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Abstract

The paper is devoted to the development of control procedures with a
guide for fractional order dynamical systems controlled under conditions
of disturbances, uncertainties or counteractions. We consider a dynamical
system which motion is described by ordinary fractional differential equa-
tions with the Caputo derivative of an order α ∈ (0, 1). For the case when
the guide is, in a certain sense, a copy of the system, we propose a mu-
tual aiming procedure between the original system and guide. The proof
of proximity between motions of the systems is based on the estimate of
the fractional derivative of the superposition of a convex Lyapunov func-
tion and a function represented by the fractional integral of an essentially
bounded measurable function. This estimate can be considered as a gen-
eralization of the known estimates of such type. We give an example that
illustrates the workability of the proposed control procedures with a guide.
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1. Introduction

Real-world control processes are often complicated by the presence of
disturbances, uncertainties or counteractions in a dynamical system. In
this case, the use of feedback (positional) control schemes, which take into
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account the current state (position) of the system, becomes essential. A
natural mathematical formalization of such control problems is given, for
example, by the theory of positional differential games (see, e.g., [16, 17]).
Within the framework of this theory, an important role is played by control
procedures with an auxiliary guide. Such control procedures are used both
in obtaining theoretical results and in developing numerically realizable and
robust optimal feedback control schemes. For different types of dynamical
systems, control procedures with a guide have recently been studied, e.g., in
[3, 15, 19, 20, 21]. Having in mind further applications to the development of
the theory of positional differential games and the corresponding numerical
methods, in this paper, we design and justify such control procedures for
fractional order conflict-controlled dynamical systems. We suppose that a
motion of the system is described by ordinary differential equations with
the Caputo fractional derivative of an order α ∈ (0, 1), and consider the case
when the guide is, in a certain sense, a copy of the original system. For the
basics of fractional calculus, theory of fractional differential equations and
some of their applications, the reader is referred, e.g., to [10, 14, 22, 24, 29].
Note that some kinds of pursuit-evasion differential games in fractional
order systems were investigated earlier (see, e.g., [5, 6, 7, 8, 23]). Note also
that, in some other formalizations, control problems in fractional order
systems under conditions of disturbances were considered, e.g., in [11, 30].

One of the main difficulties in design of control procedures with a guide
is to ensure the proximity between motions of the original system and
guide. The most useful tool here is the Lyapunov functions technique.
When trying to extend the results obtained for the first order systems
to the fractional order ones, a well-known problem arises that involves
calculating the fractional derivative of the superposition of a Lyapunov
function and a system motion. In [1, 2], the upper bound for such derivative
was obtained for a quadratic Lyapunov function. Later, similar inequalities
were proved for more general classes of convex Lyapunov functions (see, e.g.,
[4] and the references therein). However, the validity of these estimates was
established under certain assumptions about smoothness of a motion (at
least, absolutely continuity). Moreover, these differentiability properties
were essentially used in the proofs. Thus, a system motion is required to
be smooth enough in order to these estimates can be applied.

On the other hand, for the considered in the paper conflict-controlled
systems, it is natural that the right-hand side of the closed-loop system
depends on the time variable explicitly. This leads to the fact that a system
motion does not have to be differentiable. Indeed, there exist (see, e.g., [26])
nowhere differentiable functions that have continuous fractional derivatives
of any order α ∈ (0, 1). Consequently, one can consider these functions as
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the solutions of the simplest fractional order equations with the continuous
right-hand side that depends only on the time variable. However, for these
solutions, the estimates from [1, 2, 4] can not be used.

For the controlled fractional order systems it was proposed in [12] to
consider a motion of the system as a function represented by the frac-
tional order Riemann-Liouville (R.-L.) integral of a summable function,
without requiring any differentiability properties, and the existence and
uniqueness of such a motion were proved. In the present paper, this notion
of a motion is used. But, due to the stronger assumptions on the right-
hand side of the motion equation, this notion is slightly modified: instead
of summable functions, measurable essentially bounded functions are con-
sidered. The corresponding existence and uniqueness results are given in
Theorem 3.1. In order to apply the discussed above estimates, concerning
Lyapunov functions technique, for such motions, it was necessary to prove
that the estimates from [4] are valid for functions represented by the R.-L.
integral of measurable essentially bounded functions. This result is given
in Lemma 4.1. This lemma constitutes the basis of the proof of proximity
between motions of the original conflict-controlled fractional order system
and guide when a suitable mutual aiming procedure is used.

The paper is organized as follows. In Section 2, the definitions and
some basic properties of the fractional order R.-L. integral, R.-L. and Ca-
puto derivatives are given. Section 3 deals with a Cauchy problem for
an ordinary differential equation with the Caputo fractional derivative of
an order α ∈ (0, 1). The notion of a solution of this Cauchy problem is
proposed, the existence and uniqueness of such a solution are proved. In
Section 4, the estimate of the R.-L. fractional derivative of the superposi-
tion of a convex Lyapunov function and the solution of the Cauchy problem
is obtained. The case when this solution is smooth (Lipschitz continuous)
and the general case are considered separately. Section 5 deals with a
conflict-controlled fractional order dynamical system. Basic notions and
system motion properties are given, an auxiliary guide is introduced. In
Section 6, the mutual aiming procedure that ensures proximity between
motions of the original system and guide is proposed. The obtained results
are illustrated by numerical simulations in Section 7. Concluding remarks
are given in Section 8.

2. Notations, definitions and preliminary results

Let k ∈ N, and R
k be the k-dimensional Euclidian space with the scalar

product 〈·, ·〉 and the norm ‖ ·‖. By B(r) ⊂ R
k, r � 0, we denote the closed

ball with the center in the origin and the radius r. Let T > 0, and the
segment [0, T ] ⊂ R be endowed with the Lebesgue measure. For p ∈ [1,∞),
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by Lp([0, T ],Rk), we denote the Banach space of (classes of equivalence of)
p-th power integrable functions x : [0, T ] → R

k with the norm

‖x(·)‖p =
(∫ T

0
‖x(t)‖pdt

)1/p
.

By L∞([0, T ],Rk), we denote the Banach space of (classes of equivalence
of) essentially bounded measurable functions x : [0, T ] → R

k with the norm

‖x(·)‖∞ = ess sup
t∈[0,T ]

‖x(t)‖.

Let C([0, T ],Rk) be the Banach space of continuous functions x : [0, T ] → R
k

with the norm ‖ · ‖∞, Lip([0, T ],Rk) ⊂ C([0, T ],Rk) be the set of Lipschitz
continuous functions, Lip0([0, T ],Rk) = {x(·) ∈ Lip([0, T ],Rk) : x(0) = 0}.
2.1. Riemann-Liouville fractional order integral.

Definition 2.1 (see [29, Definition 2.1]). For a function ϕ : [0, T ] → R
k,

the (left-sided) R.-L. fractional integral of an order α ∈ (0, 1) is defined by

(Iαϕ)(t) =
1

Γ(α)

∫ t

0

ϕ(τ)

(t− τ)1−α
dτ, t ∈ [0, T ],

where Γ(·) is the Euler gamma function (see, e.g., [29, (1.54)]).

Let us describe some properties of the R.-L. fractional integral.

