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Abstract

In this paper, we study the existence and stability of Hilfer-type frac-
tional differential equations (dynamic equations) on time scales. We ob-
tain sufficient conditions for existence and uniqueness of solutions by using
classical fixed point theorems such as Schauder’s fixed point theorem and
Banach fixed point theorem. In addition, Ulam stability of the proposed
problem is also discussed. As in application, we provide an example to
illustrate our main results.
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1. Introduction

The analysis of dynamic equations on time scales, which goes back to its
initiator Stefan Hilger, is an area of mathematics that has recently gained a
lot of interest. It has been formed in order to unify the study of differential
and difference equations. Many results involving differential equations carry
over quite easily to corresponding results for difference equations, while
other results seem to be totally different from their continuous counterparts.
The study of dynamic equations on time scales shows such discrepancies,
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and helps avoid proving results twice-once for differential equations and
once again for difference equations [7, 2].

The general idea is to prove a result for a dynamic equation where the
domain of the unknown function is a so-called time scale, which may be
an arbitrary closed subset of the reals. This way results not only related
to the set of real numbers or set of integers but those pertaining to more
general time scales are obtained. The three most popular examples of
calculus on time scales are differential calculus, difference calculus, and
quantum calculus [6, 1]. Dynamic equations on a time scale have enormous
potential for applications such as in population dynamics. For example, it
can model insect populations that are continuous while in season, die out
in say winter, while their eggs are incubating or dormant, and then hatch
in a new season, giving rise to a nonoverlapping population. Bohner and
Peterson have expounded on various aspects of this new theory in the basic
books by [4].

In recent years, the theory of fractional differential equations (FDEs)
has played a very important role in a new branch of applied mathematics,
which has been utilized for mathematical models in engineering, physics,
chemistry, signal analysis, etc. There has been a tremendous development
in the study of differential equations involving fractional derivatives (see
[5, 17, 19, 24], and the references therein). Recently, a study of Hilfer-
type of equation has received a significant amount of attention, we refer to
[9, 10, 11, 13, 25] and the references therein. The objective of this paper is
that existence and stability results devoted to dynamic equations on a time
scale with Hilfer fractional derivative. Recently, Ahmadkhanlu et al.[2]
investigated the existence and uniqueness results for FDEs on time scales.
By Followed, Benkhettou et al. [6] studied the existence and uniqueness
of solution for an initial value problem of FDEs on time scales involved
Riemann-Lioville (R-L) derivative.

Motivated by the papers [2, 6], we consider the dynamic equation on
time scales with Hilfer fractional derivative (HFD) of the form{

TΔα,β
0+

x(t) = f(t, x(t)), t = [0, b] := J ⊆ T,
TI1−γ

0+
x(0) = x0, γ = α+ β − αβ,

(1.1)

where TΔα,β
0+

is the HFD defined on T, 0 < α < 1, 0 ≤ β ≤ 1. Let T

be a time scale, that is nonempty subset of Banach space. The function
f : J × T → R is a right-dense continuous function.

The Ulam stability of functional equation, which was invented by Ulam
on a talk given to a conference at Wisconsin University in 1940, is one of the
essential subjects in the mathematical analysis area. The finding of Ulam
stability plays a pivotal role in regard to this subject. For extensive study
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on the advance of Ulam type stability, one can refer to [3, 15, 16, 18] and
the references therein. The credit of solving this problem partially goes
to Hyers. To study Hyers-Ulam stability of FDEs, different researchers
presented their works with different methods, see [14, 23, 24].

2. Preliminaries

In this section, we introduce definitions, notations and preliminary facts
which are used in the sequel. An extensive study of the analysis on time
scales can be found in [1].

2.1. Time scales.
By a time scale T we mean any closed subset of Banach space. Since

a time scale T is not connected in generally, we need the concept of jump
operators. The forward jump operator σ : T → T is defined by σ(t) :=
inf {s ∈ T : s > t}, while the backward jump operator ρ : T → T is defined
by ρ(t) := sup {s ∈ T : s < t}. In this definition we put infΘ = supT and
supΘ = inf T. If σ(t) > t, we say t is left-scattered points. Points that
are left-scattered point, while if ρ(t) < t, we say t is a left-scattered and
left-scattered at the same time will be called isolated points. A point t ∈ T

such that t < sup {T} and σ(t) = t, is called a right-dense point. A point
t > T such that t ∈ inf {T} and ρ(t) = t, is called a left-dense point. Points
that are right-dense and left-dense at the same time will be called dense
points.

