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Abstract

We derive exact solutions to classes of linear fractional differential equa-
tions and systems thereof expressed in terms of generalized Wright functions
and Fox H-functions. These solutions are invariant solutions of diffusion-
wave equations obtained through certain transformations, which are briefly
discussed. We show that the solutions given in this work contain previously
known results as particular cases.
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1. Introduction

For the last several decades, the application of fractional differentiation
to the mathematical modeling of physical problems has become increas-
ingly common [6, 14, 15]. In particular, anomalous diffusion processes in
complex systems, from charge transport in amorphous semiconductors to
bacterial motion, have been successfully modeled with fractional diffusion-
wave equations [12].

In this work, we derive exact solutions expressed in terms of well-known
special functions for fractional ordinary differential equations (FODEs) of
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the form

dα

dzα
ϕ(z) =

am
αm

zm
dm

dzm
ϕ(z) +

am−1
αm−1 z

m−1 dm−1

dzm−1
ϕ(z) + · · ·+ a0ϕ(z), (1.1)

where α ∈ R+, ai ∈ R (i = 0, . . . ,m) and am 
= 0, and for systems of the
form{

dα

dzαϕ(z) =
am1
αm1

zm1 dm1

dzm1
ψ(z) +

am1−1

αm1−1 z
m1−1 dm1−1

dzm1−1ψ(z) + · · ·+ a0ψ(z),
dα

dzαψ(z) =
bm2
αm2 z

m2 dm2

dzm2 ϕ(z) +
bm2−1

αm2−1 z
m2−1 dm2−1

dzm2−1ϕ(z) + · · ·+ b0ϕ(z),

(1.2)
where α ∈ R+, ai, bj ∈ R (i = 0, . . . ,m1; j = 0, . . . ,m2) and am1bm2 
= 0.
Here, for α ∈ R+, fractional differentiation is defined in the Riemann-
Liouville manner:

dα

dzα
ϕ(z) :=

{
dn

dznϕ(z), α = n ∈ N,
1

Γ(n−α)
dn

dzn

∫ z
0 (z − s)n−α−1ϕ(s)ds, α ∈ (n− 1, n) with n ∈ N.

Throughout this work, we consider n ∈ N satisfying 0 ≤ n− 1 < α < n.
It is interesting to consider the forms taken by (1.1) and (1.2) in the

particular cases that m = 2 and m1 = m2 = 1, because these are the cases
most commonly considered in scientific and engineering fields. In these
cases, we obtain the FODE

dα

dzα
ϕ(z) = aϕ(z) +

b

α
z
d

dz
ϕ(z) +

c

α2
z2

d2

dz2
ϕ(z), where a, b, c ∈ R (1.3)

and the system of FODEs{
dα

dzαϕ(z) = a1ψ(z) +
b1
α z

d
dzψ(z),

dα

dzαψ(z) = a2ϕ(z) +
b2
α z

d
dzϕ(z),

where a1, a2, b1, b2 ∈ R. (1.4)

We can derive (1.3) and (1.4) from the fractional diffusion-wave equation

∂αu

∂tα
= c(x)2uxx (1.5)

and the system {
∂αu
∂tα = c(x)2vx,
∂αv
∂tα = ux

(1.6)

with variable diffusion coefficient c(x) = A(x + B)k or with c(x) = Aekx,
where A, B and k are real constants, through scaling transformations with
similarity variable z = (x+B)

s
α t (where s is suitably chosen real number)

or with z = e
k
α
xt. Thus, we can obtain exact invariant solutions to (1.5)

and (1.6) by obtaining exact solutions to (1.3) and (1.4), respectively.
In the following Section 2, we briefly introduce the special functions

that are used to express the solutions of (1.1) and (1.2). In Section 3, we
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present the solutions of (1.3) and (1.4) in two propositions. The results
obtained there hint at a general pattern for the solutions to (1.1) and (1.2).
In Section 4, we explicitly identify this pattern and derive exact solutions to
(1.1) and (1.2) using the roots of the characteristic polynomials of the right-
hand sides of (1.1) and (1.2) in analogy to the well-known method of solving
Cauchy-Euler differential equations. In Section 5, we derive exact solutions
of diffusion-wave equations and systems with variable coefficients using the
results obtained in Section 3 and show that our solutions correspond to
known solutions in some cases.