Proposition 2.1. Let α ∈ (0, 1) and p ∈ (1/α,∞]. Then:

(A.1) For any ϕ(·) ∈ Lp([0, T ],Rk), the value (Iαϕ)(t) is well defined for
any t ∈ [0, T ], and (Iαϕ)(0) = 0.

(A.2) There exists Hp > 0 such that, for any ϕ(·) ∈ Lp([0, T ],Rk) and
any t, τ ∈ [0, T ], the inequality below is valid:

‖(Iαϕ)(t) − (Iαϕ)(τ)‖ � Hp‖ϕ(·)‖p|t− τ |α−1/p,

where 1/p = 0 if p = ∞. In particular, (Iαϕ)(·) ∈ C([0, T ],Rk) for
any ϕ(·) ∈ Lp([0, T ],Rk).

(A.3) The operator Iα : Lp([0, T ],Rk) → C([0, T ],Rk) is linear and com-
pact (i.e., maps bounded sets from Lp([0, T ],Rk) into relatively com-
pact sets from C([0, T ],Rk)), and, in particular, is continuous.

(A.4) If ϕ(·) ∈ Lip0([0, T ],Rk), then (Iαϕ)(·) ∈ Lip0([0, T ],Rk).

P r o o f. Statements (A.1) and (A.2) are proved in [29, Theorem 3.6,
Remark 3.3] (see also [10, Theorem 2.6]). The validity of property (A.3)
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follows from (A.2) and Arcelà-Ascoli theorem (see, e.g., [13, Ch. I, § 5, The-
orem 4]). The proof of statement (A.4) can be found in [29, Theorem 3.1]
(see also [10, Theorem 2.5]). �

Let us recall a fractional version of Bellman-Gronwall lemma.

Lemma 2.1 (see [10, Lemma 6.19]). Let ε � 0, λ � 0, and a function
x(·) ∈ C([0, T ],R) satisfy the inequality

|x(t)| � ε+
λ

Γ(α)

∫ t

0

|x(τ)|
(t− τ)1−α

dτ, t ∈ [0, T ].

Then the following inequalities hold:

|x(t)| � εEα(λt
α) � εEα(λT

α), t ∈ [0, T ],

where Eα(·) is the Mittag-Leffler function (see, e.g., [29, (1.90)]).

2.2. Riemann-Liouville and Caputo fractional order derivatives.

Definition 2.2 (see [29, Definition 2.2]). For a function x : [0, T ] → R
k,

the (left-sided) R.-L. fractional derivative of an order α ∈ (0, 1) is defined by

(Dαx)(t) =
1

Γ(1− α)

d

dt

∫ t

0

x(τ)

(t− τ)α
dτ, t ∈ [0, T ].

Definition 2.3 (see [29, Definition 2.3]). Let Iα(L∞([0, T ],Rk)) de-
note the set of functions x : [0, T ] → R

k represented by the R.-L. frac-
tional integral of an order α ∈ (0, 1) of a function ϕ(·) ∈ L∞([0, T ],Rk) :
x(t) = (Iαϕ)(t), t ∈ [0, T ].

Let us describe some properties of the R.-L. fractional derivative.

Proposition 2.2. Let α ∈ (0, 1). If x(·) ∈ Iα(L∞([0, T ],Rk)), then:

(B.1) The value (Dαx)(t) is well defined for almost every t ∈ [0, T ], and
(Dαx)(·) ∈ L∞([0, T ],Rk).

(B.2) The equality
(
Iα(Dαx)

)
(t) = x(t) is valid for any t ∈ [0, T ].

(B.3) Let ϕ(·) ∈ L∞([0, T ],Rk) be such that x(t) = (Iαϕ)(t), t ∈ [0, T ].
Then ϕ(t) = (Dαx)(t) for almost every t ∈ [0, T ].

Moreover, if x(·) ∈ Lip0([0, T ],Rk), then:
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(B.4) The value (Dαx)(t) is well defined for any t ∈ [0, T ], and the repre-
sentation formula below holds:

(Dαx)(t) =
1

Γ(1− α)

∫ t

0

ẋ(τ)

(t− τ)α
dτ, t ∈ [0, T ], (2.1)

where ẋ(t) = dx(t)/dt, t ∈ [0, T ].
(B.5) The following inclusions are valid: x(·) ∈ Iα(L∞([0, T ],Rk)) and

(Dαx)(·) ∈ I1−α(L∞([0, T ],Rk)). In particular, (Dαx)(0) = 0.

P r o o f. Statements (B.1) and (B.2) are proved by the scheme from
[29, Theorem 2.4] (see also [10, Theorem 2.22]). The validity of property
(B.3) follows from [12, Lemma 2.1]. Statement (B.4) can be established
by the scheme from [29, Lemmas 2.1, 2.2] (see also [10, Lemma 2.12]).
Property (B.5) is a consequence of (B.4) and (A.1). �

Definition 2.4 (see [14, (2.4.1)]). For a function x : [0, T ] → R
k, the

(left-sided) Caputo fractional derivative of an order α ∈ (0, 1) is defined by
vskip -10pt

(CDαx)(t) =
1

Γ(1− α)

d

dt

∫ t

0

x(τ)− x(0)

(t− τ)α
dτ, t ∈ [0, T ].

From the definitions it follows that, for a function x : [0, T ] → R
k, if

x(0) = 0, then the Caputo and R.-L. fractional derivatives coincide.

3. Differential equation of fractional order

Let n ∈ N, α ∈ (0, 1), and T > 0 be fixed. Let us consider the following
Cauchy problem for the ordinary fractional differential equation with the
Caputo derivative of the order α

(CDαx)(t) = f(t, x(t)), t ∈ [0, T ], x ∈ R
n, (3.1)

with the initial condition

x(0) = x0, x0 ∈ R
n. (3.2)

Let the function f : [0, T ] × R
n → R

n satisfy the following conditions:

(f.1) For any x ∈ R
n, the function f(·, x) is measurable on [0, T ].

(f.2) For any r � 0, there exists λf > 0 such that

‖f(t, x)− f(t, y)‖ � λf‖x− y‖, t ∈ [0, T ], x, y ∈ B(r).

(f.3) There exists cf > 0 such that

‖f(t, x)‖ � (1 + ‖x‖)cf , t ∈ [0, T ], x ∈ R
n.



1244 M.I. Gomoyunov

Definition 3.1. A function x : [0, T ] → R
n is called a solution of

Cauchy problem (3.1), (3.2) if x(·) ∈ {x0}+Iα(L∞([0, T ],Rn)) and equality
(3.1) holds for almost every t ∈ [0, T ].

Here the inclusion x(·) ∈ {x0}+ Iα(L∞([0, T ],Rn)) means that there is
a function y(·) ∈ Iα(L∞([0, T ],Rn)) such that x(t) = x0 + y(t), t ∈ [0, T ].
Note that, due to (A.1), we have y(0) = 0, and, consequently, x(0) = x0.
Therefore, for a function x(·) ∈ {x0}+ Iα(L∞([0, T ],Rn)), initial condition
(3.2) is automatically satisfied.

Theorem 3.1. For any initial value x0 ∈ R
n, there exists a unique

solution of Cauchy problem (3.1), (3.2).