Definition 2.1. A function f : T → R is called regulated if its right-
sided limits exists (finite) at all right-dense points in T, and its left-sided
limits exist (finite) at all left-dense points in T. A function f : T → R is
called rd-continuous if it is continuous at all right-dense points in T and its
left-sided limits exist (finite) at all left-dense points in T.

Definition 2.2. Let f : T → R and t ∈ T
k(= T). We define fΔ ∈ R

(provided it exists) with the property that for every ε > 0, there exists
δ > 0 such that∣∣f(σ(t))− f(s)− fΔ(t)[σ(t) − s]

∣∣ ≤ ε |σ(t)− s|
for all s ∈ UT(t, δ). We recall fΔ(t) the delta derivative (Δ-derivative
for short) of f at t0. Moreover, we say that f is delta differentiable (Δ-
differentiable for short) on T

k provided fΔ(t) exists for all t ∈ T
k.

Proposition 2.1. Suppose that f : T → R is a continuous function
on T and Δ-differentiable on T

k. If fΔ(t) ≥ 0 for all t ∈ T
k, then f is
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nondecreasing at on T. If fΔ(t0) ≤ 0 for all t ∈ T
k, then f is nonincreasing

on T.

Definition 2.3. Let [a, b] be a closed bounded interval in T. A
function F : [a, b] → R is called a delta antiderivative of a function f :
[a, b) → R provided that F is continuous on [a, b] and Δ-differentiable on
[a, b); and FΔ(t) = f(t) for all t ∈ [a, b).Then we define the Δ-integral from
a to b of f by ∫ b

a
f(t)Δt = F (b)− F (a).

Proposition 2.2. Suppose a, b ∈ T, a < b and f(t) is continuous on
[a, b], then we have∫ b

a
f(t)Δt = [σ(a)− a] f(a) +

∫ b

σ(a)
f(t)Δt.

Proposition 2.3. Suppose T is a time scale and [a, b] ⊂ T, f is
increasing continuous function on [a, b]. If the extension of f is given in the
following form:

F (s) =

{
f(s); s ∈ T

f(t); s ∈ (t, σ(t)) /∈ T.

Then we have ∫ b

a
f(t)Δt ≤

∫ b

a
F (t)dt.

Definition 2.4. Let T be a time scale, J ∈ T. The left-sided R-L
fractional integral of order α ∈ R+ of function f(t) is defined by(

TIα0+f
)
(t) =

1

Γ(α)

∫ t

0
(t− s)α−1f(s)Δs, (t > 0),

where Γ(·) is the Gamma function.

Definition 2.5. Suppose T is a time scale, [0, b] is an interval of T.
The left-sided R-L fractional derivative of order α ∈ [n − 1, n), n ∈ Z

+ of
function f(t) is defined by(

TΔα
0+f

)
(t) =

1

Γ(n− α)

(
d

dt

)n ∫ t

0
(t− s)n−α−1f(s)Δs, (t > 0).
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Based on differentiating fractional integrals, a generalized definition
called HFD can be proposed. The HFD is considered as an interpolator
between the R-L and Caputo derivatives. For information on HFD, one
can refer to [20, 21, 22].

Definition 2.6. The left-sided HFD of order 0 < α < 1 and 0 ≤ β ≤ 1
of function f(t) is defined by

TΔα,β
0+

f(t) =
(
TI

β(1−α)
0+

TΔ(TI
(1−β)(1−α)
0+

f)
)
(t),

where TΔ := d
dt .

Remark 2.1. [11, 13, 25]

(1) The operator TΔα,β
0+

also can be written as

TΔα,β
0+

= TI
β(1−α)
0+

TΔ TI
(1−β)(1−α)
0+

= TI
β(1−α)
0+

TΔγ
0+
, γ = α+ β − αβ.

(2) Let β = 0, the left-sided R-L derivative can be presented as TΔα
0+ :=

TΔα,0
0+

.
(3) Let β = 0, left-sided Caputo fractional derivative can be presented

as T
cΔ

α
0+ := TI1−α

0+
TΔ.

Throughout this study, let C[J,R] endowed with the norm ‖x‖C =
max {|x(t)| : t ∈ J} and L1(J) is the space of Lebesgue-integrable functions
x : J → R with the norm

‖x‖1 =
∫ b

1
|x(s)| ds.