2. Preliminaries

We express the solutions of (1.3) and (1.4) in terms of generalized
Wright functions and Fox H-functions, which are defined as follows:

Definition 2.1. 1) The Wright function is an entire function, defined
by

Ψ(z;α, β) =

∞∑
i=0

zi

i!Γ(αi + β)
,

for z ∈ C and for real α satisfying α > −1 and β ∈ C [4].
2) The generalized Wright function

pΨq

[
z

∣∣∣∣ (Ai, αi)1,p
(Bj , βj)1,q

]
=

∞∑
k=0

p∏
i=1

Γ(Ai + αik)

q∏
j=1

Γ(Bj + βjk)

zk

k!
,

is defined for z ∈ C, p, q ∈ N0 = {0, 1, 2, . . .}, Ai, Bj ∈ C and αi, βj ∈ R\{0}
(i = 1, . . . , p; j = 1, . . . , q), is absolutely convergent, and thus it is an entire

function for Δ =
q∑

j=1
βj −

p∑
i=1

αi > −1, [5].

3) The Fox H-function

Hm,l
p,q

[
z

∣∣∣∣ (Ai, αi)1,p
(Bj , βj)1,q

]
=

1

2πi

∫
L
Hm,l

p,q (s)z
sds,

with Hm,l
p,q (s) =

m∏
j=1

Γ(Bj − βjs)
l∏

i=1
Γ(1−Ai + αis)

p∏
i=l+1

Γ(Ai − αis)
q∏

j=m+1
Γ(1−Bj + βjs)

,

is defined for z ∈ C \ {0}, m, l, p, q ∈ N0 with (m, l) 
= (0, 0), αi, βj ∈ R+

and Ai, Bj ∈ R (i = 1, . . . , p; j = 1, . . . , q). The contour L separates the
poles of the gamma functions Γ(Bj − βjs) (j = 1, . . . ,m) from the poles of
the gamma functions Γ(1−Ai + αis) (i = 1, . . . , l), [9].
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In this work, we take L as Lγ+i∞, a contour that extends from the point
γ − i∞ to the point γ + i∞, where γ is chosen such that L separates the
poles as stated above. The above integral converges under the conditions
([10])

μ =
l∑

i=1

αi −
p∑

i=l+1

αi +
m∑
j=1

βj −
q∑

j=m+1

βj > 0 and |arg z| < πμ

2
.

With regard to expressions for solutions to (1.1) and (1.2), we are partic-
ularly interested in the case l = 0 of the H-function. In this case, the
H-function vanishes exponentially for large z, [9].

Let us formulate the following known results as lemmas for the general-
ized Wright functions [5, 7] and Fox H-functions [10, 3] for the convenience
to present our results.

Lemma 2.1. Let Δ =
q∑

j=1
Bj −

p∑
i=1

Ai > −1. Then the following equal-

ities hold for α ∈ R+ and a ∈ R.

(1) If β1 > 0, B1 > 0 and A1 = α1 = 1, then we have

dα

dzα

(
zB1−1

pΨq

[
azβ1

∣∣∣∣ (1, 1), (Ai , αi)2,p
(Bj , βj)1,q

])
= amzB1+mβ1−1−α

pΨq

[
azβ1

∣∣∣∣ (1, 1), (Ai +mαi, αi)2,p
(B1 +mβ1 − α, β1), (Bj +mβj , βj)2,q

]
,

where m is the smallest non-negative integer such that B1 +mβ1 − α − 1
is not a negative integer.

(2) For σ ∈ R \ {0} and R ∈ R, the following equality holds(
1

α
z
d

dz
+R

)(
z

A1σ
α1
−αR

pΨq

[
azσ

∣∣∣∣ (Ai, αi)1,p
(Bj , βj)1,q

])
=

σ

α1α
z

A1σ
α1
−αR

pΨq

[
azσ

∣∣∣∣ (A1 + 1, α1), (Ai, αi)2,p
(Bj , βj)1,q

]
.

Lemma 2.2. Let

ν =

q∑
j=1

βj −
p∑

i=1

αi > 0, μ =

m∑
j=1

βj −
q∑

j=m+1

βj −
p∑

i=1

αi > 0,

α ∈ R+ and a ∈ R \ {0}. Then the following equalities hold:

(1) For a > 0,
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dα

dzα
Hm,0

p,q

[
az−αp

∣∣∣∣ (Ai, αi)1,p−1, (1, αp)
(Bj , βj)1,q

]
= z−αHm,0

p,q

[
az−αp

∣∣∣∣ (Ai, αi)1,p−1, (1− α,αp)
(Bj , βj)1,q

]
, z > 0.