P r o o f. By the scheme of the proof from [10, Lemma 6.2], one can
show that a function x : [0, T ] → R

n is a solution of Cauchy problem (3.1),
(3.2) if and only if x(·) ∈ C([0, T ],Rn) and it satisfies the integral equation

x(t) = x0 +
1

Γ(α)

∫ t

0

f(τ, x(τ))

(t− τ)1−α
dτ, t ∈ [0, T ]. (3.3)

Consequently, it is sufficient to prove the existence and uniqueness of a
continuous solution of integral equation (3.3).

Let a mapping F : C([0, T ],Rn) → C([0, T ],Rn) be defined by

(Fx)(t) = x0 +
1

Γ(α)

∫ t

0

f(τ, x(τ))

(t− τ)1−α
dτ, t ∈ [0, T ], x(·) ∈ C([0, T ],Rn).

Note that, for any x(·) ∈ C([0, T ],Rn), due to (f.1)–(f.3), the function
ϕ(t) = f(t, x(t)), t ∈ [0, T ], satisfies the inclusion ϕ(·) ∈ L∞([0, T ],Rn).
Hence, by (A.1) and (A.2), the value (Fx)(t) is well defined for any t ∈
[0, T ], and (Fx)(·) ∈ C([0, T ],Rn). Therefore, the definition of F is correct.

Since a function x(·) ∈ C([0, T ],Rn) satisfies integral equation (3.3) if
and only if it is a fixed point of the mapping F, it is sufficient to show the
existence and uniqueness of such a fixed point. The proof of this fact is
quite standard and follows the scheme described, e.g., in [31, Theorem 3.1].
Firstly, due to (f.2), one can show that F is continuous. Secondly, the
compactness of F follows from (f.3) and (A.3). Finally, by (f.3) and
Lemma 2.1, there exists r > 0 such that, for any x(·) ∈ C([0, T ],Rn)
satisfying x(t) = γ(Fx)(t), t ∈ [0, T ], with some γ ∈ (0, 1), the inequality
‖x(·)‖∞ � r is valid. Therefore, by Leray-Shauder theorem (see, e.g., [32,
Theorem 6.2]), the mapping F has a fixed point. Its uniqueness can be
shown by the standard argument basing on (f.2) and Lemma 2.1. �

Let us give some properties of the solution of Cauchy problem (3.1), (3.2).
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Proposition 3.1. For any R0 > 0, there exist R > 0 and H > 0 such
that, for any initial value x0 ∈ B(R0), the solution x(·) of Cauchy problem
(3.1), (3.2) satisfies the inequalities below:

‖x(t)‖ � R, ‖x(t)− x(τ)‖ � H|t− τ |α, t, τ ∈ [0, T ].

P r o o f. Let R0 > 0, and H∞ be the constant from (A.2). Let us
define R = (1+R0)Eα(cfT

α)− 1, H = H∞(1+R)cf . Let x0 ∈ B(R0), and
x(·) be the solution of (3.1), (3.2). By (3.3) and (f.3), for any t ∈ [0, T ],
we have

‖x(t)‖ � ‖x0‖+ 1

Γ(α)

∫ t

0

‖f(τ, x(τ))‖
(t− τ)1−α

dτ � R0 +
cf

Γ(α)

∫ t

0

1 + ‖x(τ))‖
(t− τ)1−α

dτ,

and, therefore, according to Lemma 2.1, we obtain

‖x(t)‖ � (1 +R0)Eα(cfT
α)− 1 = R, t ∈ [0, T ].

Further, from (f.3) it follows that the function ϕ(t) = f(t, x(t)), t ∈ [0, T ],
satisfies the inequalities

‖ϕ(t)‖ � (1 + ‖x(t)‖)cf � (1 +R)cf for a.e. t ∈ [0, T ],

wherefrom, due to (3.3) and (A.2), for any t, τ ∈ [0, T ], we derive

‖x(t)−x(τ)‖ = ‖(Iαϕ)(t)− (Iαϕ)(τ)‖ � H∞(1+R)cf |t− τ |α = H|t− τ |α.
The proposition is proved. �

4. Fractional derivative of a convex Lyapunov function

Let a function V : Rn → R satisfy the following conditions:

(V.1) The function V (·) is convex on R
n, and V (0) = 0.

(V.2) The function V (·) is differentiable (and, therefore, continuous) on R
n.

(V.3) For any r � 0, there exists λV > 0 such that

‖∇V (x)−∇V (y)‖ � λV ‖x− y‖, x, y ∈ B(r),

where ∇V (·) is the gradient of the function V (·).
According to [4, Theorem 1], for a sufficiently smooth function x :

[0, T ] → R
n, x(0) = 0, if we denote y(t) = V (x(t)), t ∈ [0, T ], then, for any

t ∈ [0, T ], the following inequality holds:

(Dαy)(t) � 〈∇V (x(t)), (Dαx)(t)〉. (4.1)

The proof of this fact is based on representation formula (2.1) (see Proposi-
tion 4.1 below). Therefore, in particular, it substantially uses differentiabil-
ity properties of the function x(·). However, the solution of Cauchy problem



1246 M.I. Gomoyunov

(3.1), (3.2) may be nowhere differentiable (see, e.g., [26]). Hence, the tech-
nique used in the proof can not be directly applied to prove inequality (4.1)
for the case when x(·) is the solution of Cauchy problem (3.1), (3.2).

The goal of this section is to establish estimate (4.1) for any function
x(·) ∈ Iα(L∞([0, T ],Rn)). The proof is carried out in several stages. Firstly,
the smooth case, when x(·) ∈ Lip0([0, T ],Rn), is studied. After that, it is
proved that any function from Iα(L∞([0, T ],Rn)) can be approximated by
functions from Lip0([0, T ],Rn) with the uniformly bounded derivatives of
the order α. Finally, in the general case, applying for the smooth approx-
imating functions results that have been already obtained, the estimate
(4.1) is proved for any function x(·) ∈ Iα(L∞([0, T ],Rn)).

4.1. Smooth case.

Proposition 4.1. Let x(·) ∈ Lip0([0, T ],Rn), and y(t) = V (x(t)),
t ∈ [0, T ]. Then the inclusion y(·) ∈ Lip0([0, T ],R) is valid, and inequality
(4.1) holds for every t ∈ [0, T ]. Moreover, for any r � 0 and w � 0, there
exists a � 0 such that, for any x(·) ∈ Lip0([0, T ],Rn), if

‖x(·)‖∞ � r, ‖(Dαx)(·)‖∞ � w, (4.2)

then the function y(t) = V (x(t)), t ∈ [0, T ], satisfies the inequality

‖(Dαy)(·)‖∞ � a. (4.3)

P r o o f. Let x(·) ∈ Lip0([0, T ],Rn), and L � 0 be the Lipschitz con-
stant of x(·). Let r � 0 and w � 0 satisfy inequalities (4.2). Due to (V.3), by
the number r, let us choose λV > 0 and put MV = maxx∈B(r) ‖∇V (x)‖. Let
H∞ be the constant from (A.2). Then from (B.2) it follows that the func-
tion x(·) is Hölder continuous of the order α with the constant H = H∞w.

