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Abstract

This paper presents models of economic growth for all the countries
of the Group of Seven (G7) in the 1973–2016 period. The models consist
of differential equations, of both integer and fractional order, where the
gross domestic product (GDP) is a function of the country’s land area,
arable land, population, school attendance, gross capital formation (GCF),
exports of goods and services, general government final consumption ex-
penditure (GGFCE), and broad money (M3). Results show that fractional
models have a better performance, measured by several summary statistics,
without increasing the number of parameters, or sacrificing the ability to
predict GDP evolution in the short term. A standard validation proce-
dure for economic growth models is presented for the assessment of future
models.
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1. Introduction

This paper develops models of economic growth for the current members
of the Group of Seven (G7), from the inception of this group in 1973 until
2016. Multi-input dynamic systems, using integer order derivatives and
fractional order derivatives, describe the evolution of the gross domestic
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product (GDP) as a function of several factors. The quality of these models
is assessed using several statistical tools, showing the advantage of using
fractional order derivatives to this purpose. The ability of predicting the
short-term evolution of the GDP is also assessed. Possible explanations are
presented of why this is so, and of the mechanism behind the fractional
order. The validation procedure shows the way how initial conditions are
handled is reasonable, and is expected to provide a standard for testing
future models of economic growth.

1.1. The G7. The G7 currently comprises the following countries in al-
phabetical order: Canada (CAN), France (FRA), Germany (DEU), Italy
(ITA), Japan (JPN), United Kingdom (GBR), and United States of Amer-
ica (USA).

It traces its beginnings to informal meetings in 1973 between finance
ministers of some countries, to respond to the oil crisis and the recent
changes in the international monetary system (in particular, the collapse of
the monetary system of the Bretton Woods agreements). Formal summits
followed, with the number of participating countries increasing from four to
eight, and then settling at seven in 2014, see [24]. The European Economic
Community, succeeded from 1993 on by the European Union (EUU), is
represented at the meetings since 1977, but never chairs them; four of the
G7 member countries (FRA, DEU, ITA, GBR) have been member states
of the EUU as well during the entire period of concern.

The G7 countries are the seven wealthiest advanced countries in the
world. China, India and Brazil have economies of comparable size, but are
not yet developed economies according to the criteria of the World Bank or
of the United Nations. Consequently, studying the evolution of the GDP of
these countries is interesting as it may identify which factors are relevant
to their position in the world economy.

The paper presents seven separate models for each of the seven members
of the G7, another model for the EUU as a whole, and a ninth model that
can be applied to all of each these eight economies. Models were found for
the entire temporal range of concern (even though not all were members
from the beginning), which is the period from 1973 to 2016. It begins
with the first meetings that originated the G7; another reason why this
year is a good choice for a starting point is because statistical data for
the variables needed is consistently available from then on (but not always
before). Likewise, 2016 is the last year for which figures can be found.

1.2. Fractional derivatives in economic modelling. Fractional deriva-
tives have long been used to develop financial and economic models. In
what concerns financial models, these can be based upon Lévy models
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[1, 2, 3, 7, 21], upon a power law [40], upon the diffusion equation [14],
upon continuous time random walks [12, 20, 22, 23, 28, 29], upon differen-
tiable manifolds [5], upon fractals [15], and upon chaos theory [8, 9, 46].
As to economic models, economic growth has been modelled using a state-
space representation of fractional derivatives [13, 26, 31, 50] that may be of
variable order [49]; the world economy was modelled using a pseudo-phase
plane and state space analysis [41, 42]; fractional calculus can be subject
to an economic interpretation [34], and was used as well, together with
diffusion models, to attempt a prediction of economic crises [6] and to des-
cribe economic processes with a long memory [32, 33] (which is reasonable
given the presence of diffusion processes, modelled with fractional deriva-
tives in other areas of science [19]). Models similar to those in this paper
were developed for Portugal, Spain [36], France, Italy [35], and all the EU
member-states [37].

1.3. Paper organization. The remainder of this paper is organized as
follows. Section 2 presents the methodology followed. Section 3 introduces
the sources of the data employed. Section 4 gives the results obtained. A
discussion and conclusions are given in Section 5.

