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Abstract

In this work, we establish Lyapunov-type inequalities for the fractional
boundary value problems with Hilfer fractional derivative under multi-point
boundary conditions, the results are new and generalize and improve some
early results in the literature.
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1. Introduction
The well-known result of Lyapunov [8] states that if u(¢) is a nontrivial
solution of the differential system
u'(t) +r(t)u(t) =0, te (a,b),

u(a) =0 = u(b), (1.1)
where 7(t) is a continuous function defined in [a, b], then
b
4
t)|dt 1.2
[ o> 2 (1.2

and the constant 4 cannot be replaced by a larger number.

(© 2018 Diogenes Co., Sofia
pp. 833843, DOI: 10.1515/fca-2018-0044 DE GRUYTER



834 Y. Wang, Q. Wang

Lyapunov inequality (1.2) is a useful tool in various branches of mathe-
matics including disconjugacy, oscillation theory, and eigenvalue problems.
Many improvements and generalizations of the inequality (1.2) have ap-
peared in the literature. A thorough literature review of continuous and
discrete Lyapunov-type inequalities and their applications can be found in
the survey articles by Cheng [2], Brown and Hinton [1] and Tiryaki [9].

The study of Lyapunov-type inequalities for the differential equation
depends on a fractional differential operator was initiated by Ferreira [3].
He first obtained a Lyapunov-type inequality when the differential equation
depends on the Riemann-Liouville fractional derivative, the main result is
as follows.

THEOREM 1.1. If the following fractional boundary value problem
(DSyu)(t) +q(t)u(t) =0, a<t<b 1<a<2, (1.3)
u(a) =0 = u(b), (1.4)

has a nontrivial solution, where q is a real and continuous function, then
b a—1
4
/ lg(s)|ds > T'(«) (b > . (1.5)
a —a

One year later, Ferreira [4] obtained a Lyapunov-type inequality when
the differential equation depends on the Caputo fractional derivative.

THEOREM 1.2. If a nontrivial continuous solution of the fractional
boundary value problem

(“Du)(t) +qt)u(t) =0, a<t<b 1<a<2, (1.6)
u(a) =0 = u(b),
exists, where q is a real and continuous function, then

b a)a
/a oe)lds > f)((b) ot (1)

Many other generalizations and extensions of inequality (1.2) exist in
the literature, see for instance [11] — [16] and references therein.

Motivated by the above works, in this paper, we establish Lyapunov-
type inequalities for the fractional boundary value problems with Hilfer
fractional derivative under a multi-point boundary condition,

(DPu)(t) + qt)u(t) =0, a<t<b l<a<2 0<B<1,  (19)

m—2
u(a) =0, ud) = > Biu(&), (1.10)
=1
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where D:jf denotes the Hilfer fractional derivative of order order a and
type 0 < B < 1.

In this paper, we assume that a < § < & < -+ < §p_2 < b, 5; > 0(i =
1,2,...,m—2), 0 <72 Bi(& —a)l= =000 < (h—q) =000 and
denote

— a)1-@2-)(1-5)
T(t) = t=a) . a<t<b,
(b — a)l_(Q_a)(l_ﬁ) — Z:ll z(gz — a)l_(Q_a)(l_ﬁ)
(@ — 1) Ya—1+28—ap)e-1+26-ab

I =
(20 — 2+ 28 — aff)20—2+26—af

2. Preliminaries

In this section, we recall the concepts of the Riemann-Liouville frac-
tional integral, the Riemann-Liouville fractional derivative, the Caputo
fractional derivative of order o« > 0 and the Hilfer fractional derivative
oforder &« (n—1<a<n,ne€ N), and type 0 < 5 < 1.

Let I be a certain interval in R. We denote by AC(I; R) the space of
real valued and absolutely continuous functions on I. For n =1,2,..., we
denote by AC™(I; R) the space of real valued functions f(z) which have
continuous derivatives up to order n — 1 on I with f(»~Y ¢ AC(I; R), that
is

AC™(I;R) = {f : I — R such that D""'f € AC(I; R) (D = di)}
Clearly, we have AC(I; R) = AC(I; R).