Let y(t) = V (x(t)), t ∈ [0, T ]. Let us show that y(·) ∈ Lip0([0, T ],R).
From (V.1) it follows that y(0) = 0. Further, let t, τ ∈ [0, T ]. Due to (V.2),
by the mean value theorem, there exists γ ∈ [0, 1] such that, for the vector
z = γx(t) + (1− γ)x(τ), we have

y(t)− y(τ) = V (x(t)) − V (x(τ)) = 〈∇V (z), x(t) − x(τ)〉. (4.4)

Hence, since z ∈ B(r), by the choice of L and MV , we obtain

|y(t)− y(τ)| � ‖∇V (z)‖‖x(t) − x(τ)‖ � MV L|t− τ |.
Therefore, the function y(·) is Lipschitz continuous.

The proof of inequality (4.1) follows the scheme from [4, Theorem 1].
But it seems convenient to give this proof because its main part is used in
the proof of the last part of the proposition.
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Since x(·) ∈ Lip0([0, T ],Rn) and y(·) ∈ Lip0([0, T ],R), then inequality
(4.1) for t = 0 follows from (B.5). Let t ∈ (0, T ]. Due to (V.2), by the chain
rule, we have ẏ(t) = 〈∇V (x(t)), ẋ(t)〉 for almost every t ∈ [0, T ]. Therefore,
by (B.4), inequality (4.1) multiplied by Γ(1−α) can be rewritten as follows:∫ t

0

〈∇V (x(τ)), ẋ(τ)〉
(t− τ)α

dτ �
∫ t

0

〈∇V (x(t)), ẋ(τ)〉
(t− τ)α

dτ. (4.5)

Let us consider the function

ϕ(τ) = V (x(τ))− V (x(t)) − 〈∇V (x(t)), x(τ) − x(t)〉, τ ∈ [0, t].

Then ϕ(·) ∈ Lip([0, t],R), and

ϕ̇(τ) = 〈∇V (x(τ)) −∇V (x(t)), ẋ(τ)〉 for a.e. τ ∈ [0, t].

Hence, ∫ t

0

〈∇V (x(τ)) −∇V (x(t)), ẋ(τ)〉
(t− τ)α

dτ =

∫ t

0

ϕ̇(τ)

(t− τ)α
dτ,

and, in order to prove inequality (4.5), it is sufficient to show that∫ t

0

ϕ̇(τ)

(t− τ)α
dτ � 0. (4.6)

Let us prove that

0 � ϕ(τ) � λV H
2(t− τ)2α, τ ∈ [0, t]. (4.7)

Let τ ∈ [0, t]. Let γ ∈ [0, 1], and z = γx(t) − (1 − γ)x(τ) ∈ B(r) be such
that (4.4) is valid. Therefore, we have

ϕ(τ) = 〈∇V (z), x(τ) − x(t)〉 − 〈∇V (x(t)), x(τ) − x(t)〉.
Consequently, by the choice of λV and H, we obtain

ϕ(τ) � ‖∇V (z)−∇V (x(t))‖‖x(τ) − x(t)‖ � λV ‖z − x(t)‖‖x(τ) − x(t)‖
� λV ‖x(τ)− x(t)‖2 � λV H(t− τ)2α.

On the other hand, due to (V.1) and (V.2), by the differentiation of convex
functions theorem (see, e.g., [25, Theorem 25.1]), we have

V (x(τ))− V (x(t)) � 〈∇V (x(t)), x(τ) − x(t)〉,
and, hence,

ϕ(τ) = V (x(τ)) − V (x(t))− 〈∇V (x(t)), x(τ) − x(t)〉 � 0.

Taking (4.7) into account, by the integration by parts formula, we derive∫ t

0

ϕ̇(τ)

(t− τ)α
dτ = −ϕ(0)

tα
− α

∫ t

0

ϕ(τ)

(t− τ)α+1
dτ. (4.8)

Thus, inequality (4.6) follows from (4.7) and (4.8).
Let us prove the remaining part of the proposition. Let r � 0, and

w � 0. Let us define
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a = 2λV H
2Tα/Γ(1− α) +MV w. (4.9)

Let x(·) ∈ Lip0([0, T ],Rn) satisfy inequalities (4.2), and y(t) = V (x(t)),
t ∈ [0, T ]. Let us show that inequality (4.3) is valid with this number a.

If t = 0, then inequality (4.3) follows from (B.5). Let t ∈ (0, T ]. By
analogy with the previous arguments, we have

(Dαy)(t) =
1

Γ(1− α)

∫ t

0

ϕ̇(τ)

(t− τ)α
dτ + 〈∇V (x(t)), (Dαx)(t)〉. (4.10)

From (4.7) and (4.8) we derive

0 �
∫ t

0

ϕ̇(τ)

(t− τ)α
dτ � −λV H

2t2α

tα
− α

∫ t

0

λV H
2(t− τ)2α

(t− τ)α+1
dτ

= −2λV H
2tα � −2λV H

2Tα,

(4.11)

and, due to the choice of MV , we obtain

|〈∇V (x(t)), (Dαx)(t)〉| � ‖∇V (x(t))‖‖(Dαx)(t)‖ � MV w. (4.12)

Thus, inequality (4.3) with a defined in (4.9) follows from (4.10)–(4.12). �

4.2. Approximation.

Proposition 4.2. Let ϕ(·) ∈ L∞([0, T ],Rn), and p ∈ [1,∞). Then,
for any ε > 0, there exists ϕ(·) ∈ Lip0([0, T ],Rn) such that ‖ϕ(·)‖∞ �√
n‖ϕ(·)‖∞ and ‖ϕ(·) − ϕ(·)‖p � ε.

P r o o f. Let ϕ(·) ∈ L∞([0, T ],Rn), p ∈ [1,∞), and ε > 0. Let ξ > 0

be such that (1 +
√
n)‖ϕ(·)‖∞ ξ1/p � ε/2. Applying Lusin theorem (see,

e.g., [27, Theorem 2.24]) to each coordinate of ϕ(·), one can find a function
ψ(·) ∈ C([0, T ],Rn) such that the set E = {t ∈ [0, T ] : ϕ(t) �= ψ(t)} has
measure less than ξ and ‖ψ(·)‖∞ � √

n‖ϕ(·)‖∞. Since

‖ψ(·) − ϕ(·)‖pp =

∫ T

0
‖ψ(t) − ϕ(t)‖pdt =

∫
E
‖ψ(t) − ϕ(t)‖pdt

� ‖ψ(·) − ϕ(·)‖p∞ ξ � (
√
n+ 1)p‖ϕ(·)‖p∞ ξ,

then, by the choice of ξ, we have

‖ψ(·) − ϕ(·)‖p � (
√
n+ 1)‖ϕ(·)‖∞ ξ1/p � ε/2. (4.13)

Further, let η > 0, and (1+T )1/pη � ε/2. Since ψ(·) ∈ C([0, T ],Rn), one
can choose δ1 > 0 such that, for any t, τ ∈ [0, T ], if |t−τ | � δ1, then ‖ψ(t)−
ψ(τ)‖ � η/2. Let δ2 > 0, and 2

√
n‖ϕ(·)‖∞δ

1/p
2 � η. Let δ = min{δ1, δ2},
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and N ∈ N satisfy the inequality T/N � δ. Let us denote ti = T i/N,
i ∈ 0, N, and define a piecewise linear function ϕ(·) ∈ Lip0([0, T ],Rn) :

ϕ(t) = ψ(t1)t/δ, t ∈ [t0, t1],

ϕ(t) = ψ(ti) + (ψ(ti+1)− ψ(ti))(t − ti)/δ, t ∈ [ti, ti+1], i ∈ 1, N − 1.