2. Methodology

2.1. GDP models. The rationale behind the models considered is that
GDP depends on both available resources and impacts on the economy. So
the first model considered, an integer order differential equation, has the
following form for each country of the G7:

y(t) = C1x1(t) + C2x2(t) + C3x3(t) + C4x4(t) + C5

∫ t
t0
x5(t)dt

+C6x6(t) + C7x7(t) + C8
dx8(t)

dt
+ C9

dx9(t)

dt
. (2.1)

Here y(t) is the GDP (in 2010 US$), Ck are constant weights for each of
the variables, t0 is the first year considered, and xk are the variables on
which the output depends on, i.e.:

• x1: land area (in km2) ,
• x2: arable land (in km2),
• x3: population,
• x4: school attendance (years),
• x5: gross capital formation (GCF) (in 2010 US$) — in the model,
this variable is introduced accumulated,

• x6: exports of goods and services (in 2010 US$),
• x7: general government final consumption expenditure (GGFCE)
(in 2010 US$),
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• x8: broad money, M3 (in 2010 US$) — in the model, the variation
of this variable is considered,

• x9: variation of GCF x5 (in 2010 US$).

Notice that:

• land area x1 is used as a measure of the available natural resources;
• arable land x2 is used as a measure of the quality of the natural
resources;

• population x3 is used as a measure of the available human resources;
• school attendance x4 is used as a measure of the quality of human
resources;

• the accumulated GCF
∫ t
t0
x5(t)dt is used as a measure of manufac-

tured resources;
• exports x6 are used as a measure of external impacts in the econ-
omy;

• GGFCE x7 is used as a measure of budgetary impacts in the econ-
omy;

• the variation of M3
dx8(t)

dt
is used as a measure of monetary impacts

in the economy;

• the variation of GCF
dx9(t)

dt
= dx5(t)

dt is used as a measure of the

impact of investment in the economy.

GCF appears twice in the model with different roles and so is given two
different variables, x5 and x9, for clarity. These variables were chosen to
represent both those of Keynesian models (short-term inputs with impacts
in the economy) and those traditionally considered in growth accounting
[10, 17, 18].

The importance of the variables in model (2.1) was determined for each
country for the whole time period in order to propose other simpler models,
as explained below in Section 2.2. As a result, a second integer order model
with only six variables was also considered:

y(t) =
∑

k=1,2,3,5,6,7

Ckxk(t). (2.2)

The effects of impacts in the economy, however, are not only instanta-
neous, but perdure with time. Consequently, model (2.2) was generalized
to a third, fractional order model as

y(t) =
∑

k=1,2,3

Ckxk(t) +
∑

k=5,6,7

CkD
αkxk(t). (2.3)

Notice that only variables x5, x6 and x7 were considered to have fractional
influence. This seems reasonable since these are the variables representing
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impacts. Furthermore, in this way, the fractional model has nine parame-
ters, just as the original integer model (2.1) also has nine.

To implement the fractional differentiation operator Dαk , the Caputo
definition was chosen, because no initial conditions are needed in the fre-
quency domain [45]. The operator was implemented as 0D

αk
t xk(t), where

the lower terminal 0 is the first year considered in each model. This means
that the effects of the evolution of variables are considered only from that
year on. Verifying whether this approximation (which reduces statistical
data needed to develop models) is reasonable or not is one of the objectives
of the present study.

2.2. Optimizing and assessing performance. To find the models (2.1)–
(2.3) for each of the G7 countries, a fitting procedure was implemented in
MATLAB. Nelder-Mead’s simplex search method (implemented in function
fminsearch) was used to minimize the mean square error (MSE):

MSE =

N∑
j=1

(yj − ŷj)
2

N
, (2.4)

where N is the number of years (in this case, N = 44), and yj and ŷj
are the real output and the model output, respectively. The MSE alone is
not relied upon to evaluate the quality of the fit obtained by the resulting
models: other performance indices were calculated as well. These were:

(1) The mean absolute deviation (MAD), given by

MAD =

N∑
j=1

|yj − ŷj|

N
. (2.5)

(2) The coefficient of determination (R2 ∈ (0, 1)):

R2 = 1−

N∑
j=1

(yj − ŷj)
2

N∑
j=1

(yj − ȳ)2
, (2.6)

where ȳ is the mean of the GDP.
(3) The t−values and p−values for each variable.

These are calculated with MATLAB command regstats.