(2) If m ≥ 1, then(
β1
αp

z
d

dz
+B1

)
Hm,0

p,q

[
az−αp

∣∣∣∣ (Ai, αi)1,p−1, (1, αp)
(Bj , βj)1,q

]
= Hm,0

p,q

[
az−αp

∣∣∣∣ (Ai, αi)1,p−1, (1, αp)
(B1 + 1, β1), (Bj , βj)2,q

]
.

In the next section, we present exact solutions of (1.3) and (1.4) in
propositions using the aforementioned special functions.

3. Construction of exact solutions

We express solutions to (1.3) and (1.4) using two kinds of special func-
tions. Which of these functions we use in any given case depends on the
right-hand side and order of the fractional derivative of (1.3) or (1.4). Be-
fore moving on to the formulation of exact solutions of (1.3) and (1.4), we
introduce the following notation.

Let us consider the case that c = 0 and b 
= 0 in (1.3). Then writing
−a

b as s̄, we can rewrite the right-hand side of (1.3) as

aϕ+
b

α
z
dϕ

dz
= b

(
1

α
z
d

dz
− s̄

)
ϕ.

Then, in the case of (1.4), assuming b1b2 
= 0 and introducing the quantities

s̃1 = −a1
b1

, s̃2 = −a2
b2

,

we rewrite the right-hand side of (1.4) as follows:

a1ψ +
b1
α
z
dψ

dz
= b1

(
1

α
z
d

dz
− s̃1

)
ψ,

a2ϕ+
b2
α
z
dϕ

dz
= b2

(
1

α
z
d

dz
− s̃2

)
ϕ.

Now, let us assume c 
= 0. Then the characteristic equation of the right-
hand side of (1.3) is

s2 +

(
b

c
− 1

α

)
s+

a

c
= 0. (3.1)
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We write the determinant and roots of (3.1) as D = 1
α2 − 2b

αc +
b2

c2 −
4a
c and

s1,2 =
1
2

(
1
α − b

c ±
√
D
)
, respectively. Then we can rewrite the right-hand

side of (1.3) in the factorized differential form

aϕ+
b

α
z
dϕ

dz
+

c

α2
z2

d2ϕ

dz2
= c

(
1

α
z
d

dz
− s1

)(
1

α
z
d

dz
− s2

)
ϕ. (3.2)

This notation is useful for at least two reasons. First, it reveals the unifor-
mity in given solutions of (1.3) and (1.4) with different orders of fractional
derivatives. In particular, in the case c 
= 0, we can avoid a tedious compu-
tation by simply rewriting the right-hand side of (1.3) in factorized operator
form. Second, using this notation, we can easily generalize (1.3) and (1.4)
into (1.1) and (1.2). We will discuss this generalization in the next section.

3.1. Solutions expressed in terms of generalized Wright functions.
We now formulate the solutions of (1.3) and (1.4) as follows.

Proposition 3.1. We have the following solutions expressed in terms
of the generalized Wright function.

(1) For α > 1 and a, b ∈ R with b 
= 0, the equation

dαϕ

dzα
= aϕ+

b

α
z
dϕ

dz
, z ∈ R (3.3)

has as a solution

ϕ(z) =
n∑

k=1

ckz
α−k

2Ψ1

[
bzα

∣∣∣∣ (1− k
α − s̄, 1

)
, (1, 1)

(1 + α− k, α)

]
,

where s̄ = −a
b , and ck (k = 1, . . . , n) are constants.

(2) For α > 2 and a, b, c ∈ R with c 
= 0, the equation

dαϕ

dzα
= aϕ+

b

α
z
dϕ

dz
+

c

α2
z2

d2ϕ

dz2
, z ∈ R (3.4)

has as a solution

ϕ(z) =
n∑

k=1

ckz
α−k

3Ψ1

[
czα

∣∣∣∣ (1− k
α − s1, 1

)
,
(
1− k

α − s2, 1
)
, (1, 1)

(1 + α− k, α)

]
,

where s1,2 =
1
2

(
1
α − b

c ±
√
D
)
, D = 1

α2 − 2b
αc+

b2

c2
− 4a

c , and ck (k = 1, . . . , n)

are constants.