From the definition it follows that

‖ϕ(·)‖∞ = max
i∈1,N

‖ψ(ti)‖ � ‖ψ(·)‖∞ �
√
n‖ϕ(·)‖∞.

For t ∈ [t0, t1], we obtain

‖ϕ(t)− ψ(t)‖ = ‖ψ(t1)t/δ − ψ(t)‖ � 2‖ψ(·)‖∞ � 2
√
n‖ϕ(·)‖∞,

and, for t ∈ [ti, ti+1], i ∈ 1, N − 1, according to the choice of δ1, we derive

‖ϕ(t)− ψ(t)‖ � ‖ψ(ti)− ψ(t)‖ + ‖(ψ(ti+1)− ψ(ti)(t− ti)/δ‖
� ‖ψ(ti)− ψ(t)‖+ ‖ψ(ti+1)− ψ(ti)‖ � η.

Consequently, due to the choice of δ2 and η, we have

‖ϕ(·) − ψ(·)‖pp =

∫ t1

t0

‖ϕ(t)− ψ(t)‖pdt+
∫ tN

t1

‖ϕ(t)− ψ(t)‖pdt

� (2
√
n‖ϕ(·)‖∞)pδ + Tηp � (1 + T )ηp � εp/2p.

Therefore,

‖ϕ(·) − ψ(·)‖p � ε/2. (4.14)

Thus, from (4.13) and (4.14) it follows that ‖ϕ(·) − ϕ(·)‖p � ε. �

Corollary 4.1. For any x(·) ∈ Iα(L∞([0, T ],Rn)) and p ∈ (1/α,∞),
there exists a sequence {xk(·)}∞k=1 ⊂ Lip0([0, T ],Rn) such that the inequal-
ity ‖(Dαxk)(·)‖∞ � √

n‖(Dαx)(·)‖∞ is valid for any k ∈ N and

lim
k→∞

‖xk(·)− x(·)‖∞ = 0, lim
k→∞

‖(Dαxk)(·)− (Dαx)(·)‖p = 0. (4.15)

P r o o f. Let x(·) ∈ Iα(L∞([0, T ],Rn)), and p ∈ (1/α,∞). For the
function ϕ(t) = (Dαx)(t), t ∈ [0, T ], by Proposition 4.2, for every k ∈ N,
one can choose ϕk(·) ∈ Lip0([0, T ],Rn) such that ‖ϕk(·)‖∞ � √

n‖ϕ(·)‖∞
and ‖ϕ(·) − ϕk(·)‖p � 1/k. Therefore, ‖ϕ(·) − ϕk(·)‖p → 0 when k →
∞. Let xk(t) = (Iαϕk)(t), t ∈ [0, T ], k ∈ N. Due to (A.4), we obtain
xk(·) ∈ Lip0([0, T ],Rn), k ∈ N. By (A.3), we have ‖xk(·) − x(·)‖∞ → 0
when k → ∞, and, consequently, the first relation in (4.15) is valid. For
every k ∈ N, according to (B.3), we get (Dαxk)(t) = ϕk(t) for almost every
t ∈ [0, T ], and, therefore, the second relation in (4.15) holds. �
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4.3. General case.

Lemma 4.1. Let x(·) ∈ Iα(L∞([0, T ],Rn)), and y(t) = V (x(t)), t ∈
[0, T ]. Then the inclusion y(·) ∈ Iα(L∞([0, T ],R)) is valid, and inequality
(4.1) holds for almost every t ∈ [0, T ].

P r o o f. Let x(·) ∈ Iα(L∞([0, T ],Rn)), and p ∈ (1/α,∞). Due to
Corollary 4.1, one can choose a sequence {xk(·)}∞k=1 ⊂ Lip0([0, T ],Rn) such
that ‖ϕk(·)‖∞ � √

n‖ϕ(·)‖∞, k ∈ N, and

lim
k→∞

‖xk(·) − x(·)‖∞ = 0, lim
k→∞

‖ϕk(·)− ϕ(·)‖p = 0, (4.16)

where ϕk(t) = (Dαxk)(t), t ∈ [0, T ], k ∈ N, and ϕ(t) = (Dαx)(t), t ∈ [0, T ].
Note that, by (B.1) and (B.5), we have ϕ(·), ϕk(·) ∈ L∞([0, T ],Rn), k ∈ N.

Let r = supk∈N ‖xk(·)‖∞, and w = supk∈N ‖ϕk(·)‖∞. In particular, from
the first relation in (4.16) it follows that ‖x(·)‖∞ � r. Due to (V.3), by the
number r, let us choose λV > 0 and put MV = maxx∈B(r) ‖∇V (x)‖.

Let yk(t) = V (xk(t)), t ∈ [0, T ], k ∈ N. For every k ∈ N, according to
Proposition 4.1, the inclusion yk(·) ∈ Lip0([0, T ],R) is valid, and, for the
function ψk(t) = (Dαyk)(t), t ∈ [0, T ], the following inequality holds:

ψk(t) � 〈∇V (xk(t)), ϕk(t)〉, t ∈ [0, T ]. (4.17)

Moreover, there exists a � 0 such that ‖ψk(·)‖∞ � a, k ∈ N.
Let us consider the set

K =
{
ψ(·) ∈ Lp([0, T ],R) : ‖ψ(·)‖∞ � a

}
.

This set is weakly sequentially compact in Lp([0, T ],R). Indeed, K is con-
vex, bounded, and, applying [27, Theorem 3.12], one can show that K is
closed. Consequently, from [13, Ch III, § 3, Theorem 2] it follows that K
is weakly closed. Therefore, by [13, Ch. V, § 7, Theorem 7], the set K is
weakly compact as a weakly closed subset of a weakly compact set. Hence,
due to [13, Ch. VIII, § 2, Corollary], this set is weakly sequentially compact.

Since {ψk(·)}∞k=1 ⊂ K, we can assume that the sequence {ψk(·)}∞k=1

converges weakly to a function ψ(·) ∈ K. Note that, ψ(·) ∈ L∞([0, T ],R).
From (A.3) and [9, Proposition 3.3] we obtain ‖(Iαψk)(·)−(Iαψ)(·)‖∞ → 0
when k → ∞. Due to (B.2), we have yk(t) = (Iαψk)(t), t ∈ [0, T ], k ∈ N,
therefore, ‖yk(·)− (Iαψ)(·)‖∞ → 0 when k → ∞. On the other hand, from
(V.2) and the first relation in (4.16) it follows that ‖yk(·) − y(·)‖∞ → 0
when k → ∞. Consequently, y(t) = (Iαψ)(t), t ∈ [0, T ]. Hence, y(·) ∈
Iα(L∞([0, T ],R)), and, due to (B.3), we have ψ(t) = (Dαy)(t) for almost
every t ∈ [0, T ].
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Let us prove that inequality (4.1) holds for almost every t ∈ [0, T ]. Let
j ∈ N. Since the sequence {ψk}∞k=j converges weakly to ψ(·), then, by [28,

Theorem 3.13], there exists a convex combination ξj(t) =
∑nj

i=1 αijψkij (t),

t ∈ [0, T ], that satisfies the inequality ‖ξj(·) − ψ(·)‖p � 1/j. Here nj ∈ N,

kij ∈ N, kij � j, αij ∈ [0, 1], i ∈ 1, nj , and
∑nj

i=1 αij = 1. Thus, for the

sequence {ξj(·)}∞j=1 ∈ L∞([0, T ],R), we have ‖ξj(·)− ψ(·)‖p → 0, j → ∞.
Let us consider the following functions:

z(t) = 〈∇V (x(t)), ϕ(t)〉, t ∈ [0, T ],

zj(t) =

nj∑
i=1

αij〈∇V (xkij (t)), ϕkij (t)〉, t ∈ [0, T ], j ∈ N.

