$\frac{\mathsf{De}}{\mathsf{G}}$

ractional Calculus (Print) ISSN 1311-0454 VOLUME 21, NUMBER 3 (2018) (Electronic) ISSN 1314-2224

RESEARCH PAPER

LYAPUNOV-TYPE INEQUALITIES FOR NONLINEAR FRACTIONAL DIFFERENTIAL EQUATION WITH HILFER FRACTIONAL DERIVATIVE UNDER MULTI-POINT BOUNDARY CONDITIONS

Youyu Wang¹, Qichao Wang²

Abstract

In this work, we establish Lyapunov-type inequalities for the fractional boundary value problems with Hilfer fractional derivative under multi-point boundary conditions, the results are new and generalize and improve some early results in the literature.

MSC 2010: 34A40, 26A33, 34B05

Key Words and Phrases: Lyapunov inequality, fractional differential equation, Hilfer fractional derivative, multi-point boundary value problem, Green's function

1. Introduction

The well-known result of Lyapunov [8] states that if u(t) is a nontrivial solution of the differential system

$$u''(t) + r(t)u(t) = 0, \qquad t \in (a, b),$$

$$u(a) = 0 = u(b),$$
(1.1)

where r(t) is a continuous function defined in [a, b], then

$$\int_{a}^{b} |r(t)| dt > \frac{4}{b-a},$$
(1.2)

and the constant 4 cannot be replaced by a larger number.

DE GRUYTER

^{© 2018} Diogenes Co., Sofia

pp. 833-843, DOI: 10.1515/fca-2018-0044

Lyapunov inequality (1.2) is a useful tool in various branches of mathematics including disconjugacy, oscillation theory, and eigenvalue problems. Many improvements and generalizations of the inequality (1.2) have appeared in the literature. A thorough literature review of continuous and discrete Lyapunov-type inequalities and their applications can be found in the survey articles by Cheng [2], Brown and Hinton [1] and Tiryaki [9].

The study of Lyapunov-type inequalities for the differential equation depends on a fractional differential operator was initiated by Ferreira [3]. He first obtained a Lyapunov-type inequality when the differential equation depends on the Riemann-Liouville fractional derivative, the main result is as follows.

THEOREM 1.1. If the following fractional boundary value problem

$$(D_{a^+}^{\alpha}u)(t) + q(t)u(t) = 0, \quad a < t < b, \ 1 < \alpha \le 2,$$
(1.3)

$$u(a) = 0 = u(b),$$
 (1.4)

has a nontrivial solution, where q is a real and continuous function, then

$$\int_{a}^{b} |q(s)| ds > \Gamma(\alpha) \left(\frac{4}{b-a}\right)^{\alpha-1}.$$
(1.5)

One year later, Ferreira [4] obtained a Lyapunov-type inequality when the differential equation depends on the Caputo fractional derivative.

THEOREM 1.2. If a nontrivial continuous solution of the fractional boundary value problem

$$({}^{C}D_{a^{+}}^{\alpha}u)(t) + q(t)u(t) = 0, \quad a < t < b, \ 1 < \alpha \le 2,$$
 (1.6)

$$u(a) = 0 = u(b), (1.7)$$

exists, where q is a real and continuous function, then

$$\int_{a}^{b} |q(s)|ds > \frac{\Gamma(\alpha)\alpha^{\alpha}}{[(\alpha-1)(b-a)]^{\alpha-1}}.$$
(1.8)

Many other generalizations and extensions of inequality (1.2) exist in the literature, see for instance [11] - [16] and references therein.

Motivated by the above works, in this paper, we establish Lyapunovtype inequalities for the fractional boundary value problems with Hilfer fractional derivative under a multi-point boundary condition,

$$(D_{a^+}^{\alpha,\beta}u)(t) + q(t)u(t) = 0, \quad a < t < b, \ 1 < \alpha \le 2, \ 0 \le \beta \le 1,$$
(1.9)

$$u(a) = 0, \ u(b) = \sum_{i=1}^{m-2} \beta_i u(\xi_i),$$
(1.10)

where $D_{a^+}^{\alpha,\beta}$ denotes the Hilfer fractional derivative of order order α and type $0 \le \beta \le 1$.