(3) For α > 1 and a1, a2, b1, b2 ∈ R with b1b2 
= 0, the system{
dαϕ
dzα = a1ψ + b1

α z
dψ
dz ,

dαψ
dzα = a2ϕ+ b2

α z
dϕ
dz ,

z ∈ R (3.5)

has as a solution
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ϕ(z) =
n∑

k=1

ck,1z
α−k

3Ψ1

[
Az2α

∣∣∣∣ (1− k
2α − s̃1

2 , 1
)
,
(
1
2 −

k
2α − s̃2

2 , 1
)
, (1, 1)

(1 + α− k, 2α)

]

+ 2b1

n∑
k=1

ck,2z
2α−k

3Ψ1

[
Az2α

∣∣∣∣ (32 − k
2α − s̃1

2 , 1
)
,
(
1− k

2α − s̃2
2 , 1

)
, (1, 1)

(1 + 2α− k, 2α)

]
,

ψ(z) =

2b2

n∑
k=1

ck,1z
2α−k

3Ψ1

[
Az2α

∣∣∣∣ (1− k
2α − s̃1

2 , 1
)
,
(
3
2 −

k
2α − s̃2

2 , 1
)
, (1, 1)

(1 + 2α − k, 2α)

]

+

n∑
k=1

ck,2z
α−k

3Ψ1

[
Az2α

∣∣∣∣ (12 − k
2α − s̃1

2 , 1
)
,
(
1− k

2α − s̃2
2 , 1

)
, (1, 1)

(1 + α− k, 2α)

]
,

where A = 4b1b2, s̃1 = −a1
b1
, s̃2 = −a2

b2
, and ck,1, ck,2 (k = 1, . . . , n) are

constants.

P r o o f. The proof can be carried out similarly in all three cases using
Lemma 2.1. For this reason, we present proof only for the second case.
From the linearity of (3.4), it is sufficient to show that a single summand,

ϕk(z) = zα−k3Ψ1

[
czα

∣∣∣∣ (1− k
α − s1, 1

)
,
(
1− k

α − s2, 1
)
, (1, 1)

(1 + α− k, α)

]
,

of the solution ϕ(z) satisfies (3.4). Because 1 + α − k > 0 for any k, by
Lemma 2.1, we have the following identity for the left-hand side of (3.4):

dαϕk

dzα
= czα−k3Ψ1

[
czα

∣∣∣∣ (2− k
α − s1, 1), (2 − k

α − s2, 1), (1, 1)
(1 + α− k, α)

]
. (3.6)

Then, by virtue of (3.2) and the second assertion of Lemma 2.1, the right-
hand side of (3.4) becomes

c

(
1

α
z
d

dz
− s1

)(
1

α
z
d

dz
− s2

)
ϕk = c

(
1

α
z
d

dz
− s1

)
×
(
zα−k3Ψ1

[
czα

∣∣∣∣ (1− k
α − s1, 1

)
,
(
2− k

α − s2, 1
)
, (1, 1)

(1 + α− k, α)

])
,

which is equal to the left-hand side of (3.6). �

3.2. Solutions expressed in terms of Fox H-functions. Unlike the
previously presented solutions expressed in terms of generalized Wright
functions, we present the solutions expressed in terms of Fox H-functions
for z > 0.
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Proposition 3.2. For the following cases, we have solutions expressed
in terms of Fox H-functions.

(1) For 0 < α < 1 and a, b ∈ R with b > 0, the equation
dαϕ

dzα
= aϕ+

b

α
z
dϕ

dz
, z > 0 (3.7)

has as a solution

ϕ(z) = c1H
1,0
1,1

[
z−α

b

∣∣∣∣ (1, α)
(−s̄, 1)

]
,

where s̄ = −a
b , and c1 is a constant.

(2) For 0 < α < 2 and a, b, c ∈ R with c > 0, the equation

dαϕ

dzα
= aϕ+

b

α
z
dϕ

dz
+

c

α2
z2

d2ϕ

dz2
, z > 0 (3.8)

has as a solution

ϕ(z) = c1H
2,0
1,2

[
z−α

c

∣∣∣∣ (1, α)
(−s1, 1) , (−s2, 1)

]
,

where s1,2 =
1
2

(
1
α − b

c ±
√
D
)
, D = 1

α2 − 2b
αc +

b2

c2
− 4a

c , and c1 is a constant.

(3) For 0 < α < 1 and a1, a2, b1, b2 ∈ R with b1b2 > 0, the system{
dαϕ
dzα = a1ψ + b1

α z
dψ
dz ,

dαψ
dzα = a2ϕ+ b2

α z
dϕ
dz ,

z > 0 (3.9)

has as a solution

ϕ(z) = c1 sgn(b1)H
2,0
1,2

[
z−2α

4b1b2

∣∣∣∣ (1, 2α)(
1
2 − s̃1

2 , 1
)
,
(
− s̃2

2 , 1
) ]

,

ψ(z) = c1

√
b2
b1
H2,0

1,2

[
z−2α

4b1b2

∣∣∣∣ (1, 2α)(
− s̃1

2 , 1
)
,
(
1
2 − s̃2

2 , 1
) ]

,

where s̃1 = −a1
b1
, s̃2 = −a2

b2
, and c1 is a constant.