Note that z(·), zj(·) ∈ L∞([0, T ],R), j ∈ N. Let us show that ‖zj(·) −
z(·)‖p → 0 when j → ∞. Let ε > 0. In accordance with (4.16), there exists
J > 0 such that, for any j ∈ N, j � J, the inequality below is valid:

wλV T
1/p sup

k�j
‖xk(·)− x(·)‖∞ +MV sup

k�j
‖ϕk(·) − ϕ(·)‖p � ε.

Let j ∈ N, and j � J. For almost every t ∈ [0, T ], according to the choice
of w, λV and MV , we derive

|zj(t)− z(t)| �
nj∑
i=1

αij‖∇V (xkij (t))−∇V (x(t))‖‖ϕkij (t)‖

+

nj∑
i=1

αij‖∇V (x(t))‖‖ϕkij (t)− ϕ(t)‖

� wλV

nj∑
i=1

αij‖xkij (·)− x(·)‖∞ +MV

nj∑
i=1

αij‖ϕkij (t)− ϕ(t)‖.

We have kij � j � J, i ∈ 1, nj , and, hence, due to the choice of J, we obtain

‖zj(·)− z(·)‖p �
∥∥wλV sup

k�j
‖xk(·)−x(·)‖∞

∥∥
p
+MV sup

k�j
‖ϕk(·)−ϕ(·)‖p � ε.

For any t ∈ [0, T ] and j ∈ N, from (4.17) it follows that

ξj(t) =

nj∑
i=1

αijψkij (t) �
nj∑
i=1

αij〈∇V (xkij (t)), ϕkij (t)〉 = zj(t). (4.18)

Since ‖ξj(·) − ψ(·)‖p → 0 and ‖zj(·) − z(·)‖p → 0 when j → ∞, then,

due to [27, Theorem 3.12], we can assume that |ξj(t) − ψ(t)| → 0 and
|zj(t) − z(t)| → 0 for almost every t ∈ [0, T ]. Therefore, for almost every

t ∈ [0, T ], letting j to ∞ in (4.18), we derive ψ(t) � z(t). Consequently,
taking into account that ψ(t) = (Dαy)(t) for almost every t ∈ [0, T ] and
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z(t) = 〈∇V (x(t)), (Dαx)(t)〉, t ∈ [0, T ], we obtain the validity of inequality
(4.1) for almost every t ∈ [0, T ]. The lemma is proved. �

For the case when V (x) = ‖x‖2, x ∈ R
n, we obtain the following result.

Corollary 4.2. Let x(·) ∈ Iα(L∞([0, T ],Rn)), and y(t) = ‖x(t)‖2,
t ∈ [0, T ]. Then the inclusion y(·) ∈ Iα(L∞([0, T ],R)) is valid, and the
inequality (Dαy)(t) � 2〈x(t), (Dαx)(t)〉 holds for almost every t ∈ [0, T ].

5. Conflict-controlled dynamical system of fractional order

Let us consider a conflict-controlled dynamical system which motion is
described by the fractional differential equation

(CDαx)(t) = g(t, x(t), u(t), v(t)), t ∈ [0, T ],

x(t) ∈ R
n, u(t) ∈ P ⊂ R

nu , v(t) ∈ Q ⊂ R
nv ,

(5.1)

with the initial condition

x(0) = x0, x0 ∈ R
n. (5.2)

Here t is the time variable, x is the state vector, u is the control vector,
and v is the vector of unknown disturbances; nu, nv ∈ N; P and Q are
compact sets; x0 is the initial value of the state vector. The function
g : [0, T ] ×R

n × P ×Q → R
n satisfies the following conditions:

(g.1) The function g(·) is continuous.
(g.2) For any r � 0, there exists λg > 0 such that

‖g(t, x, u, v) − g(t, y, u, v)‖ � λg‖x− y‖,
t ∈ [0, T ], x, y ∈ B(r), u ∈ P, v ∈ Q.

(g.3) There exits cg > 0 such that

‖g(t, x, u, v)‖ � (1 + ‖x‖)cg , t ∈ [0, T ], x ∈ R
n, u ∈ P, v ∈ Q.

(g.4) For any t ∈ [0, T ] and x, s ∈ R
n, the following equality holds:

min
u∈P

max
v∈Q

〈s, g(t, x, u, v)〉 = max
v∈Q

min
u∈P

〈s, g(t, x, u, v)〉.

It should be noted here that these conditions are quite typical for the
theory of positional differential games (see, e.g., [17, pp. 7, 8]).

Definition 5.1. Admissible control and disturbance realizations are
measurable functions u : [0, T ) → P and v : [0, T ) → Q, respectively.
The corresponding sets of all admissible control u(·) and disturbance v(·)
realizations are denoted by U and V.
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Definition 5.2. A motion of system (5.1), (5.2) that corresponds
to an initial value x0 ∈ R

n and realizations u(·) ∈ U , v(·) ∈ V is a solu-
tion of Cauchy problem (5.1), (5.2) where the functions u(·) and v(·) are
substituted.

Note that, according to Definition 3.1, such a motion is a function
x(·) ∈ {x0}+ Iα(L∞([0, T ],Rn)) that, together with u(·) and v(·), satisfies
(5.1) for almost every t ∈ [0, T ].

Proposition 5.1. For any initial value x0 ∈ R
n and any realizations

u(·) ∈ U , v(·) ∈ V, there exists a unique motion x(·) = x(·;x0, u(·), v(·))
of system (5.1), (5.2). Moreover, for any R0 > 0, there exist R > 0 and
H > 0 such that, for any x0 ∈ B(R0), u(·) ∈ U and v(·) ∈ V, the motion
x(·) = x(·;x0, u(·), v(·)) satisfies the following inequalities:

‖x(t)‖ � R, ‖x(t)− x(τ)‖ � H|t− τ |α, t, τ ∈ [0, T ]. (5.3)

P r o o f. This proposition follows immediately from Theorem 3.1 and
Proposition 3.1 if we take into account that, for any u(·) ∈ U and v(·) ∈ V,
due to (g.1)–(g.3), the function f(t, x) = g(t, x, u(t), v(t)), t ∈ [0, T ], x ∈
R
n, satisfies the conditions (f.1)–(f.3), and, moreover, (f.3) is fulfilled with

the constant cg that does not depend on u(·) and v(·). �

Let us consider a guide (see, e.g., [17, § 8.2]), which is, in a certain sense,
a copy of system (5.1), (5.2). Thus, a motion of the guide is described by
the fractional differential equation

(CDαy)(t) = g(t, y(t), ũ(t), ṽ(t)), t ∈ [0, T ],

y(t) ∈ R
n, ũ(t) ∈ P, ṽ(t) ∈ Q,

(5.4)

with the initial condition

y(0) = y0, y0 ∈ R
n. (5.5)

Here y is the state vector, ũ and ṽ are control vectors of the guide;
y0 is the initial value. By analogy with Definition 5.2, we define a motion
y(·) of guide (5.4), (5.5) that corresponds to an initial value y0 ∈ R

n and
admissible realizations ũ(·) ∈ U , ṽ(·) ∈ V. Therefore, from Proposition 5.1
it follows that such a motion y(·) = y(·; y0, ũ(·), ṽ(·)) exists and is unique,
and, moreover, it satisfies the estimates similar to (5.3).