DEFINITION 2.1. ([7]) Let f € L'((a,b); R), where (a,b) € R% a < b.
The Riemann-Liouville fractional integral of order a@ > 0 of f is defined by

(IS f)(t) = I‘(la) / (t —s)27Lf(s)ds, ae. t€[a,b].

DEFINITION 2.2. ([7]) Let a > 0 and m be the smallest integer greater
or equal than «. The Riemann-Liouville fractional derivative of order « of
a function f : [a,b] — R, where (a,b) € R?,a < b, is defined by

(Dg+ F)(t) = (DI F)(?)

= I‘(ml— o) (jt)m /at (t—s)™ " Lf(s)ds, ae.t€ [a,b]

DEFINITION 2.3. ([7]) Let a > 0 and m be the smallest integer greater
or equal than a. The Caputo fractional derivative of order « of a function

f € AC™[a,b] is defined by
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(DG f)() = (I D™ F)(1)
= 1 t — )M ) ds, a.e a
= )/a(t ) " (s)ds, a.e.t€ [a,bl.

I'(m-—a«

DEFINITION 2.4. ([5], [6]) The Hilfer fractional derivative or general-
ized Riemann-Liouville fractional derivative of order a(n — 1 < a <n,n €
N), and type 0 < 3 < 1 with respect to ¢, is defined as

n—o« dn — n—o«x
oz )0 = (1207 o, (15777 0) ) 0

REMARK 2.1. In the above definition, type 5 allows Dg‘f to interpolate
continuously between the classical Riemann-Liouville fractional derivative
and the Caputo fractional derivative. As in the case 8 = 0, the definition
reduces to the classical Riemann-Liouville fractional derivative and for § =
1, it gives the Caputo fractional derivative.

In [10], the compositional property of Riemann-Liouville fractional in-
tegral operator with the Hilfer fractional derivative operator is obtained.

LeEMMA 2.1. ([10]) Let f € L*(a,b),n—1<a<nneN0< B <1,
Ic(g_a)(l_ﬁ ) f € AC¥[a,b]. Then the Riemann-Liouville fractional integral

I?, and the Hilfer fractional derivative operator DZ‘;B are connected by the
relation

(12 D2 £) (1) = 7 (1)
n—1
(t—a)f =D A meaag)
2 = (1)1 — gy + 1) A e (B7) 0
3. Main results

We begin by writing problem (1.9)-(1.10) in its equivalent integral form.

LEMMA 3.1. If the function u € C|[a,b] is a solution to the boundary
value problem (1.9) — (1.10), then u satisfies the integral equation

pm—2
/ G(t,s)q(s)u(s)ds +T(t)/ Z BiG (&, s)q(s)u(s)ds
=1

where G(t, s) is defined as
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1—(2—a)(1-8
cege L) gt asssess,
t,s)= 1-(2—a)(1-8
O () e astsss<bh

Proof. From Lemma 2.1, if u € C[a,b] is a solution to the boundary
value problem (1.9)-(1.10), then we have

(t —a)~(2=e)(1=5) (t —a)l~ G- (-H)
+c
Fl-@2-a)1-5) " T@-2-a)1-§)
t (t _ 8)&71
[l et
where ¢y and ¢; are some real constants. Since u(a) = 0, we get immediately

that cg = 0, thus
(t —a)t=(E-)(1=FH) 1

2 (1) " (o) ], 7 eI
The boundary condition u(b) = ;" _1 u(€) yields
(b—a)l~@-a)(1-5) 1 b .
“re-2-a)1-5) I /a (b—s)*"a(s)u(s)ds

—9 )
X (& — a)'~=>(-F) 1 & o
5 [clm o a-ay T | 6 lq“)““)“] ’

T2 (2-a)(1 - 8)) |12 qu)(b) - 7 B2 qu) (&)
(b—a)l=E-)(1-p) — Zi’z? Bi(& — a)t—2-2)(1-5)

u(t) =co

u(t) = ¢

I R S R
0= o)y ", €7

(t = a)' =G0 (19 qu)(b) — 757 Bi (12 qu) (&)
C (b—a) =) -8) — M2 g (g g)1-(2-a)(1-5)

L t — 5)* g(s)u(s)ds
F [ 9 el

by the relation
1 1

(b — a)l=2-a)1-p) _ yom-2 i(& —q)l-(2-a)(1-8) " (b — a)l--2)(1-5)