P r o o f. Analogously to the proof of Proposition 3.1, the three as-
sertions of this proposition can be proved in a similar manner by using
Lemma 2.2. For this reason, we consider only the second assertion with
c1 = 1, without loss of generality. Because the convergence condition of
H-functions holds (i.e. μ = 2 − α > 0), we can apply the first assertion of
Lemma 2.2. We thereby obtain

dα

dzα
H2,0

1,2

[
z−α

c

∣∣∣∣ (1, α)
(−s1, 1) , (−s2, 1)

]
= z−αH2,0

1,2

[
z−α

c

∣∣∣∣ (1− α,α)
(−s1, 1) , (−s2, 1)

]
for the left-hand side of (3.8), which is further simplified into the form

dα

dzα
H2,0

1,2

[
z−α

c

∣∣∣∣ (1, α)
(−s1, 1) , (−s2, 1)

]
= cH2,0

1,2

[
z−α

c

∣∣∣∣ (1, α)
(1− s1, 1) , (1− s2, 1)

]
.
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The right-hand side of (3.8) is obtained in analogy to the second assertion
of Proposition 3.1, by using (3.2) and interchanging the parameters (−s1, 1)
and (−s2, 1) in the solution ϕ(z) in accordance with the second assertion
of Lemma 2.2. �

We now show that for a special case of (3.8), we have solutions expressed
in terms of Wright functions.

Corollary 3.1. Let the determinant of (3.8) be D = 1
α2 − 2b

αc +
b2

c2 −
4a
c = 1

4 , and suppose c 
= 0.

(1) For 0 < α < 2 and c > 0, (3.8) has a solution of the following form:

ϕ(z) = c1z
1
2(

1
α
− b

c
+ 1

2)αΨ

(
−2z−

α
2

√
c

;−α

2
,
1

2

(
3

α
− b

c
+

1

2

)
α

)
.

(2) For α > 2, (3.8) has a solution of the following form:

ϕ(z) =
n∑

k=1

ckz
α−k

2Ψ1

(
czα

4

∣∣∣∣ (32 − 2k+1
α + b

c , 2
)
, (1, 1)

(1 + α− k, α)

)
.

P r o o f. To prove the first assertion, we need to show that ϕ(z) cor-
responds to the solution given in the second assertion of Proposition 3.2.
When D = 1

4 and 0 < α < 2, the roots of the characteristic equation (3.1)

become s1 =
1
2

(
1
α − b

c +
1
2

)
and s2 = s1− 1

2 . In this case, the solution given
in the second assertion of Proposition 3.2 is

ϕ̃(z) = c1H
2,0
1,2

[
z−α

c

∣∣∣∣ (1, α)
(−s1, 1) ,

(
−s1 +

1
2 , 1

) ]
.

Then, applying the duplication formula for the Gamma function

Γ (−s1 − s) Γ

(
−s1 − s+

1

2

)
=

√
π21+2(s1+s)Γ (−2s1 − 2s) ,

it becomes

ϕ̃(z) = c1
√
πcs1z

α
2 (

1
α
− b

c
+ 1

2)Ψ

(
−2z−

α
2

√
c

;−α

2
,
α

2

(
3

α
− b

c
+

1

2

))
.

Thus, the first assertion is proved.
The second assertion can also be proved by applying the duplication

formula of gamma function to the solution given in the second assertion of
the Proposition 3.1 �

To this point, we have presented several exact solutions of (1.3) and
(1.4). These solutions are classified according to the kind of special func-
tions used to express them. Now, we discuss the second advantage of rewrit-
ing the right-hand sides of (1.3) and (1.4) in factorized differential operator
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form. Specifically, we show that utilizing this form, we are able to gener-
alize our treatment of (1.3) and (1.4) to the cases of (1.1) and (1.2) with
arbitrary integers m, m1 and m2. As a result, we find that the solutions
to (3.3) and (3.4) of Proposition 3.1 and the solutions to (3.7) and (3.8)
of Proposition 3.2 can all be represented in a unified manner by a single
general formula.

4. Construction of exact solutions in the general case

As in the beginning of Section 3, by virtue of (3.2) we represent the
right-hand side of (1.1) by P (ϕ) as follows:

P (ϕ) = am

m∏
i=1

(
1

α
z
d

dz
− si

)
ϕ.