In the next section, a mutual aiming procedure between original system
(5.1), (5.2) and guide (5.4), (5.5) is proposed. This procedure is based
on the extremal shift rule (see, e.g., [17, §§ 2.4, 8.2]) and specifies the
way of forming control realizations u(·) ∈ U and ṽ(·) ∈ V that guarantees
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proximity between motions of the systems for any disturbance realization
v(·) ∈ V and any control realization ũ(·) ∈ U .

6. Mutual aiming procedure

Let x0, y0 ∈ R
n, and

Δ = {τj}k+1
j=1 ⊂ [0, T ], τ1 = 0, τj+1 > τj, j ∈ 1, k, τk+1 = T, k ∈ N,

be a partition of the segment [0, T ]. Let us consider the following procedure
of forming realizations u(·) ∈ U in system (5.1), (5.2) and ṽ(·) ∈ V in guide
(5.4), (5.5). Let j ∈ 1, k, and values x(τj), y(τj) have already been realized.
Then we define

u(t) = uj ∈ argmin
u∈P

max
v∈Q

〈s(τj), g(τj , x(τj), u, v)〉,
ṽ(t) = ṽj ∈ argmax

ṽ∈Q
min
ũ∈P

〈s(τj), g(τj , x(τj), ũ, ṽ)〉, t ∈ [τj, τj+1), (6.1)

where we denote

s(t) = x(t)− y(t), t ∈ [0, T ]. (6.2)

Theorem 6.1. For any R0 > 0 and ε > 0, there exist K > 0 and
δ > 0 such that, for any initial values x0, y0 ∈ B(R0), any partition Δ
with the diameter diam(Δ) = maxj∈1,k(τj+1− τj) � δ, and any realizations

v(·) ∈ V, ũ(·) ∈ U , if realizations u(·) ∈ U , ṽ(·) ∈ V are formed according
to mutual aiming procedure (6.1), then the corresponding motions x(·) =
x(·;x0, u(·), v(·)) of system (5.1), (5.2) and y(·) = y(·; y0, ũ(·), ṽ(·)) of guide
(5.4), (5.5) satisfy the inequality below:

‖x(·) − y(·)‖∞ � ε+K‖x0 − y0‖. (6.3)

P r o o f. Let R0 > 0, and ε > 0. By the number R0, let us choose R
and H in accordance with Proposition 5.1. Due to (g.2), let us choose λg

by the number R. Let us define K =
√

Eα(2λgTα). Let η > 0 satisfy the
following inequality:

η � Γ(α+ 1)ε2/
(
2TαEα(2λgT

α)
)
.

By (g.1), let us choose δ1 > 0 such that, for any t, τ ∈ [0, T ], x ∈ B(R),
u ∈ P, and v ∈ Q, if |t− τ | � δ1, then

‖g(t, x, u, v) − g(τ, x, u, v)‖ � η/(16R).

Let δ2 > 0 be such that

δα2 � min
{
η/

(
8H(1 +R)cg

)
, η/(16RλgH)

}
,

where cg is the constant from (g.3). Let us define δ = min{δ1, δ2}. Let us
show that the numbers K and δ satisfy the statement of the theorem.
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Let x0, y0 ∈ B(R0), and a partition Δ has the diameter diam(Δ) � δ.
Let v(·) ∈ V, ũ(·) ∈ U , and realizations u(·) ∈ U , ṽ(·) ∈ V be formed
according to aiming procedure (6.1). Let x(·) = x(·;x0, u(·), v(·)) and y(·) =
y(·; y0, ũ(·), ṽ(·)) be the motions of systems (5.1), (5.2) and (5.4), (5.5).

Let s(·) be defined by (6.2). Then we have

s(·) ∈ {x0 − y0}+ Iα(L∞([0, T ],Rn));

‖s(t)‖ � 2R, ‖s(t)− s(τ)‖ � 2H |t− τ |α, t, τ ∈ [0, T ];

(CDαs)(t) = g(t, x(t), u(t), v(t)) − g(t, y(t), ũ(t), ṽ(t)) for a.e. t ∈ [0, T ].

Let us consider the function ν(t) = ‖s(t)‖2 − ‖x0 − y0‖2, t ∈ [0, T ]. Since

ν(t) = ‖s(t)− (x0 − y0)‖2 + 2〈x0 − y0, s(t)− (x0 − y0)〉, t ∈ [0, T ],

then, due to Corollary 4.2, we have ν(·) ∈ Iα(L∞([0, T ],R)), and

(Dαν)(t) � 2〈s(t)− (x0 − y0), (
CDαs)(t)〉+ 2〈x0 − y0, (

CDαs)(t)〉
= 2〈s(t), (CDαs)(t)〉 for a.e. t ∈ [0, T ].

(6.4)

Let us show that

〈s(t), (CDαs)(t)〉 � λg‖s(t)‖2 + η for a.e. t ∈ [0, T ]. (6.5)

For almost every t ∈ [0, T ], we obtain

〈s(t), (CDαs)(t)〉 = 〈s(t), g(t, x(t), u(t), v(t)) − g(t, x(t), ũ(t), ṽ(t))〉
+〈s(t), g(t, x(t), ũ(t), ṽ(t))− g(t, y(t), ũ(t), ṽ(t))〉. (6.6)

Let us estimate each of the two terms separately.

Let j ∈ 1, k, and t ∈ [τj , τj+1). By (g.3) and the choice of δ2, we derive

〈s(t), g(t, x(t), u(t), v(t)) − g(t, x(t), ũ(t), ṽ(t))〉
� 〈s(τj), g(t, x(t), u(t), v(t)) − g(t, x(t), ũ(t), ṽ(t))〉

+‖s(t)− s(τj)‖
(‖g(t, x(t), u(t), v(t))‖ + ‖g(t, x(t), ũ(t), ṽ(t))‖)

� 〈s(τj), g(t, x(t), u(t), v(t)) − g(t, x(t), ũ(t), ṽ(t))〉 + 4H(1 +R)cgδ
α

� 〈s(τj), g(t, x(t), u(t), v(t)) − g(t, x(t), ũ(t), ṽ(t))〉 + η/2.