In this paper, we assume that $a < \xi_1 < \xi_2 < \dots < \xi_{m-2} < b, \ \beta_i \ge 0 \ (i = 1, 2, \dots, m-2), \ 0 \le \sum_{i=1}^{m-2} \beta_i (\xi_i - a)^{1-(2-\alpha)(1-\beta)} < (b-a)^{1-(2-\alpha)(1-\beta)}$ and denote

$$T(t) = \frac{(t-a)^{1-(2-\alpha)(1-\beta)}}{(b-a)^{1-(2-\alpha)(1-\beta)} - \sum_{i=1}^{m-2} \beta_i (\xi_i - a)^{1-(2-\alpha)(1-\beta)}}, \quad a \le t \le b,$$
$$L = \frac{(\alpha-1)^{\alpha-1} (\alpha-1+2\beta-\alpha\beta)^{\alpha-1+2\beta-\alpha\beta}}{(2\alpha-2+2\beta-\alpha\beta)^{2\alpha-2+2\beta-\alpha\beta}}.$$

2. Preliminaries

In this section, we recall the concepts of the Riemann-Liouville fractional integral, the Riemann-Liouville fractional derivative, the Caputo fractional derivative of order $\alpha \geq 0$ and the Hilfer fractional derivative of order α $(n-1 < \alpha \leq n, n \in N)$, and type $0 \leq \beta \leq 1$.

Let I be a certain interval in R. We denote by AC(I; R) the space of real valued and absolutely continuous functions on I. For n = 1, 2, ..., we denote by $AC^n(I; R)$ the space of real valued functions f(x) which have continuous derivatives up to order n-1 on I with $f^{(n-1)} \in AC(I; R)$, that is

$$AC^{n}(I;R) = \left\{ f: I \to R \text{ such that } D^{n-1}f \in AC(I;R) \left(D = \frac{d}{dx} \right) \right\}.$$

Clearly, we have $AC^{1}(I; R) = AC(I; R)$.

DEFINITION 2.1. ([7]) Let $f \in L^1((a,b); R)$, where $(a,b) \in R^2, a < b$. The Riemann-Liouville fractional integral of order $\alpha > 0$ of f is defined by

$$(I_{a^+}^{\alpha}f)(t) = \frac{1}{\Gamma(\alpha)} \int_a^t (t-s)^{\alpha-1} f(s) ds, \quad \text{ a.e. } t \in [a,b].$$

DEFINITION 2.2. ([7]) Let $\alpha > 0$ and m be the smallest integer greater or equal than α . The Riemann-Liouville fractional derivative of order α of a function $f : [a, b] \to R$, where $(a, b) \in \mathbb{R}^2, a < b$, is defined by

$$(D_{a^+}^{\alpha}f)(t) = (D^m I_{a^+}^{m-\alpha}f)(t)$$
$$= \frac{1}{\Gamma(m-\alpha)} \left(\frac{d}{dt}\right)^m \int_a^t (t-s)^{m-\alpha-1} f(s) ds, \quad \text{a.e. } t \in [a,b].$$

DEFINITION 2.3. ([7]) Let $\alpha > 0$ and m be the smallest integer greater or equal than α . The Caputo fractional derivative of order α of a function $f \in AC^m[a, b]$ is defined by

DEFINITION 2.4. ([5], [6]) The Hilfer fractional derivative or generalized Riemann-Liouville fractional derivative of order $\alpha(n-1 < \alpha \leq n, n \in N)$, and type $0 \leq \beta \leq 1$ with respect to t, is defined as

$$(D_{a^+}^{\alpha,\beta}f)(t) = \left(I_{a^+}^{\beta(n-\alpha)}\frac{d^n}{dt^n}\left(I_{a^+}^{(1-\beta)(n-\alpha)}f\right)\right)(t).$$

REMARK 2.1. In the above definition, type β allows $D_{a^+}^{\alpha,\beta}$ to interpolate continuously between the classical Riemann-Liouville fractional derivative and the Caputo fractional derivative. As in the case $\beta = 0$, the definition reduces to the classical Riemann-Liouville fractional derivative and for $\beta = 1$, it gives the Caputo fractional derivative.

In [10], the compositional property of Riemann-Liouville fractional integral operator with the Hilfer fractional derivative operator is obtained.