Here, s1, s2, . . . , sm are the roots of the characteristic polynomial

P̃ (s) = a0 +

m∑
i=1

ai

i−1∏
j=0

(
s− j

α

)
.

Now, generalizing the results of the previous section, we formulate the
following theorem.

Theorem 4.1. (1) If 0 < α < m and am > 0, then for z > 0 (1.1) has
the following as a solution:

ϕ(z) = c1H
m,0
1,m

[
z−α

am

∣∣∣∣ (1, α)
(−sj, 1)1,m

]
.

(2) If α > m, then (1.1) has as the following as a solution

ϕ(z) =
n∑

k=1

ckz
α−k

m+1Ψ1

[
amzα

∣∣∣∣ (1− k
α − si, 1

)
1,m

, (1, 1)

(1 + α− k, α)

]
,

where ck (k = 1, . . . , n) are arbitrary constants.

In a similar manner, we can rewrite the right hand sides of the equations
in (1.2) as

m1∑
i=0

ai
αi

zi
diψ

dzi
= 2m1am1

m1∏
i=1

(
1

2α
z
d

dz
− si

2

)
ψ(z)

and
m2∑
i=0

bi
αi

zi
diϕ

dzi
= 2m2bm2

m1+m2∏
i=m1+1

(
1

2α
z
d

dz
− si

2

)
ϕ(z).

Here, s1, s2, . . . , sm1 and sm1+1, sm1+2, . . . , sm1+m2 , are, respectively, the
roots of the characteristic polynomials

P1(s) = a0 +

m1∑
i=1

ai

i−1∏
j=0

(
s− j

α

)
, P2(s) = b0 +

m2∑
i=1

bi

i−1∏
j=0

(
s− j

α

)
.
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The following result concerns solutions of (1.2).

Theorem 4.2. Here, we usem to representm1+m2 and A to represent
2m1+m2am1bm2 .

(1) If 0 < α < m
2 and am1bm2 > 0, then for z > 0 the system (1.2) has

the following as a solution:

ϕ(z) = c1 sgn(bm2)H
m,0
1,m

[
z−2α

A

∣∣∣∣ (1, 2α)(
− si

2 + 1
2 , 1

)
1,m1

,
(
− si

2 , 1
)
m1+1,m

]
,

ψ(z) = c12
m2−m1

2

√
bm2

am1

Hm,0
1,m

[
z−2α

A

∣∣∣∣ (1, 2α)(
− si

2 , 1
)
1,m1

,
(
− si

2 + 1
2 , 1

)
m1+1,m

]
.

(2) If α > m
2 , then the system (1.2) has the following as a solution:

ϕ(z) =

n∑
k=1

ck,1z
α−kϕk1(Az

2α) + 2m1am1

n∑
k=1

ck,2z
2α−kϕk2(Az

2α),

ψ(z) = 2m2bm2

n∑
k=1

ck,1z
2α−kψk1(Az

2α) +

n∑
k=1

ck,2z
α−kψk2(Az

2α),

where

ϕk1(z) = m+1Ψ1

[
z

∣∣∣∣ (1− k
2α − si

2 , 1
)
1,m1

,
(
1
2 − k

2α − si
2 , 1

)
m1+1,m

, (1, 1)

(1 + α− k, 2α)

]
,

ϕk2(z) = m+1Ψ1

[
z

∣∣∣∣ (32 − k
2α − si

2 , 1
)
1,m1

,
(
1− k

2α − si
2 , 1

)
m1+1,m

, (1, 1)

(1 + 2α− k, 2α)

]
,

ψk1(z) = m+1Ψ1

[
z

∣∣∣∣ (1− k
2α − si

2 , 1
)
1,m1

,
(
3
2 −

k
2α − si

2 , 1
)
m1+1,m

, (1, 1)

(1 + 2α− k, 2α)

]
,

ψk2(z) = m+1Ψ1

[
z

∣∣∣∣ (12 − k
2α − si

2 , 1
)
1,m1

,
(
1− k

2α − si
2 , 1

)
m1+1,m

, (1, 1)

(1 + α− k, 2α)

]
.

Here c1, ck,1, ck,2 (k = 1, . . . , n) are constants.

The proofs can be carried out analogously to the proofs of Proposi-
tion 3.1 and Proposition 3.2.