S 1 (& —a)t™ (2-)(1-5)

* (b — a)l=@=)(A=B)[(b — a)l-@-x)(1-B) _ 12 Bi(& — a)l-2-e)(1-5))
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we obtain
1 bt —a 1-(2—a)(1-0) h— )1
U0 = 1) /a | ()b a)1—<2—a>(<1—5> " atomisyi
_ t — 5)* g(s)u(s)ds
Fa [ =9 ()

C(2—a)(1— m— i—a)l—(2=)(1-8) (3
(t — a)l=G1=8) o2 g, fb « ()b ayl—(2 a)(( )) q(s)u(s)ds
[(b— a)!=(=e)(1=8) — 72 Bi(g; — a) 1~ (-)(1-)]T(a)
(=) T TR B [5(E — s)° g (s)u(s)ds
[(b— a)'=(=)(=8) — 572 Bi(&; — a) -1 ()

b pm—2
_ / G(t, 5)q(s)u(s)ds + T(#) / S BiG(&, 5)a(s)u(s)ds
a a i=1
which concludes the proof. O

LeMMA 3.2. ([4]) If 1 < 6 < 2, then
(2 6)(6 —1)2s <

LEMMA 3.3. The function G defined in Lemma 3.1 satisfies the follow-
ing property:
(@ =1)*Ha—1+28 —af)* 12078 (bh—a)*!

(20 — 2+ 28 — af)20-2428-08 " T(a)
where (t,s) € [a,b] x [a,b].

G(t,s)] <

P r o o f. We divide our proof in two parts.
Part I. Denote y —1=1-2—-a)(1 = f) = a— 1428 — af, the
function G(t, s) can be rewritten as the following form

(b — a)'Y*lF(a)G(t’ S) _ gl(t; 5), a<s<t< b’
g2(t,s), a<t<s<hb,

where
g(t,s)=(t—a)t(b—s) 1 —(b—a)(t—5) a<s<t<h,
ga(t,s) = (t —a)’"H(b—s)* L, a<t<s<hb.

Obviously, ga(t, s) is an increasing function in t. And 0 < ga(t, s) < ga(s, s).
Now we turn our attention to the function g;(¢,s). We start by fixing an
arbitrary t € [a,b). Differentiating g;(¢,s) with respect to s, and by the
condition 0 < (/79)27* < 1,0 < (J79)771 < 1, we get
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0g1(t,s)

5s = a=DIb- )t =) = (t—a) T (b - 5)" 7

= (a=1)(b—a) " (t —s)*? [1 - <Z_Z>H <2_z)2_a] >0.

Hence, for a given ¢, g (¢, s) is an increasing function of s € [a, t]. Therefore,
we have

gl(tva) < gl(tvs) < gl(tvt)'

Since

gi(t,a) =(t—a) " (b—a)* ' = (b—a)" (t —a)*!

_ o _g\ 268
— (- ap oo 1= ()7 <o
therefore,
|gl(ta 5)| < max { max gl(ta t)a — max gl(ta CL)} :
Lot te(a,b] t€(a,b]
e

fl(t) :gl(t’t) = (tia)’y_l(bit)a_la te [CL, b]
Now, we differentiate fi(t) on (a,b), and we obtain
Al ==a)20=1)2(y = )b — 1) — (a = 1)(t — a)].
Observe that f{(¢) has a unique zero, attained at the point
/'Y —

t=ti=a+ (b—a).
a+vy—2
Since, f{'(t7) < 0, we conclude that
max f1 (t) = f1 (f{)
t€la,b]
a—1 -1
_ (Oé - 1) (’7 - 1)’y (b o a)a+’y—2

(47 —2)0+2
(@ =1 Y a—1+28—ap)e1+26-ab

20—2+28—af
(20— 2428 — afpa—2+28-ap P o

Let
f2(t) = —qi(t,a) = (b —a) "t —a)* ' =(t —a)TH(b— @), € [a,b].
If 6=0o0r a=2,then fo(t) =0, if (2 — ) # 0, we differentiate f5(t) on
(a,b), we obtain
ft) = (b—a)*H(t —a)*[(a=1)(b—a)™* = (y = 1)(t —a)"°].
Observe that fi(¢) has a unique zero, attained at the point
1
— 1\ fe—a)
t:t;:a+<o‘ > (b— a).