LEMMA 2.1. ([10]) Let $f \in L^1(a, b)$, $n - 1 < \alpha \le n, n \in \mathbb{N}, 0 \le \beta \le 1$, $I_{a^+}^{(n-\alpha)(1-\beta)} f \in AC^k[a, b]$. Then the Riemann-Liouville fractional integral $I_{a^+}^{\alpha}$ and the Hilfer fractional derivative operator $D_{a^+}^{\alpha,\beta}$ are connected by the relation

$$\begin{pmatrix} I_{a^{+}}^{\alpha} D_{a^{+}}^{\alpha,\beta} f \end{pmatrix}(t) = f(t) \\ -\sum_{k=0}^{n-1} \frac{(t-a)^{k-(n-\alpha)(1-\beta)}}{\Gamma(k-(n-\alpha)(1-\beta)+1)} \lim_{t \to a^{+}} \frac{d^{k}}{dt^{k}} \left(I_{a^{+}}^{(n-\alpha)(1-\beta)} f \right)(t).$$

3. Main results

We begin by writing problem (1.9)-(1.10) in its equivalent integral form.

LEMMA 3.1. If the function $u \in C[a, b]$ is a solution to the boundary value problem (1.9) - (1.10), then u satisfies the integral equation

$$u(t) = \int_{a}^{b} G(t,s)q(s)u(s)ds + T(t) \int_{a}^{b} \sum_{i=1}^{m-2} \beta_{i}G(\xi_{i},s)q(s)u(s)ds,$$

where G(t,s) is defined as

$$G(t,s) = \frac{1}{\Gamma(\alpha)} \begin{cases} \left(\frac{t-a}{b-a}\right)^{1-(2-\alpha)(1-\beta)} (b-s)^{\alpha-1} - (t-s)^{\alpha-1}, & a \le s \le t \le b, \\ \left(\frac{t-a}{b-a}\right)^{1-(2-\alpha)(1-\beta)} (b-s)^{\alpha-1}, & a \le t \le s \le b. \end{cases}$$

P r o o f. From Lemma 2.1, if $u \in C[a, b]$ is a solution to the boundary value problem (1.9)-(1.10), then we have

$$u(t) = c_0 \frac{(t-a)^{-(2-\alpha)(1-\beta)}}{\Gamma(1-(2-\alpha)(1-\beta))} + c_1 \frac{(t-a)^{1-(2-\alpha)(1-\beta)}}{\Gamma(2-(2-\alpha)(1-\beta))} - \int_a^t \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} q(s)u(s)ds,$$

where c_0 and c_1 are some real constants. Since u(a) = 0, we get immediately that $c_0 = 0$, thus

$$u(t) = c_1 \frac{(t-a)^{1-(2-\alpha)(1-\beta)}}{\Gamma(2-(2-\alpha)(1-\beta))} - \frac{1}{\Gamma(\alpha)} \int_a^t (t-s)^{\alpha-1} q(s) u(s) ds.$$

The boundary condition $u(b) = \sum_{i=1}^{m-2} \beta_i u(\xi_i)$ yields

$$c_{1} \frac{(b-a)^{1-(2-\alpha)(1-\beta)}}{\Gamma(2-(2-\alpha)(1-\beta))} - \frac{1}{\Gamma(\alpha)} \int_{a}^{b} (b-s)^{\alpha-1} q(s)u(s)ds$$

= $\sum_{i=1}^{m-2} \beta_{i} \left[c_{1} \frac{(\xi_{i}-a)^{1-(2-\alpha)(1-\beta)}}{\Gamma(2-(2-\alpha)(1-\beta))} - \frac{1}{\Gamma(\alpha)} \int_{a}^{\xi_{i}} (\xi_{i}-s)^{\alpha-1} q(s)u(s)ds \right],$
so,
$$c_{1} = \frac{\Gamma(2-(2-\alpha)(1-\beta)) \left[(I_{a+}^{\alpha}qu)(b) - \sum_{i=1}^{m-2} \beta_{i}(I_{a+}^{\alpha}qu)(\xi_{i}) \right]}{(b-a)^{1-(2-\alpha)(1-\beta)} - \sum_{i=1}^{m-2} \beta_{i}(\xi_{i}-a)^{1-(2-\alpha)(1-\beta)}}.$$

