) +

1
2Q

0(B2u, t) +
1
2Q

α
2 (u, t)

≤ CQα
2 (u, t),

where the final step used (2.11), (2.12) and Lemma 2.4. Thus, applying
Lemma 2.2, the function q(t) = Qα

1 (u, t) +Qα
2 (∇u, t) satisfies

q(t) ≤ CQα
2 (∇u, t) ≤ C

� t

0
ωα(t− s)q(s) ds,

and therefore q(t) = 0 for 0 ≤ t ≤ T by Lemma 2.5. In particular,
Qα

1 (u, T ) = 0, so if we put u(t) = 0 for t > T then the Laplace transform
of u satisfies û(iy) = 0 for −∞ < y < ∞ by (2.1), implying that u(t) = 0
for 0 ≤ t ≤ T . �



WELL-POSEDNESS OF TIME-FRACTIONAL . . . 941

Acknowledgements

The authors thank the University of New South Wales (Faculty Re-
search Grant “Efficient numerical simulation of anomalous transport phe-
nomena”), the King Fahd University of Petroleum and Minerals (project
No. KAUST005) and the King Abdullah University of Science and Tech-
nology.

References

[1] E. A. Abdel-Rehim, Implicit difference scheme of the space-time frac-
tional advection diffusion equation. Fract. Calc. Appl. Anal. 18, No 6
(2015), 1452–1469; DOI: 10.1515/fca-2015-0084;
https://www.degruyter.com/view/j/fca.2015.18.issue-6/

issue-files/fca.2015.18.issue-6.xml.
[2] A. A. Alikhanov, A priori estimates for solutions of boundary value

problems for fractional-order equations. Differ. Equ. 46 (2010), 660–
666; DOI: 10.1134/S0012266110050058.

[3] A. A. Alikhanov, Boundary value problems for the diffusion equation
of the variable order in differential and difference settings. Appl. Math.
Comput. 219 (2012), 3938–3946; DOI: 10.1016/j.amc.2012.10.029.

[4] C. N. Angstmann, B. I. Henry, B. A. Jacobs, and A. V. McGann, A
time-fractional generalised advection equation from a stochastic pro-
cess. Chaos, Solitons and Fractals 102 (2017), 175–183;
DOI: 10.1016/j.chaos.2017.04.040.

[5] L. C. Becker, Resolvents and solutions of weakly singular linear
Volterra integral equations. Nonlinear Anal. 74 (2011), 1892–1912;
DOI: 10.1016/j.na.2010.10.060.

[6] H. Brunner, Volterra Integral Equations: an Introduction to Theory
and Applications. Cambridge University Press (2017);
DOI: 10.1017/9781316162491.

[7] H. Brunner, A. Pedas, and G. Vainikko, The piecewise polynomial collo-
cation method for nonlinear weakly singular Volterra equations. Math.
Comp. 68 (1999), 1079–1095; DOI: 10.1090/S0025-5718-99-01073-X.

[8] J. Cao, Ch. Li, and Y.-Q. Chen, High-order approximation to Caputo
derivatives and Caputo-type advection-diffusion equations (ii). Fract.
Calc. Appl. Anal. 18, No 3 (2015), 735–761; DOI: 10.1515/fca-2015-
0045; https://www.degruyter.com/view/j/fca.2015.18.issue-3/

issue-files/fca.2015.18.issue-3.xml.
[9] J. Dixon and S. McKee, Weakly singular Gronwall inequali-

ties. ZAMM Z. Angew. Math. Mech. 66 (1986), 535–544; DOI:
10.1002/zamm.19860661107.



942 W. McLean, K. Mustapha, R. Ali, O. Knio

[10] B. I. Henry, T. A. M. Langlands, and P. Straka, Fractional Fokker–
Planck equations for subdiffusion with space- and time-dependent
forces. Phys. Rev. Lett. 105 (2010), 170602;
DOI: 10.1103/PhysRevLett.105.170602.

[11] B. I. Henry, T. A. M. Langlands, and S. L. Wearne, Anomalous
diffusion with linear reaction dynamics: From continuous time ran-
dom walks to fractional reaction-diffusion equations. Phys. Rev. E 74
(2006), 031116; DOI: 10.1103/PhysRevE.74.031116.