Definition 2.7. For 0 ≤ γ < 1, we denote the space Cγ [J,R] as

Cγ [J,R] := {f(t) : J → R|tγf(t) ∈ C[J,R]} ,
where Cγ [J,R] is the weighted space of the continuous functions f on the
finite interval J .

Obviously, Cγ [J,R] is the Banach space with the norm

‖f‖Cγ
= ‖tγf(t)‖C .

Meanwhile, Cn
γ [J,R] :=

{
f ∈ Cn−1[J,R] : f (n) ∈ Cγ [J,R]

}
is the Banach

space with the norm

‖f‖Cn
γ
=

n−1∑
i=0

∥∥∥f (k)
∥∥∥
C
+

∥∥∥f (n)
∥∥∥
Cγ

, n ∈ N.
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Moreover, C0
γ [J,R] := Cγ [J,R].

We introduce the spaces which are used to solve our problems.

Cα,β
1−γ =

{
f ∈ C1−γ [J,R],Δα,β

0+
f ∈ C1−γ [J,R]

}
and

Cγ
1−γ =

{
f ∈ C1−γ [J,R],Δγ

0+
f ∈ C1−γ [J,R]

}
.

It is obvious that

Cγ
1−γ [J,R] ⊂ Cα,β

1−γ [J,R].

Definition 2.8. The expression

TΔα
0+f(x) :=

TΔ TIα−1
0+

f(t), t > 0, 0 < α < 1,

is called the left-sided R-L fractional derivative of order α of f provided
the right-hand side exists.

Next, we review some lemmas which will be used to establish our exis-
tence results.

Lemma 2.1. [25] If α > 0 and β > 0, there exist[
TIα0+s

β−1
]
(t) =

Γ(β)

Γ(β + α)
tβ+α−1

and [
TΔα

0+s
α−1

]
(t) = 0, 0 < α < 1.

Lemma 2.2. Let α > 0 and 0 ≤ γ ≤ 1. Then, TIα0+ is bounded from
Cγ [J,R] into Cγ [J,R].

Lemma 2.3. Let α > 0 and 0 ≤ γ < 1. If γ ≤ α, then TIα0+ is bounded
from Cγ [J,R] into C[J,R].

Lemma 2.4. f ∈ L1(J) and TΔ
β(1−α)
0+

f ∈ L1(J) existed, then

TΔα,β
0+

TIα0+f = TI
β(1−α)
0+

TΔ
β(1−α)
0+

f.

Lemma 2.5. For 0 ≤ γ < 1 and f ∈ Cγ [J,R], then

TIα0+f(0) := lim
t→0+

TIα0+f(t) = 0, 0 ≤ γ < α.
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Lemma 2.6. Let α ≥ 0, β ≥ 0 and f ∈ L1(J). Then

TIα0+
TIβ0+f(t)

a.e
= TIα+β

0+ f(t), t ∈ J.

In particular, if f ∈ Cγ [J,R] or f ∈ C[J,R], then equality holds at
every t ∈ J .

Lemma 2.7. Let 0 < α < 1, 0 ≤ γ < 1. If f ∈ Cγ [J,R] and TI1−α
0+

f ∈
C1
γ [J,R], then

TIα0+
TΔα

0+f(t) = f(t)−
(
TI1−α

0+
f
)
(0)

Γ(α)
tα−1, ∀ t ∈ J.

Definition 2.9. The right-sided fractional derivative operator of order
0 < α < 1 and 0 ≤ β ≤ 1 is defined by

TΔα,β
0+

= TI
β(1−α)
0+

TΔ TI
(1−β)(1−α)
0+

.

Lemma 2.8. Let 0 < α < 1, 0 ≤ β ≤ 1 and γ = α + β − αβ. If
f ∈ Cγ

1−γ [J,R], then

TIγ
0+

TΔγ
0+
f = TIα0+

TΔα,β
0+

f,

and
TΔγ

0+
TIα0+f = TΔ

β(1−α)
0+

f.

Lemma 2.9. Let 0 < α < 1, 0 ≤ β ≤ 1 and γ = α + β − αβ. If

f ∈ C1−γ [J,R] and TI
1−β(1−α)
0+

f in C1
1−γ [J,R], then TIα0+

TΔα,β
0+

f exists in
J and

TIα0+
TΔα,β

0+
f(t) = f(t).