As will be seen from the results in Section 4, not all nine variables x1,
x2, . . ., and x9 turned out to be necessary for every single model given
by (2.1). This could be evaluated from the t− and p−values for each
variable, by checking whether or not the performance indexes MAD and
R2 deteriorate significantly when removing one or more variables from the
model, and also using the Akaike information criterion (AIC):
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AIC = N log

N∑
j=1

(yj − ŷj)
2

N
+ 2K +

2K(K + 1)

N −K − 1
, (2.7)

beingK the number of parameters of the model. The value of the AIC does
not give information about the quality of a model. However, comparing the
AIC values of different models, it can be seen which ones are more likely
to be a good model for the data, as a lower value indicates a more likely
model. Furthermore, if there are M models, the Akaike weight, given by

wi =

exp

(
−
AICi −min

M
AIC

2

)
M∑
j=1

exp

(
−
AICj −min

M
AIC

2

) , (2.8)

provides the probability of model i being the best of all the M models.

This is the rationale behind the development of models given by (2.2)
and (2.3).

2.3. Model time range and predictions of the future evolution of
the GDP. Models given by (2.1), (2.2) and (2.3) were obtained considering
the entire 1973–2016 period. This allows making use of all the data at once,
trying to obtain a long term fit. However:

• It may lead to an overly rigid model, with an excessive influence of
older data in parameters.

• It does not allow verifying the capability of a model to predict the
future evolution of the economy — another important performance
assessment of a model for economic growth — since there is no
further data with which this can be tested.

Consequently, models for a shorter time range were developed. The
time range was chosen as follows:

• The long term evolution of the GDP is roughly exponential. Con-
sequently, exponentials were fit to y(t), by least squares, for every
country. Let ỹ(t) be the exponential curve that fits y(t).

• The spectral content of the oscillations y(t)− ỹ(t) was found using
a Fast Fourier Transform. Figure 1 shows the values of the oscilla-
tions for all countries as well as their spectral content.

• The first four peaks correspond to periods of 30, 19, 13, and 10
years. Given that the first is very large, and the next two are
unclear or slightly misaligned in some countries, the period of 10
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(a) (b)

Figure 1. Spectral content of the oscillations y(t) − ỹ(t)
for all countries: (a) GDP oscillation around its exponential
tendency (b) Corresponding spectral contents.

years was chosen, and, using (2.4), models obtained for N = 10
years were found, given by (2.1), (2.2) and (2.3).

Consequently, for each country, 34 models were found, for the periods
1973–1982, 1974–1983, 1975–1984, and so on, like a moving average. Each
of those models can be used with the data of future years, to see how good
is the prediction. This was assessed calculating MSE, R2, MAD, AIC and
w for each country.

3. Data sources

The full data used for our calculations is not tabulated in this paper,
given its extension, but is available in [38]. It was collected as follows:

• Variables for the EUU were obtained as a sum of the values for its
member states in each year (save for x4, addressed below).

• Values for the GDP, x1, x2, x3, x5, x6, and x7 were obtained from
[44].

• As x2 is only available until 2015, it was assumed that x2(2016) =
x2(2015). For Belgium and Luxemburg (states of the EUU), x2 was
assumed constant until 2000, the first year for which there is data.
(This corresponds to an error of, at most, 1.9% in x2 for the EUU
in those years.)

• In the case of DEU, x1 and x3 until 1990 were taken from [47]. The
variable x2 was reduced in proportion in the same period.

• Values for x4 were obtained from [16] (available with a 5–year pe-
riod, and thus interpolated with a third-order spline) until 2010.
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The figure for 2010 was then extended into the future, using the
increase rate of a third-order spline interpolation of the values in
[48].

• As an exception to the above, x4 values for Croatia, Estonia, Latvia,
Lithuania, Slovenia and Slovak Republic (states of the EUU) are not
given in [16]; so those of [44] were used instead in the same period.
The value for x4 in the EUU was then obtained as weighted average
of the member states in each year, using each state’s share in x3 as
the weight.

• Values for x8 for CAN were obtained from [44] until 2000. From
then on the 2000 value was updated with the yearly growth rate of
the index in [25].

• Values for x8 for GBR, JPN and USA were obtained from [44].
• Values for x8 for DEU, FRA, ITA and other states of the EUU were
obtained from [11] until 2015, and converted to 2010 US$ with the
price index in [44]. The value for 2016 is that of 2015 updated with
the growth rate of [43].