5. Solutions to a class of fractional linear partial differential
equations and systems thereof

In this section, we demonstrate the application of the propositions pre-
sented in this paper by providing exact solutions of generalizations of (1.5)
and (1.6). The solutions obtained in this section reduce to a previously
known solution in a particular case.
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5.1. Solutions to a fractional linear evolution equation. Let us con-
sider the following linear fractional evolution equation with variable coeffi-
cients:

∂αu(t, x)

∂tα
= am(x+ b)p

∂mu(t, x)

∂xm
+ am−1(x+ b)p−1

∂m−1u(t, x)
∂xm−1

+ · · ·+ a0(x+ b)p−mu(t, x), α > 0, x > −b, t > 0. (5.1)

Here ai (i = 0, . . . ,m), b and p are real numbers and am > 0. The infini-
tesimal scaling symmetries of (5.1) are

X1 = u
∂

∂u
, X2 = (x+ b)

∂

∂x
+

m− p

α
t
∂

∂t
.

The invariant solution corresponding to the generator X = aX1 +X2 (a ∈
R) is

u = (x+ b)aϕ(z), with z = t(x+ b)
p−m
α , (5.2)

where ϕ(z) solves the following reduced FODE:

dαϕ

dzα
=

am (m− p)m

αm
zm

dmϕ

dzm
+
ām−1
αm−1 z

m−1 dm−1ϕ
dzm−1

+· · ·+ ā1
α
z
dϕ

dz
+ā0, z > 0.

Here, the parameters ā0, ā1, . . . , ām−1 depend on a1, a2, . . . , am, α, m and
p.

Now, let us take a closer look at the case m = 2:

∂αu

∂tα
= a2(x+ b)puxx + a1(x+ b)p−1ux + a0(x+ b)p−2u (5.3)

for α > 0, x > −b, t > 0, with a2 > 0. For the case of a0 = 0, solutions of
(5.3) were found in [11] through Laplace transformation method and were
expressed by Fox-H functions. Now, generalizing the result of [11], let us
find solutions of (5.3) for any values of a0.

Applying the transformation (5.2) with m = 2, (5.3) reduced to the
following FODE

dαϕ

dzα
= āϕ+

b̄

α
z
dϕ

dz
+

c̄

α2
z2

d2ϕ

dz2
, z > 0, (5.4)

where ā = a(a − 1)a2 + aa1 + a0, b̄ = (p − 2)
(
p−2
α + 2a− 1 + a1

a2

)
a2 and

c̄ = (p − 2)2a2. From Proposition 3.1 and Proposition 3.2, we have the
following solutions of (5.4) for p 
= 2 :

(1) For 0 < α < 2, ϕ(z) = c1H
2,0
1,2

[
z−α

A

∣∣∣∣ (1, α)
(−s1, 1) , (−s2, 1)

]
.

(2) For α > 2,

ϕ(z) =
n∑

k=1

ciz
α−k

3Ψ1

[
Azα

∣∣∣∣ (1− k
α − s1, 1

)
,
(
1− k

α − s2, 1
)
, (1, 1)

(1 + α− k, α)

]
,
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whereA = (p−2)2a2 and s1,2 =
1

2(p−2)

(
1− 2a− a1

a2
±
√(

1− a1
a2

)2
− 4a0

a2

)
.

If a0 = a2
4

(
a1
a2

− p
2

)(
a1
a2

+ p
2 − 2

)
in (5.3), then by Corollary 3.1 we

obtain the following solutions of (5.4):

(1) For 0 < α < 2, ϕ(z) = c1z
α
2
sΨ

(
− 2z−

α
2

|p−2|√a2
;−α

2 , 1 +
α
2 s
)
.

(2) For α > 2, ϕ(z) =
n∑

k=1

ckz
α−k

2Ψ1

[
(p−2)2a2zα

4

∣∣∣∣ (2− 2k
α − s, 2

)
, (1, 1)

(1 + α− k, α)

]
,

where s = 1
(p−2)

(
p
2 − 2a− a1

a2

)
.

If we set a0 = a1 = p = 0 in the above solutions, then they correspond
to the solutions obtained in [1] and [8].

If p = 2, then (5.4) becomes
dαϕ

dzα
= (a(a− 1)a2 + aa1 + a0)ϕ, z > 0,

and the solution given in Proposition 3.1 is reduced to

ϕ(z) =
n∑

k=1

ciz
α−kEα,1+α−k ((a(a− 1)a2 + aa1 + a0)z

α) ,

where Eα,β(z) is a Mittag-Leffler function defined by

Eα,β(z) =

∞∑
i=0

zi

Γ(αi+ β)
.

Finally, we can obtain the invariant solutions of (5.3) by substituting these
solutions into (5.2).