P r o o f. By Lemma 2.8, we have

TIα0+
TΔα,β

0+
f(t) = TIγ

0+
TΔγ

0+
f(t),

and applying Lemma 2.5 and Lemma 2.7

TIα0+
TΔα,β

0+
f(t) = f(t)−

(
TI1−γ

0+
f
)
(0)

Γ(γ)
tγ−1.

Finally, we get
TIα0+

TΔα,β
0+

f(t) = f(t).

�
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Lemma 2.10. [5] Let v : [0, b] → [0,∞) be a real function and w(·) is
a nonnegative, locally integrable function on [0, b] and there are constants
a > 0 and 0 < α < 1 such that

v(t) ≤ w(t) + a

∫ t

0

v(s)

(t− s)α
ds.

Then there exists a constant K = K(α) such that

v(t) ≤ w(t) +Ka

∫ t

0

w(s)

(t− s)α
ds,

for every t ∈ [0, b].

3. Existence results

This section is concerned to the existence of solution of the problem
(1.1). We adopt the same idea as in [9]. We begin with the following
lemma.

Lemma 3.1. Suppose J = [0, b] ⊆ T. Let γ = α + β − αβ, where
0 < α < 1 and 0 ≤ β ≤ 1. Let f : J × R → R be the function such that
f(·, x(·)) ∈ C1−γ [J,R] for any x ∈ C1−γ [J,R]. If x ∈ Cγ

1−γ [J,R], then x

satisfies (1.1) if and only if x satisfies the following integral equation

x(t) =
x0
Γ(γ)

tγ−1 +
1

Γ(α)

∫ t

0
(t− s)α−1f(s, x(s))Δs, t > 0. (3.1)

P r o o f. Let x ∈ Cγ
1−γ [J,R] be a solution of (1.1). We want to prove

that x is also a solution of the integral equation (3.1). By the definition of

Cγ
1−γ [J,R], Lemma 2.3 and Definition 2.6, we have TI1−γ

0+
x ∈ C[J,R] and

TΔγ
0+
x = TΔ(TI1−γ

0+
x) ∈ C1−γ [J,R].

Thus by Definition 2.7 we have

TΔ1−γ
0+

x ∈ C1
1−γ [J,R].

Now we apply Lemma 2.7 to obtain

TIγ
0+

TΔγ
0+
x(t) = x(t)− x0

Γ(γ)
tγ−1, t ∈ J, (3.2)

Since by our hypothesis TΔγ
0+
x ∈ C1−γ [J,R], Lemma 2.8 yields

TIγ
0+

TΔγ
0+
x = TIα0+

TΔα,β
0+

x = TIα0+f, in J. (3.3)

From (3.2)-(3.3) we obtain

x(t) =
x0
Γ(γ)

tγ−1 +
[
TIγ

0+
f(s, x(s))

]
(t), t ∈ J, (3.4)
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which is equation (3.1).
Now we prove the sufficiency. Let x ∈ Cγ

1−γ [J,R] satisfy equation (3.1)

which can be written as (3.4). Applying the operator TΔγ
0+

to both sides
of (3.4), it follows from Lemma 2.1, Lemma 2.8 and Definition 2.8 that

TΔγ
0+
x = TΔ

β(1−α)
0+

f. (3.5)

From (3.5) and the hypothesis TΔγ
0+
x ∈ C1−γ [J,R], we have

TΔ TI
1−β(1−α)
0+

f = TΔ
β(1−α)
0+

f ∈ C1−γ [J,R]. (3.6)

Also, since f ∈ C1−γ [J,R], by Lemma 2.2,

TI
1−β(1−α)
0+

f ∈ C1−γ [J,R]. (3.7)

It follows from (3.6) and (3.7) and the Definition 2.8 that

TI
1−β(1−α)
0+

f ∈ C1
1−γ [J,R].

Thus f and TI1−β(1−α)f satisfy the conditions of Lemma 2.7.

Now by TI
β(1−α)
0+ to both sides of (3.5) and using Definition 2.9 and

Lemma 2.7, we can write

TΔα,β
0+

x(t) = f(t, x(t))−
[
TI

1−β(1−α)
0+

f(s, x(s))
]
(0)

Γ(β(1 − α))
tβ(1−α)−1. (3.8)

Since 1− γ < 1− β(1− α), Lemma 2.5 implies that[
TI

1−β(1−α)
0+

f(s, x(s))
]
(0) = 0.