• As an exception to the above, values for x8 for Luxembourg and
Romania in [11] stopped in 2011 and 2013 respectively, and were
updated with the growth rate of [44].

4. Results

This section presents an overview of the models and the predictions
for the economies of the G7 in the period between 1973 to 2016. A full
tabulation of results is again available in [39], due to its extension.

4.1. Models for the entire period. Figure 2 shows the results obtained
by the models that cover the entire 1973–2016 period. The performance
indices for the models are given in Table 1. In that table, t−values that
correspond to variables necessary for the model, assuming a 5% significance
level, are given in bold (this information is also summarized in Table 2). As
can be observed, the variables which are of importance for three or more
countries are x1, x2, x3, x5, x6, and x7; this fact justifies the simplification
of model (2.1) into (2.2). It is this later model that is then generalized
for fractional orders. (Notice that the influence of x9 was omitted as an
independent variable; it was considered within x5.)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2. (... see on next page)
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Figure 2. Fitting results for integer and fractional models
for the G7 countries: (a) Canada (b) France (c) Germany
(d) Italy (e) Japan (f) United Kingdom (g) United States
of America (h) European Union. (Notice that the scale of

y-axis is not the same for all countries).

CAN FRA DEU ITA
Index / Integer Integer Fractional Integer Integer Fractional Integer Integer Fractional Integer Integer Fractional
Statistic Variable (2.1) (2.2) (2.3) (2.1) (2.2) (2.3) (2.1) (2.2) (2.3) (2.1) (2.2) (2.3)

MSE (×1020) 2.302 2.824 1.623 4.025 4.410 2.130 21.295 29.824 2.800 4.245 5.114 1.049
R2 0.998 0.9979 0.9988 0.9984 0.9983 0.9992 0.995 0.9925 0.9993 0.996 0.9959 0.9992
MAD (×1010) 1.106 1.279 1.002 1.626 1.646 1.215 3.290 4.170 1.239 1.635 1.773 0.799

x1 0.012 2.509 4.930 −4.113 −4.924 0.787 2.605 2.796 0.256 3.074 4.552 7.582
x2 2.924 2.371 3.751 −2.204 −2.101 −0.415 −4.362 −4.076 −3.199 0.631 1.159 5.029
x3 −3.986 −5.193 −4.681 6.108 7.022 0.571 2.131 2.909 10.149 −4.372 −5.248 −7.979
x4 1.392 − − 1.726 − − 1.090 − − 2.151 − −

t−values x5 4.793 5.767 8.855 −8.078 −10.301 14.931 1.926 5.324 15.600 −1.304 −0.203 19.827
x6 8.951 13.648 8.728 10.355 16.462 −13.790 −1.433 −1.723 12.102 6.593 9.400 5.936
x7 5.963 8.537 6.759 4.718 7.663 8.703 1.079 −0.017 32.024 11.354 20.341 40.507
x8 0.264 − − −0.368 − − 9.869 × 10−2 − − −0.229 − −
x9 2.403 − − −0.230 − − 3.580 − − 1.239 − −

AIC (×103) 2.086 2.086 2.062 2.111 2.106 2.074 2.184 2.190 2.086 2.113 2.112 2.043
w (%) 0 0 100 0 0 100 0 0 100 0 0 100

JPN GBR USA EUU
Index / Integer Integer Fractional Integer Integer Fractional Integer Integer Fractional Integer Integer Fractional
Statistic Variable (2.1) (2.2) (2.3) (2.1) (2.2) (2.3) (2.1) (2.2) (2.3) (2.1) (2.2) (2.3)