v—1
Since f”(t3) < 0, we conclude that
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max fo(t) = fo(t3)

t€la,b]
a—1
_TT a—1Yre (b_a)a+’y*2
y—1\y-1

a—1
_ 268 — ap a—1 B2=a) (b— q)20—2+26—af
a—14+28—af \a—14+26—af

Part II. Now, we prove that max fo(t) < max fi(¢t). If 5 = 0 or
te(a,b] t€la,b]

)

a = 2, then fo(t) = 0, the conclusion is obvious. If 0 < f < 1 and
l<a<2letd= O‘”;Zf, then 1 < § < 2. Applying Lemma 3.2, we obtain

a—1

y—afa—1\re aty—2
t) = b— g
tren[%]h() v—1 <vl> (b=a)

(6 —1)°1
55

o — 1)1 (y = )17+ ey

_la=neiy -1

= (2= 00 -1 (b-a)™ < (b — a2

(b—a)*™7% = max fi(t).

(v +y —2)2tr=2 t€[a,b]
Therefore,
lg1(t, s)| < max { max ¢gi1(t,t) — max gl(t,a)}
t€[a,b] tela,b]

= max { max f1(t), max f2(t)} = max fi(?)

tela,b] te(a,b] te(a,b]
(@ =1 Y a—1+28—ap)e-1+26-ab

20—2+428—af
= Q0—2+25— ap)a—e2m-as P AT o

Thus
1
t < t
|G( 55)| = (b - a)VflI’(oz) 812[2“7};} |gl( ’8)|
- (a _ 1)0‘71(04 —1+28— aﬁ)a71+2ﬁfa5 . (b _ a)afl
>~ (2@ -9 4 2/8 _ aﬁ)Qa—Z-}-Qﬁ—aﬁ F((X) .
The proof is complete. o

Now, we are ready to state and prove the main result of this paper.

THEOREM 3.1. If a nontrivial continuous solution of the fractional
boundary value problem
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(DPu)(t) +q(thu(t) =0, a<t<b l<a<2 0<B<,

m—2
u(@) =0, u(b) = Bul&),
=1

exists, where q is a real and continuous function in [a,b], then

Fa) 1
/!q !ds> B s (3.1)

Proof. Let B = Cla,b] be the set of real valued and continuous
functions in [a,b]. Then B is a Banach space with respect to the Chebyshev
norm ||ul| = supsefqy [u(t)|. It follows from Lemma 3.1 that a solution u
to the boundary value problem satisfies the integral equation

/Gts u(s)ds + T|(t) /me:Qﬁz G(&i, s)q(s)u(s)ds

Now, an application Lemma 3.3 yields

_ a 1 b
fu < M t <1+Zﬂz >) [ sl

which implies that (3.1) holds. O

Let =0 in Theorem 3.1, then we have the following result.

COROLLARY 3.1. If a nontrival solution to the fractional boundary
value problem

(Dgru)(t) +q(t)u(t) =0, a<t<b l<a<2,
m—2
u(a) - Z Biu gz
exists, where ¢ is a real and contmuous function 1'11 [a, b], then

b 4 b - a Z /BL z
[ s =, e

a m—2 '

(1+ Z Bi)b—a)* ™t =" Bi& —a)*!
=1 )

Let 8 =1 in Theorem 3.1, we have the following result.

COROLLARY 3.2. If a nontrival solution to the fractional boundary
value problem
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(“DYu)(t) +qt)u(t) =0, a<t<b 1<a<2,

m—2
> Biu(&),
i=1

exists, where q is a real and continuous function in [a, b], then

m—2
b—a— Bi(&—a)
=1

u(a) =0, u(b)

b I'a)a®
/a |Q(8)|ds Z [(Oé _ 1)(() _ a)]“_l m—2 m—2 (33)
1+ > B)b—a)— > Bil&i—a)
i=1 i=1
REMARK 3.1. Let 81 = P2 ="+ = Bn—2 = 0 in Corollary 3.1, then we
obtain (1.5), let f1 = B3 = -+ = B2 = 0 in Corollary 3.2, we get (1.8).
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