Hence the relation (3.8) reduces to

TΔα,β
0+

x(t) = f(t, x(t)), t ∈ J. (3.9)

Now, we show that the initial condition TI1−γ
0+

x(0) = x0 also holds. We

apply TI1−γ
0+

to both sides of (3.4), then Lemma 2.1 and 2.6 imply that

TI1−γ
0+

x(t) = x0 +
[
TI

1−β(1−α)
0+

f(s, x(s))
]
(t). (3.10)

In (3.10), taking the limits as t → 0, we obtain

TI1−γ
0+

x(0) = x0 +
[
TI

1−β(1−α)
0+

f(s, x(s))
]
(0)

= x0.

This completes the proof. �

For further investigation, we give the following assumptions:

(H1) The function f : J ×R → R is a rd-continuous.
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(H2) The function f is completely continuous and there exists a function
μ ∈ L1(J) such that

|f(t, x)| ≤ μ(t), t ∈ J, x ∈ R.

(H3) Let f be a rd-continuous bounded function such that f(·, x(·)) ∈
C

β(1−α)
1−γ [J,R] for any x ∈ C1−γ [J,R] and there exists a positive

constants L > 0 such that

|f(t, x)− f(t, y)| ≤ L |x− y| .

Theorem 3.1. Assume that (H1)-(H2) are fulfilled. Then, equation
(1.1) has at least one solution.

P r o o f. We shall use Schauder’s fixed point theorem [8]. The proof
will be given in several steps as followed in [2, 6].

Consider the operator N : C1−γ [J,R] → C1−γ [J,R]. The equivalent
Volterra integral equation (3.1) which can be written in the operator form

x(t) = (Nx)(t), (3.11)

where

(Nx)(t) = x0(t) +
[
TIα0+f(s, x(s))

]
(t) (3.12)

with

x0(t) =
x0
Γ(γ)

tγ−1. (3.13)

We shall show that the operator N is continuous and completely con-
tinuous.

Claim 1: N is continuous.
Let xn be a sequence such that xn → x in C1−γ [J,R]. Then for each

t ∈ J ,∣∣t1−γ((Nxn)(t)− (Nx)(t))
∣∣

≤ t1−γ

Γ(α)

∫ t

0
(t− s)α−1 |f(s, xn(s))− f(s, x(s))|Δs

≤ t1−γ

Γ(α)

∫ t

0
(t− s)α−1 sup

s∈J
|f(s, xn(s))− f(s, x(s))|Δs

≤ t1−γ

Γ(α)

∫ t

0
(t− s)α−1 |f(s, xn(s))− f(s, x(s))| ds, (by Proposition 2.3)

≤ bα

Γ(α)
B(γ, α) ‖f(s, xn(·)) − f(s, x(·))‖C1−γ

,



1130 D. Vivek, K. Kanagarajan, S. Sivasundaram

where we use the formula∫ t

a
(t− s)α−1 |x(s)| ds ≤

(∫ t

a
(t− s)α−1(s − a)γ−1ds

)
‖x‖C1−γ

= (t− a)α+γ−1B(γ, α) ‖x‖C1−γ
.

Since f is continuous, Lebesgue dominated convergence theorem implies

‖Nxn −Nx‖C1−γ
→ 0 as n → ∞.

Claim 2: N maps bounded sets into bounded sets in C1−γ [J,R].
Indeed, it is enough to show that for q > 0, there exists a positive

constant l such that x ∈ Bq =
{
x ∈ C1−γ [J,R] : ‖x‖C1−γ

≤ q
}
, we have

‖N(x)‖C1−γ
≤ l,

∣∣t1−γ(Nx)(t)
∣∣ ≤ |x0|

Γ(γ)
+

t1−γ

Γ(α)

∫ t

0
(t− s)α−1 |f(s, x(s))|Δs

≤ |x0|
Γ(γ)

+
t1−γ

Γ(α)

∫ t

0
(t− s)α−1 |μ(s)|Δs

≤ |x0|
Γ(γ)