MSE (×1020) 163.6538 177.390 9.3223 12.402 14.324 9.940 62.731 85.929 4.353 759.967 799.042 129.762
R2 0.989 0.9882 0.9994 0.995 0.9949 0.9964 0.996 0.9937 0.9997 0.9963 0.9933 0.9991
MAD (×1010) 10.565 11.185 2.400 2.895 2.994 2.590 20.515 24.010 5.389 22.866 22.854 8.556

x1 −6.337 −6.919 −3.917 7.975 8.939 8.807 −2.743 −3.262 −5.569 −3.375 −2.551 −6.690
x2 5.241 5.563 5.193 −0.606 6.696 × 10−4 −1.818 1.853 −0.592 −0.504 −1.335 −3.413 −7.642
x3 0.347 2.625 −3.077 −5.451 −6.205 −7.524 3.486 3.947 9.225 2.971 2.645 7.440
x4 0.715 − − 1.467 − − −3.081 − − 5.117 − −

t−values x5 0.384 1.542 23.592 7.947 7.863 10.254 1.062 0.054 26.193 −3.259 −3.845 18.771
x6 1.118 0.280 −8.784 3.137 4.679 6.471 0.189 0.254 7.217 3.022 3.319 1.068
x7 2.300 2.662 10.289 −0.999 −0.229 5.516 1.348 0.891 10.205 0.446 6.066 5.181
x8 −1.329 − − 1.761 − − 3.340 − − 0.618 − −
x9 −1.095 − − 0.168 − − 2.552 − − 0.793 − −

AIC (×103) 2.274 2.268 2.139 2.160 2.158 2.142 2.333 2.338 2.207 2.341 2.335 2.255
w (%) 0 0 100 0 0.03 99.97 0 0 100 0 0 100

Table 1. Performance indices for integer and fractional
models for G7

Country x1 x2 x3 x4 x5 x6 x7 x8 x9
CAN � � � � � �
FRA � � � � �
DEU � � �
ITA � � � �
JPN � � �
GBR � � � �
USA � � � � �
EUU � � � � �

Table 2. Importance of the nine variables on model (2.1)
for each country
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4.2. Models for 10–year periods. Figure 3 shows how good the models
for one of the nine cases considered (the one for all countries) are predic-
ting the future evolution of the GDP. For comparison purposes, and since
the GDP of different countries has different orders of magnitude, the per-
formance of predictions obtained with each 10–year model is analyzed in
terms of relative error with respect to the average value for the period as
follows:

index− indexave
indexave

. (4.9)

Here, index refers to one of the indices MSE, R2, and MAD.

Naturally, models developed for periods beginning in the 1970s can be
used for very long predictions, while those developed for periods ending
in this century can only be used for a few years. It is also to expect
that predictions for many years into the future are poorer than those for
just a few years. This is seen in the picture, that clearly shows the MSE
and the MAD of the predictions deteriorating roughly exponentially with
time, and the R2 decreasing with time. It is also clear that relative errors
begin with rather small values, showing that models are quite good at
one-step ahead prediction (in this case, one-year prediction). The most
striking characteristic of fractional models given by (2.3) is that, for the
first two or three years, as seen in the inset of the figures, relative MSE
and MAD are clearly more negative, and relative R2 more positive. This
means that fractional models have a clearly superior ability of short-term
prediction: these signs correspond to prediction errors that are smaller than
the average error for the period the model was actually designed for. On
the other hand, fractional models have a clearly worst performance for long
term predictions, but the errors of all models are by then so large that it
is irrelevant what values are actually assumed.

The values of w for models obtained for periods of 10 years in one-
step ahead prediction are given in Table 3 and Table 4. It can be seen
that models obtained with (2.2) and (2.3) have comparable probabilities
of being the best model, though with advantage for the 6–variable integer
model (2.2).

5. Discussion and conclusions

The MSE, R2 and MAD performance indications all show that models
given by (2.3) clearly outperform the integer ones in what concerns the
adjustment to the period of the data used to build each model. This is true
for every single country and for the model that takes into account the data
of all seven countries. The Akaike weight, summarized in Tables 3 and 4,
shows conclusively that models given by (2.3) are in this respect the best
of the three.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3. GDP predictions for the G7 countries for model
(2.1) (left), model (2.2) (middle), and model (2.3) (right):
relative MSE (top), relative R2 (center) and relative MAD
(bottom) (notice that the scale of y−axis is not the same
for all countries).