Further, due to the choice of λg, δ1 and δ2, we obtain

〈s(τj), g(t, x(t), u(t), v(t))〉 � 〈s(τj), g(τj , x(τj), u(t), v(t))〉
+‖s(τj)‖‖g(t, x(t), u(t), v(t)) − g(τj , x(t), u(t), v(t))‖
+‖s(τj)‖‖g(τj , x(t), u(t), v(t)) − g(τj , x(τj), u(t), v(t))‖

� 〈s(τj), g(τj , x(τj), u(t), v(t))〉
+2R‖g(t, x(t), u(t), v(t)) − g(τj , x(t), u(t), v(t))‖ + 2RλgHδα

� 〈s(τj), g(τj , x(τj), u(t), v(t))〉 + η/4,
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and, similarly,

〈s(τj), g(t, x(t), ũ(t), ṽ(t)) � 〈s(τj), g(τj , x(τj), ũ(t), ṽ(t))〉 − η/4.

Finally, in accordance with (g.4) and choice (6.1) of uj, ṽj , we get

〈s(τj), g(τj , x(τj), u(t), v(t))〉 − 〈s(τj), g(τj , x(τj), ũ(t), ṽ(t))〉
= 〈s(τj), g(τj , x(τj), uj , v(t))〉 − 〈s(τj), g(τj , x(τj), ũ(t), ṽj)〉

� max
v∈Q

〈s(τj), g(τj , x(τj), uj , v)〉 −min
ũ∈P

〈s(τj), g(τj , x(τj), ũ, ṽj)〉
= min

u∈P
max
v∈Q

〈s(τj), g(τj , x(τj), u, v)〉 −max
ṽ∈Q

min
ũ∈P

〈s(τj), g(τj , x(τj), ũ, ṽ)〉 = 0.

Consequently, for t ∈ [0, T ), we have

〈s(t), g(t, x(t), u(t), v(t)) − g(t, x(t), ũ(t), ṽ(t))〉 � η. (6.7)

Let us estimate the second term in (6.6). For t ∈ [0, T ], due to the
choice of λg, we derive

〈s(t), g(t, x(t), ũ(t), ṽ(t))− g(t, y(t), ũ(t), ṽ(t))〉
� ‖s(t)‖‖g(t, x(t), ũ(t), ṽ(t))− g(t, y(t), ũ(t), ṽ(t))‖ � λg‖s(t)‖2.

(6.8)

Thus, the validity of inequality (6.5) follows from (6.6)–(6.8).
From (6.4) and (6.5) we obtain

(Dαν)(t) � 2λg‖s(t)‖2 + 2η for a.e. t ∈ [0, T ].

Therefore, according to (B.2), for every t ∈ [0, T ], we have

ν(t) � 1

Γ(α)

∫ t

0

2λg‖s(τ)‖2 + 2η

(t− τ)1−α
dτ � 2ηTα

Γ(α+ 1)
+

2λg

Γ(α)

∫ t

0

‖s(τ)‖2
(t− τ)1−α

dτ.

Consequently, due to the definition of ν(·), we deduce

‖s(t)‖2 � 2ηTα

Γ(α+ 1)
+ ‖x0 − y0‖2 + 2λg

Γ(α)

∫ t

0

‖s(τ)‖2
(t− τ)1−α

dτ.

Hence, by Lemma 2.1 and the choice of η and K, for t ∈ [0, T ], we obtain

‖s(t)‖2 �
( 2ηTα

Γ(α+ 1)
+ ‖x0 − y0‖2

)
Eα(2λgT

α) � ε2 +K2‖x0 − y0‖2.

Thus, inequality (6.3) and the theorem are proved. �
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7. Example

Let us illustrate the constructions from Sections 5 and 6 by an example.
Let a motion of the conflict-controlled dynamical system be described by
the fractional differential equations⎧⎨⎩(CD0.5x1)(t) = x2(t) + 0.3u1(t) + 0.4v1(t),

(CD0.5x2)(t) = − sin(x1(t)) + cos(t) + 0.5u2(t) + 0.2v2(t),

t ∈ [0, 5], x(t) = (x1(t), x2(t)) ∈ R
2,

u(t) = (u1(t), u2(t)) ∈ P = {u ∈ R
2 : ‖u‖ � 1},

v(t) = (v1(t), v2(t)) ∈ Q = {v ∈ R
2 : ‖v‖ � 1},

(7.1)

with the initial condition

x(0) = (−1, 0). (7.2)

Let us consider a guide which motion is described by the similar frac-
tional differential equations⎧⎨⎩(CD0.5y1)(t) = y2(t) + 0.3ũ1(t) + 0.4ṽ1(t),

(CD0.5y2)(t) = − sin(y1(t)) + cos(t) + 0.5ũ2(t) + 0.2ṽ2(t),

t ∈ [0, 5], y(t) = (y1(t), y2(t)) ∈ R
2,

ũ(t) = (ũ1(t), ũ2(t)) ∈ P, ṽ(t) = (ṽ1(t), ṽ2(t)) ∈ Q,

(7.3)

with the initial condition

y(0) = (0, 1). (7.4)

For system (7.1), (7.2) and guide (7.3), (7.4), mutual aiming procedure
(6.1) was simulated. The uniform partition Δ of the segment [0, 5] with the
step δ = 0.0005 was chosen. Realizations u(·) in the original system and
ṽ(·) in the guide were formed according to procedure (6.1), while realiza-
tions v(·) in the original system and ũ(·) in the guide were formed in the
following two ways. In the first case, v(·) and ũ(·) were chosen as piecewise
constant on the partition Δ functions with random values from P and Q,
respectively. In the second case, we took

v1(t) = cos(πt), v2(t) = sin(πt),

ũ1(t) = − cos(2πt), ũ2(t) = sin(2πt),
t ∈ [0, 5]. (7.5)

For the numerical simulation of motions of system (7.1), (7.2) and guide
(7.3), (7.4), the fractional forward Euler method (see, e.g., [18, p. 101]) was
used. The obtained results, presented in Figures 7.1 and 7.2, show that the
realized motions x(·) and y(·) of the systems are close to each other despite
the choice of the realizations v(·) and ũ(·), which agrees with Theorem 6.1.
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Fig. 7.1: The realized motions of system (7.1), (7.2) and guide (7.3), (7.4)
in the case of random realizations v(·) and ũ(·).
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Fig. 7.2: The realized motions of system (7.1), (7.2) and guide (7.3), (7.4)
in the case of realizations v(·) and ũ(·) defined by (7.5).

8. Conclusion

In the paper, a conflict-controlled dynamical system described by ordi-
nary fractional differential equations with the Caputo derivative of an order
α ∈ (0, 1) is considered. A suitable notion of a system motion that does
not assume its differentiability is proposed. The existence and uniqueness
results for such a motion are obtained. An auxiliary guide is introduced,
which is, in a certain sense, a copy of the original system. In order to en-
sure proximity between motions of the system and guide, a mutual aiming
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procedure is elaborated. To justify this aiming procedure, the estimate of
the fractional derivative of the superposition of a convex Lyapunov function
and a motion of the system is proved. The obtained results are illustrated
by an example.

Let us stress again that the proposed aiming procedure guarantees prox-
imity between original system (5.1), (5.2) and guide (5.4), (5.5) for any
disturbances v(t) and any control actions ũ(t). Therefore, in the further
applications, control actions ũ(t) in the guide may be used in order to
compensate disturbances v(t) and ensure the desired quality of a control
process in the original system.
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