+
bα

Γ(α)
B(γ, α) ‖μ‖Cγ−1

:= l,

Claim 3: N maps bounded sets into equicontinuous set of C1−γ [J,R].
Let t1, t2 ∈ J , t1 < t2, Bq be a bounded set of C1−γ [J,R] as in claim 2,

and x ∈ Bq. Then∣∣∣(Nx)(t2)t
1−γ
2 − (Nx)(t1)t

1−γ
1

∣∣∣
≤

∣∣∣∣∣ t
1−γ
2

Γ(α)

∫ t2

0
(t2 − s)α−1f(s, x(s))Δs− t1−γ

1

Γ(α)

∫ t1

0
(t1 − s)α−1f(s, x(s))Δs

∣∣∣∣∣
≤ 1

Γ(α)

∫ t1

0

∣∣∣t1−γ
2 (t2 − s)α−1 − t1−γ

1 (t1 − s)α−1
∣∣∣ |μ(s)|Δs

+
t1−γ
2

Γ(α)

∫ t2

t1

(t2 − s)α−1 |μ(s)|Δs

≤ 1

Γ(α)

∫ t1

0

∣∣∣t1−γ
2 (t2 − s)α−1 − t1−γ

1 (t1 − s)α−1
∣∣∣ |μ(s)| ds

+
t1−γ
2

Γ(α)
(t2 − t1)

α+γ−1B(γ, α) ‖μ‖C1−γ
.

We see that the right-hand part of the above inequality tends to zero
independently of x ∈ Bq as t1−t2 → 0 . Hence along with the Arzëla-Ascoli
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theorem and the results of Claims 1-3, it is concluded thatN : C1−γ [J,R] →
C1−γ [J,R] is continuous and completely continuous.

Claim 4: A priori bounds.
Now, it suffices to show that the set

ω = {x ∈ C1−γ [J,R] : x = δ(Nx), 0 < δ < 1}
is bounded set.

Let x ∈ ω, x = δ(Nx) for some 0 < δ < 1. Thus for each t ∈ J , we
have

x(t) = δ

[
x0
Γ(γ)

tγ−1 +
1

Γ(α)

∫ t

0
(t− s)α−1f(t, x(s))Δs

]
.

In view of (H2), for each t ∈ J , we have

|x(t)| = |(Nx)(t)|

≤ |x0|
Γ(γ)

+
bα

Γ(α)
B(γ, α) ‖μ‖C1−γ

.

The above implies that the set ω is bounded. Thus Schauder’s fixed
point theorem helps to deduct the solution of the problem which states N
has a fixed point which is a solution of problem (1.1). �

4. Stability analysis

Next, we shall give the definitions and the criteria of Ulam-Hyers (UH)
stability and Ulam-Hyers-Rassias (UHR) stability for Hilfer-type dynamic
equations on time scales. We use some ideas from [18].

Definition 4.1. Equation (1.1) is UH stable if there exists a real
number cf > 0 such that for each ε > 0 and for each solution z ∈ Cγ

1−γ [J,R]
of the inequality ∣∣∣TΔα,β

0+ z(t)− f(t, z(t))
∣∣∣ ≤ ε, t ∈ J, (4.1)

there exists a solution x ∈ Cγ
1−γ [J,R] of equation (1.1) with

|z(t)− x(t)| ≤ cf ε, t ∈ J.

Definition 4.2. Equation (1.1) is generalized UH stable if there exists
ψf ∈ C (R+, R+), ψf (0) = 0 such that for each solution z ∈ Cγ

1−γ [J,R] of

the inequality (4.1), there exists a solution x ∈ Cγ
1−γ [J,R] of equation (1.1)

with

|z(t)− x(t)| ≤ ψf ε, t ∈ J.
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Definition 4.3. Equation (1.1) is UHR stable with respect to ϕ ∈
C1−γ [J,R] if there exists a real number cf > 0 such that for each ε > 0 and
for each solution z ∈ Cγ

1−γ [J,R] of the inequality∣∣∣TΔα,β
0+

z(t)− f(t, z(t))
∣∣∣ ≤ εϕ(t), t ∈ J, (4.2)

there exists a solution x ∈ Cγ
1−γ [J,R] of the equation (1.1) with

|z(t)− x(t)| ≤ cf εϕ(t), t ∈ J.