[12] B. I. Henry and S. L. Wearne, Fractional reaction-diffusion. Phys. A
276 (2000), 448–455; DOI: 10.1016/S0378-4371(99)00469-0.

[13] B. Jin, B. Li, and Z. Zhou, Discrete maximal regularity of time-
stepping schemes for fractional evolution equations. Numer. Math. 138
(2018), 101–131; DOI: 10.1007/s00211-017-0904-8.

[14] S. Karaa and A. K. Pani, Error analysis of a FVEM for fractional order
evolution equations with nonsmooth initial data. ESAIM: M2AN 52,
No 2 (2018), 773–801; DOI: 10.1051/m2an/2018029.

[15] J. Kemppainen, Existence and uniqueness of the solution for a time-
fractional diffusion equation. Fract. Calc. Appl. Anal. 14, No 3 (2011),
411–417; DOI: 10.2478/s13540-011-0025-5;
https://www.degruyter.com/view/j/fca.2011.14.issue-3/

issue-files/fca.2011.14.issue-3.xml.
[16] J. Klafter and I. M. Sokolov, First Steps in Random Walks. Oxford

University Press (2011);
DOI: 10.1093/acprof:oso/9780199234868.001.0001.

[17] A. Kubica and M. Yamamoto, Initial-boundary value problems for
fractional diffusion equations with time-dependent coefficients. Fract.
Calc. Appl. Anal. 21, No 2 (2018), 276–311; DOI: 10.1515/fca-2018-
0018; https://www.degruyter.com/view/j/fca.2018.21.issue-2/

issue-files/fca.2018.21.issue-2.xml.
[18] T. A. M. Langlands and B. I. Henry, The accuracy and stability of an

implicit solution method for the fractional diffusion equation. J. Com-
put. Phys. 205, No 2 (2005), 719–736; DOI: 10.1016/j.jcp.2004.11.025.

[19] T. A. M. Langlands, B. I. Henry, and S. L. Wearne, Fractional cable
equation models for anomalous electrodiffusion in nerve cells. SIAM J.
Appl. Math. 71, No 4 (2011), 1168–1203; DOI: 10.1137/090775920.

[20] Kim Ngan Le, W. McLean, and K. Mustapha, A semidiscrete finite
element approximation of a time-fractional Fokker–Planck equation
with non-smooth initial data. SIAM J. Sci. Comput. 40, No 6, (2018),
A3831–3852; DOI: 10.1137/17M1125261.

[21] Kim Ngan Le, W. McLean, and M. Stynes, Existence, uniqueness and
regularity of the solution of the time-fractional Fokker–Planck equation



WELL-POSEDNESS OF TIME-FRACTIONAL . . . 943

with general forcing. Commun. Pure Appl. Anal. (to appear); DOI:
10.13140/RG.2.2.30053.24801.

[22] Y. Li and Q. Zhang, Blow-up and global existence of solutions for a
time fractional diffusion equation. Fract. Calc. Appl. Anal. 21, No 6
(2018), 1619–1640; DOI: 10.1515/fca-2018-0085;
https://www.degruyter.com/view/j/fca.2018.21.issue-6/

issue-files/fca.2018.21.issue-6.xml.
[23] H.-L. Liao, D. Li, and J. Zhang, Sharp error estimate of the nonuniform

l1 formula for linear reaction-subdiffusion equations. SIAM J. Numer.
Anal. 66, No 2 (2018), 1112–1133; DOI: 10.1137/17M1131829.

[24] P. Linz, Analytical and Numerical Methods for Volterra Equations. Ser.
Studies in Applied and Numerical Mathematics, SIAM, Philadelphia
(1985); DOI: 10.1137/1.9781611970852.

[25] F. Liu, V. V. Anh, I. Turner, and P. Zhuang, Time fractional advection-
dispersion equation. J. Appl. Math. Computing 13 (2003), 233–245;
DOI: 10.1007/BF02936089.

[26] Ch. Lubich, Runge–Kutta theory for Volterra and Abel integral equa-
tions of the second kind. Math. Comp. 41 (1983), 87–102;
DOI: 10.1090/S0025-5718-1983-0701626-6.