5.2. Solutions to a system of fractional linear equations. Let us
consider the following system:{

∂αu
∂tα = a1(x+ c)m1vx + b1(x+ c)m1−1v,
∂αv
∂tα = a2(x+ c)m2ux + b2(x+ c)m2−1u,

α > 0, x > −c, t > 0,

(5.5)
where a1, a2, b1, b2,m1,m2, c ∈ R and a1a2 > 0. Then, with the substitution{

u(x, t) = (x+ c)d+
m1
2 ϕ(z),

v(x, t) = (x+ c)d+
m2
2 ψ(z),

with z = t(x+ c)
m1+m2−2

2α and d ∈ R,

we obtain the system of FODEs{
dαϕ
dzα = ā1ψ + b̄1

α z
dψ
dz ,

dαψ
dzα = ā2ϕ+ b̄2

α z
dϕ
dz ,

z > 0, (5.6)

where ā1 =
(
d+ m2

2

)
a1 + b1, ā2 =

(
d+ m1

2

)
a2+ b2, b̄1 =

(m1+m2−2)a1
2 and

b̄2 =
(m1+m2−2)a2

2 .
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We obtain the following results by virtue of Proposition 3.1 and Propo-
sition 3.2.

Case 1. Let us consider the case m = m1 +m2 
= 2. Then, for 0 < α < 1,
the solution to (5.6) given in Proposition 3.2 is

ϕ(z) = c1 sgn ((m− 2)a1)H
2,0
1,2

[
z−2α

(m− 2)2a1a2

∣∣∣∣ (1, 2α)(
1
2 − s̃1

2 , 1
)
,
(
− s̃2

2 , 1
) ]

,

ψ(z) = c1

√
a2
a1

H2,0
1,2

[
z−2α

(m− 2)2a1a2

∣∣∣∣ (1, 2α)(
− s̃1

2 , 1
)
,
(
1
2 −

s̃2
2 , 1

) ]
,

and for α > 1, the solution given in the third assertion of Proposition 3.1
is

ϕ(z) =

n∑
k=1

ck,1z
α−k

3Ψ1

[
z2α

M2

∣∣∣∣ (1− k
2α − s̃1

2 , 1
)
,
(
1
2 −

k
2α − s̃2

2 , 1
)
, (1, 1)

(1 + α− k, 2α)

]

+
a1
M

n∑
k=1

ck,2z
2α−k

3Ψ1

[
z2α

M2

∣∣∣∣ (32 − k
2α − s̃1

2 , 1
)
,
(
1− k

2α + s̃2
2 , 1

)
, (1, 1)

(1 + 2α− k, 2α)

]
,

ψ(z)

=
a2
M

n∑
k=1

ck,1z
2α−k

3Ψ1

[
z2α

M2

∣∣∣∣ (1− k
2α + s̃1

2 , 1
)
,
(
3
2 − k

2α − s̃2
2 , 1

)
, (1, 1)

(1 + 2α− k, 2α)

]

+

n∑
k=1

ck,2z
α−k

3Ψ1

[
z2α

M2

∣∣∣∣ (12 − k
2α − s̃1

2 , 1
)
,
(
1− k

2α − s̃2
2 , 1

)
, (1, 1)

(1 + α− k, 2α)

]
,

where M = 1
m−2 , s̃1 = − (2d+m2)a1+2b1

(m−2)a1 and s̃2 = − (2d+m1)a2+2b2
(m−2)a2 .

Case 2. Next, let us consider the case m1 +m2 = 2. In this case, we can
rewrite (5.6) as {

dαϕ
dzα = ā1ψ,
dαψ
dzα = ā2ϕ,

z > 0,

where ā1 = (d+ m2
2 )a1+ b1, ā2 = (d+ m1

2 )a2+ b2. Then, the solution given
in Proposition 3.1 is reduced to

ϕ(z) =
n∑

k=1

ck,1z
α−kν1(ā1ā2z2α) + ā1

n∑
k=1

ck,2z
2α−kν2(ā1ā2z2α),

ψ(z) = ā2

n∑
k=1

ck,1z
α−kν2(ā1ā2z2α) +

n∑
k=1

ck,2z
2α−kν1(ā1ā2z2α),

where ν1(z) = E2α,1+α−k(z) and ν2(z) = E2α,1+2α−k(z). Similarly to the
previous cases, using the solutions of the reduced system, we are able to
obtain invariant solutions of (5.5).
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The readers interested in more applications of the results obtained in
this work are referred to work [2].
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