In the fractional models for the entire 44–year period, the order α5 of
x5 is always 0, and so these fractional models have in fact one variable less
than those given by (2.1). So this best performance comes along with a
simplification of the model. Furthermore, all the variables kept are signi-
ficant for the models, with the exception of only one variable (not always
the same) for FRA, DEU, GBR and USA. This vindicates the choice of
variables. That a good single model can be found for all countries indicates



FRACTIONAL CALCULUS IN ECONOMIC GROWTH . . . 151

Country CAN DEU FRA
Period Model (2.1) Model (2.2) Model (2.3) Model (2.1) Model (2.2) Model (2.3) Model (2.1) Model (2.2) Model (2.3)
1974–1984 0 50 50 0 50 50 0 50 50
1975–1985 0 50.49 49.51 0 50.49 49.51 0 50.49 49.51
1976–1986 0 51 49 0 51 49 0 51 49
1977–1987 0 51.51 48.49 0 51.51 48.49 0 51.51 48.49
1978–1988 0 52.04 47.96 0 52.04 47.96 0 52.04 47.96
1979–1989 0 0 100 0 0 100 0 0 100
1980–1990 0 0 100 0 0 100 0 0 100
1981–1991 0 0 100 0 0 100 0 0.03 99.97
1982–1992 0 0 100 0 0 100 0 0 100
1983–1993 0 0 100 0 0 100 0 0 100
1984–1994 0 100 0 0 100 0 0 100 0
1985–1995 0 100 0 0 100 0 0 100 0
1986–1996 0 79.16 20.84 0 100 0 0 77.94 22.06
1987–1997 0 100 0 0 29 71 0 68.50 31.50
1988–1998 0 100 0 0 58.75 41.25 0 100 0
1989–1999 0 100 0 0 0 100 0 100 0
1990–2000 0 100 0 0 29.72 70.28 0 100 0
1991–2001 0 28 72 0 100 0 0 100 0
1992–2002 0 99.26 0.74 0 20.18 79.82 0 100 0
1993–2003 0 100 0 0 100 0 0 100 0
1994–2004 0 18.80 81.20 0 100 0 0 100 0
1995–2005 0 100 0 0 98.43 1.57 0 83.30 16.70
1996–2006 0 98.58 1.42 0 95.85 4.15 0 0.15 99.85
1997–2007 0 100 0 0 100 0 0 35.10 64.90
1998–2008 0 78.80 21.20 0 99.86 0.14 0 100 0
1999–2009 0 100 0 0 2.76 97.20 0 100 0
2000–2010 0 100 0 0 100 0 0 100 0
2001–2011 0 99.99 0.01 0 100 0 0 100 0
2002–2012 0 100 0 0 100 0 0 52.10 47.90
2003–2013 0 100 0 0 88.46 11.50 0 100 0
2004–2014 0 1.53 98.47 0 100 0 0 100 0
2005–2015 0 99.96 0.04 0 100 0 0 100 0
2006–2016 0 0 100 0 99.97 0.03 0 100 0

Country GBR ITA JPN
Period Model (2.1) Model (2.2) Model (2.3) Model (2.1) Model (2.2) Model (2.3) Model (2.1) Model (2.2) Model (2.3)
1974–1984 0 50 50 0 50 50 0 50 50
1975–1985 0 50.49 49.50 0 50.49 49.50 0 50.49 49.50
1976–1986 0 51 49 0 51 49 0 51 49
1977–1987 0 51.51 48.48 0 51.51 48.48 0 51.51 48.48
1978–1988 0 52.04 47.96 0 52.04 47.96 0 52.04 47.96
1979–1989 0 0 100 0 0 100 0 0 100
1980–1990 0 0 100 0 0 100 0 0 100
1981–1991 0 0 100 0 0 100 0 0 100
1982–1992 0 0 100 0 0 100 0 0 100
1983–1993 0 0 100 0 0 100 0 0 100
1984–1994 0 100 0 0 100 0 0 23.77 76.20
1985–1995 0 35.42 64.58 0 100 0 0 15.53 84.47
1986–1996 0 100 0 0 97.17 2.83 0 66.27 33.73
1987–1997 0 100 0 0 93.10 6.90 0 100 0
1988–1998 0 100 0 0 100 0 0 34.06 65.90
1989–1999 0 100 0 0 100 0 0 99.99 0.01
1990–2000 0 100 0 0 66.10 33.90 0 100 0
1991–2001 0 100 0 0 100 0 0 100 0
1992–2002 0 100 0 0 100 0 0 99.99 0.01
1993–2003 0 100 0 0 100 0 0 99.96 0.04
1994–2004 0 25.87 74.115 0 100 0 0 100 0
1995–2005 0 63.11 36.90 0 100 0 0 100 0
1996–2006 0 0 100 0 100 0 0 100 0
1997–2007 0 0.89 99.11 0 8.06 91.90 0 100 0
1998–2008 0 100 0 0 100 0 0 100 0
1999–2009 0 100 0 0 100 0 0 100 0
2000–2010 0 100 0 0 100 0 0 100 0
2001–2011 0 100 0 0 100 0 0 100 0
2002–2012 0 100 0 0 100 0 0 100 0
2003–2013 0 100 0 0 100 0 0 99.91 0.09
2004–2014 0 45.78 54.22 0 99.91 0.09 0 100 0
2005–2015 0 100 0 0 100 0 0 100 0
2006–2016 0 100 0 0 100 0 0 100 0