Definition 4.4. Equation (1.1) is generalized UHR stable with re-
spect to ϕ ∈ C1−γ [J,R] if there exists a real number cf,ϕ > 0 such that for
each solution z ∈ C1−γ [J,R] of the inequality∣∣∣TΔα,β

0+ z(t)− f(t, z(t))
∣∣∣ ≤ ϕ(t), t ∈ J,

there exists a solution x ∈ Cγ
1−γ [J,R] of equation (1.1) with

|z(t)− x(t)| ≤ cf,ϕϕ(t), t ∈ J.

Remark 4.1. A function z ∈ Cγ
1−γ [J,R] is a solution of the inequality∣∣∣TΔα,β

0+
z(t)− f(t, z(t))

∣∣∣ ≤ ε, t ∈ J,

if and only if there exists a function g ∈ Cγ
1−γ [J,R] such that

(1) |g(t)| ≤ ε, t ∈ J .

(2) TΔα,β
0+

z(t) = f(t, z(t)) + g(t), t ∈ J .

Lemma 4.1. If a function z ∈ Cγ
1−γ [J,R] is a solution of the inequality

(4.1) then with z0(t) =
z0

Γ(γ) t
γ−1,

∣∣∣∣z(t)− z0(t)− 1

Γ(α)

∫ t

0
(t− s)α−1f(s, z(s))Δs

∣∣∣∣ ≤ εbα

Γ(α+ 1)
.

P r o o f. The proof directly follows from Remark 4.1 and Lemma 3.1.
�

Remark 4.2. Clearly,

(1) Definition 4.1⇒ Definition 4.2,
(2) Definition 4.3⇒ Definition 4.4.
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We ready to prove our stability results for problem (1.1). The argu-
ments are based on the Banach contraction principle. We need the following
hypothesis:

(H4) There exists an increasing function ϕ ∈ C1−γ [J,R] and there exists
λϕ > 0 such that for any t ∈ J ,

TIα0+ϕ(t) ≤ λϕϕ(t).

Lemma 4.2. Assume that (H1) and (H3) are fulfilled. If(
Lbα

Γ(α)
B(γ, α)

)
< 1, (4.3)

then problem (1.1) has a unique solution.

P r o o f. Consider the operator N : C1−γ [J,R] → C1−γ [J,R].

(Nx)(t) = x0(t) +
[
TIα0+f(s, x(s))

]
(t) (4.4)

with x0(t) =
x0
Γ(γ) t

γ−1.

By Lemma 3.1, it is clear that the fixed points of N are solutions of
problem (1.1).

Let x1, x2 ∈ C1−γ [J,R] and t ∈ J , then we have∣∣t1−γ((Nx1)(t)− (Nx2)(t))
∣∣

≤ t1−γ

Γ(α)

∫ t

0
(t− s)α−1 |f(s, x1(s))− f(s, x2(s))|Δs

≤ t1−γ

Γ(α)

∫ t

0
(t− s)α−1 sup

s∈J
|f(s, x1(s))− f(s, x2(s))|Δs

≤ t1−γ

Γ(α)

∫ t

0
(t− s)α−1 |f(s, x1(s))− f(s, x2(s))| ds

≤ Lt1−γ

Γ(α)

∫ t

0
(t− s)α−1 |x1(s)− x2(s)| ds

≤ Lbα

Γ(α)
B(γ, α) ‖x1 − x2‖C1−γ

.

Then,

‖Nx1 −Nx2‖C1−γ
≤ Lbα

Γ(α)
B(γ, α) ‖x1 − x2‖C1−γ

.

From (4.3), it follows that N has a unique fixed point which is solution of
problem (1.1). �
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Theorem 4.1. If the hypotheses (H1), (H3) and (4.3) are satisfied,
then the problem (1.1) is UH stable.

P r o o f. Let ε > 0 and let z ∈ Cγ
1−γ [J,R] be a function which satisfies

the inequality (4.1) and let x ∈ Cγ
1−γ [J,R] be the unique solution of the

following Hilfer-type dynamic equation

TΔα,β
0+

x(t) = f(t, x(t)), t ∈ J := [0, b],

TI1−γ
0+

x(0) = TI1−γ
0+

z(0) = x0.

By Lemma 3.1, we get

x(t) = x0(t) +
[
TIα0+f(s, x(s))

]
(t)

with x0(t) =
x0
Γ(γ) t

γ−1.