[27] Y. Luchko and M. Yamamoto, General time-fractional diffusion equa-
tion: some uniqueness and existence results for the initial-boundary-
value problems. Fract. Calc. Appl. Anal. 19, No 3 (2016), 676–695;
DOI: 10.1515/fca-2016-0036; https://www.degruyter.com/view/j/

fca.2016.19.issue-3/issue-files/fca.2016.19.issue-3.xml.
[28] W. McLean, Regularity of solutions to a time-fractional diffusion equa-

tion. ANZIAM J. 52 (2010), 123–138;
DOI: 10.1017/S1446181111000617.

[29] W. McLean, K. Mustapha, R. Ali, and O. M. Knio, Regularity the-
ory for time–fractional advection–diffusion–reaction equations. Com-
put. Math. Appl. (2019), Available online Aug. 2019 (In press); DOI:
10.1016/j.camwa.2019.08.008.

[30] R. Metzler, E. Barkai, and J. Klafter, Deriving fractional Fokker–
Planck equations from a generalised master equation. Europhys. Lett.
46 (1999), 431–436; DOI: 10.1209/epl/i1999-00279-7.

[31] K. Mustapha, Time-stepping discontinuous Galerkin methods for frac-
tional diffusion problems. Numer. Math. 130, No 3 (2015), 497–516;
DOI: 10.1007/s00211-014-0669-2.

[32] J. A. Nohel and D. F. Shea, Frequency domain methods for Volterra
equations. Adv. Math. 22 (1976), 278–304; DOI: 10.1016/0001-
8708(76)90096-7.



944 W. McLean, K. Mustapha, R. Ali, O. Knio

[33] I. Podlubny, Fractional Differential Equations. Academic Press, San
Diego (1999).

[34] K. Sakamoto and M. Yamamoto, Initial value/boundary value prob-
lems for fractional diffusion-wave equations and applications to some
inverse problems. J. Math. Anal. Appl. 382, No 1 (2011), 426–447;
DOI: 10.1016/j.jmaa.2011.04.058.

[35] C.-S. Sin and L. Zheng, Existence and uniqueness of global solutions of
Caputo-type fractional differential equations. Fract. Calc. Appl. Anal.
19, No 3 (2016), 765–774. DOI: 10.1515/fca-2016-0040;
https://www.degruyter.com/view/j/fca.2016.19.issue-3/

issue-files/fca.2016.19.issue-3.xml.
[36] M. Stynes, E. O’Riordan, and J. Luis Gracia, Error analysis of a fi-

nite difference method on graded meshes for a time-fractional diffusion
equation. SIAM J. Numer. Anal. 55, No 2 (2017), 1057–1079; DOI:
10.1137/16M1082329.

[37] G. Vainikko, Weakly Singular Integral Equations. Lecture Notes, Uni-
versity of Tartu, Helsinki University of Technology (2006–2007).

[38] S. B. Yuste and L. Acedo, An explicit finite difference method and a
new von Neumann stability analysis for fractional diffusion equations.
SIAM. J. Numer. Anal. 42, No 5 (2005), 1862–1874;
DOI: 10.1137/030602666.

[39] R. Zacher, Weak solutions of abstract evolutionary integro-differential
equations in Hilbert spaces. Funkcial. Ekvac. 52 (2009), 1–18; DOI:
10.1619/fesi.52.1.

1 School of Mathematics and Statistics, The University of New South Wales
Sydney 2052, AUSTRALIA

e-mail: w.mclean@unsw.edu.eu Received: November 15, 2018

2 Department of Mathematics and Statistics
KFUPM, Dhahran 31261, SAUDI ARABIA

e-mail: kassem@kfupm.edu.su

3 Al-Quds Open University, Tubas Branch, PALESTINE

e-mail: g201305090@kfupm.edu.sa

3 Computer, Electrical, Mathematical Sciences and Engineering Division
KAUST, Thuwal 23955, SAUDI ARABIA

e-mail: Omar.Knio@kaust.edu.sa

Please cite to this paper as published in:

Fract. Calc. Appl. Anal., Vol. 22, No 4 (2019), pp. 918–944,
DOI: 10.1515/fca-2019-0050; at https://www.degruyter.com/view/j/fca.