Table 3. Values of w (in %) for predictions for all countries.

that the choice of variables is reasonable; again, the fractional version of
this model outperforms those with integer orders.

Models for periods of 10 years prove to be equally superior, and also
to have a good ability of prediction in the short term. This shows that the
choice of the Caputo derivative is reasonable. As to the validation process
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Country USA EUU ALL
Period Model (2.1) Model (2.2) Model (2.3) Model (2.1) Model (2.2) Model (2.3) Model (2.1) Model (2.2) Model (2.3)
1974–1984 0 50 50 0 50 50 0 54.90 45.10
1975–1985 0 50.49 49.51 0 50.49 49.51 0 54.46 45.54
1976–1986 0 51 49 0 51 49 0 54 46
1977–1987 0 51.52 48.48 0 51.52 48.48 0 52.52 47.48
1978–1988 0 52.04 47.96 0 52.04 47.96 0 52.04 47.96
1979–1989 0 0 100 0 0 100 0 0 100
1980–1990 0 0 100 0 0 100 0 0 100
1981–1991 0 0 100 0 0 100 0 0 100
1982–1992 0 0 100 0 0 100 0 0 100
1983–1993 0 0 100 0 0 100 0 0 100
1984–1994 0 100 0 0 100 0 72.55 27.45 0
1985–1995 0 100 0 0 100 0 71.41 28.59 0
1986–1996 0 100 0 0 100 0 100 0 0
1987–1997 0 100 0 0 81.20 18.80 100 0 0
1988–1998 0 100 0 0 99.89 0.11 100 0 0
1989–1999 0 99.88 0.12 0 100 0 100 0 0
1990–2000 0 100 0 0 55.36 44.60 100 0 0
1991–2001 0 100 0 0 0 100 74.06 25.94 0
1992–2002 0 100 0 0 49.85 50.15 52.02 46.98 0
1993–2003 0 100 0 0 100 0 50.01 49.99 0
1994–2004 0 100 0 0 100 0 48.98 51.02 0
1995–2005 0 0.05 99.95 0 100 0 99.05 0.95 0
1996–2006 0 100 0 0 100 0 100 0 0
1997–2007 0 100 0 0 100 0 100 0 0
1998–2008 0 100 0 0 100 0 100 0 0
1999–2009 0 100 0 0 99.93 0.07 100 0 0
2000–2010 0 100 0 0 100 0 100 0 0
2001–2011 0 100 0 0 100 0 100 0 0
2002–2012 0 0 100 0 99.94 0.06 100 0 0
2003–2013 0 2.70 97.30 0 0.40 99.60 100 0 0
2004–2014 0 92.68 7.32 0 100 0 100 0 0
2005–2015 0 0 100 0 76.67 23.33 50 50 0
2006–2016 0 99.77 0.23 0 100 0 0 100 0

Table 4. Values of w (in %) for predictions for all countries (continued).

outlined in sections 2.2 and 2.3, it can serve to verify the performance of
models of economic growth, in what concerns their adequacy to the period
for which they were developed and to their prediction capability.

The main conclusion to take is that fractional derivatives prove to be a
good option for the accurate modelling of economic growth. This is likely
due to a better capture of the diffusion of some of the factors that condition
economic growth, and of the diffusion of economic growth itself [4, 27, 30],
since fractional derivatives model anomalous diffusion phenomena. Fur-
thermore, fractional operators are non-local and possess a memory effect.
This makes them more suitable for models for long series than models
using integer derivatives and integrals alone. This is likely why fractional
differential equations are able to describe economic growth over large time
periods.
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