Integrating (4.1) and Lemma 4.1, we obtain∣∣∣∣z(t)− z0(t)− 1

Γ(α)

∫ t

0
(t− s)α−1f(s, z(s))Δs

∣∣∣∣ ≤ εbα

Γ(α+ 1)
. (4.5)

For any t ∈ J ,

|z(t)− x(t)| ≤
∣∣∣∣z(t)− z0(t)− 1

Γ(α)

∫ t

0
(t− s)α−1f(s, z(s))Δs

+
1

Γ(α)

∫ t

0
(t− s)α−1 [f(s, z(s))− f(s, x(s))]Δs

∣∣∣∣
≤

∣∣∣∣z(t)− z0(t)− 1

Γ(α)

∫ t

0
(t− s)α−1f(s, z(s))Δs

∣∣∣∣
+

L

Γ(α)

∫ t

0
(t− s)α−1 |z(s)− x(s)| ds.

By using (4.5)

|z(t)− x(t)| ≤ εbα

Γ(α+ 1)
+

L

Γ(α)

∫ t

0
(t− s)α−1 |z(s)− x(s)| ds,

and by Lemma 2.10, we obtain

|z(t)− x(t)| ≤ bα

Γ(α+ 1)

[
1 +

νL

Γ(α+ 1)
bα
]
ε,

:= cf ε,

where ν = ν(α) is a constant, which completes the proof of the theorem.
Moreover, if we set ψ(ε) = cf ε; ψ(0) = 0, then the problem (1.1) is gener-
alized UH stable. �
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Theorem 4.2. Assume that (H1), (H3), (H4) and (4.3) are satisfied.
Then, the problem (1.1) is UHR stable.

P r o o f. Let z ∈ Cγ
1−γ [J,R] be solution of the following inequality

(4.2) and let x ∈ Cγ
1−γ [J,R] be the unique solution of the Hilfer type dy-

namics equation (1.1). By Lemma 3.1,

x(t) = x0(t) +
1

Γ(α)

∫ t

0
(t− s)α−1f(s, x(s))Δs.

By integration of (4.2) and applying Lemma 4.1 we obtain∣∣∣∣z(t) − z0(t)− 1

Γ(α)

∫ t

0
(t− s)α−1f(s, z(s))Δs

∣∣∣∣ ≤ ελϕϕ(t). (4.6)

On the other hand, we have

|z(t)− x(t)| ≤
∣∣∣∣z(t)− z0(t)− 1

Γ(α)

∫ t

0
(t− s)α−1f(s, z(s))Δs

∣∣∣∣
+

1

Γ(α)

∫ t

0
(t− s)α−1 |f(s, z(s))− f(s, x(s))|Δs

≤
∣∣∣∣z(t)− z0(t)− 1

Γ(α)

∫ t

0
(t− s)α−1f(s, z(s))Δs

∣∣∣∣
+

L

Γ(α)

∫ t

0
(t− s)α−1 |z(s)− x(s)| ds

≤ ελϕϕ(t) +
L

Γ(α)

∫ t

0
(t− s)α−1 |z(s)− x(s)| ds.

By applying Lemma 2.10, we obtain

|z(t)− x(t)| ≤ [(1 + ν1Lλϕ)λϕ] εϕ(t),

where ν1 = ν1(α) is a constant,then for any t ∈ J :

|z(t)− x(t)| ≤ cf εϕ(t),

which completes the proof of the theorem. �

In next section, we give an example to illustrate the theory.

5. Application

We consider the following Hilfer-type problem on time scales

TΔα,β
0+

x(t) =
e−t

(9 + et)

( |x(t)|
1 + |x(t)|

)
, t = [0, 1] := J ⊆ T, (5.1)

TI1−γ
0+

x(0) = 0. (5.2)
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Set f(t, x) = e−tx
(9+et)(1+x) , (t, x) ∈ T× [0,+∞).

Let x, y ∈ [0,+∞) and t ∈ J . Then we have

|f(t, x)− f(t, y)| ≤ e−t

9 + et
|x− y| ≤ 1

10
|x− y| .

It is obviousthat our assumptions in Theorem 3.1 holdwith L = 1
10 .

Denote α = 2
3 , β = 1

2 and choose γ = 5
6 and b = 1.

From (4.3), (
Lbα

Γ(α)
B(γ, α)

)
= 0.1274 < 1.

Now all the assumptions in Lemma 4.2 and Theorem 4.1 are satisfied.
The problem (5.1)-(5.2) has a unique solution and it is UH stable.
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