Hence

$$u(t) = c_1 \frac{(t-a)^{1-(2-\alpha)(1-\beta)}}{\Gamma(2-(2-\alpha)(1-\beta))} - \frac{1}{\Gamma(\alpha)} \int_a^t (t-s)^{\alpha-1} q(s)u(s)ds$$

$$= \frac{(t-a)^{1-(2-\alpha)(1-\beta)} \left[(I_{a+}^{\alpha}qu)(b) - \sum_{i=1}^{m-2} \beta_i (I_{a+}^{\alpha}qu)(\xi_i) \right]}{(b-a)^{1-(2-\alpha)(1-\beta)} - \sum_{i=1}^{m-2} \beta_i (\xi_i - a)^{1-(2-\alpha)(1-\beta)}} - \frac{1}{\Gamma(\alpha)} \int_a^t (t-s)^{\alpha-1} q(s)u(s)ds,$$
by the relation

$$\frac{1}{(b-a)^{1-(2-\alpha)(1-\beta)} - \sum_{i=1}^{m-2} \beta_i(\xi_i - a)^{1-(2-\alpha)(1-\beta)}} = \frac{1}{(b-a)^{1-(2-\alpha)(1-\beta)}} + \frac{\sum_{i=1}^{m-2} \beta_i(\xi_i - a)^{1-(2-\alpha)(1-\beta)}}{(b-a)^{1-(2-\alpha)(1-\beta)} [(b-a)^{1-(2-\alpha)(1-\beta)} - \sum_{i=1}^{m-2} \beta_i(\xi_i - a)^{1-(2-\alpha)(1-\beta)}]},$$

we obtain

$$\begin{split} u(t) &= \frac{1}{\Gamma(\alpha)} \int_{a}^{b} \frac{(t-a)^{1-(2-\alpha)(1-\beta)}(b-s)^{\alpha-1}}{(b-a)^{1-(2-\alpha)(1-\beta)}} q(s)u(s)ds \\ &- \frac{1}{\Gamma(\alpha)} \int_{a}^{t} (t-s)^{\alpha-1}q(s)u(s)ds \\ &+ \frac{(t-a)^{1-(2-\alpha)(1-\beta)}\sum_{i=1}^{m-2}\beta_{i}\int_{a}^{b} \frac{(\xi_{i}-a)^{1-(2-\alpha)(1-\beta)}(b-s)^{\alpha-1}}{(b-a)^{1-(2-\alpha)(1-\beta)}} q(s)u(s)ds \\ &+ \frac{(t-a)^{1-(2-\alpha)(1-\beta)}\sum_{i=1}^{m-2}\beta_{i}\int_{a}^{b} \frac{(\xi_{i}-a)^{1-(2-\alpha)(1-\beta)}}{(\xi_{i}-a)^{1-(2-\alpha)(1-\beta)}} q(s)u(s)ds \\ &- \frac{(t-a)^{1-(2-\alpha)(1-\beta)}\sum_{i=1}^{m-2}\beta_{i}\int_{a}^{\xi_{i}} (\xi_{i}-s)^{\alpha-1}q(s)u(s)ds \\ &- \frac{(t-a)^{1-(2-\alpha)(1-\beta)}\sum_{i=1}^{m-2}\beta_{i}(\xi_{i}-a)^{1-(2-\alpha)(1-\beta)}]\Gamma(\alpha) \\ &= \int_{a}^{b} G(t,s)q(s)u(s)ds + T(t)\int_{a}^{b}\sum_{i=1}^{m-2}\beta_{i}G(\xi_{i},s)q(s)u(s)ds. \end{split}$$

which concludes the proof.

Lemma 3.2. ([4]) If
$$1 < \delta < 2$$
, then
 $(2 - \delta)(\delta - 1)^{\frac{\delta - 1}{2 - \delta}} \leq \frac{(\delta - 1)^{\delta - 1}}{\delta^{\delta}}.$

LEMMA 3.3. The function G defined in Lemma 3.1 satisfies the following property:

$$|G(t,s)| \leq \frac{(\alpha-1)^{\alpha-1}(\alpha-1+2\beta-\alpha\beta)^{\alpha-1+2\beta-\alpha\beta}}{(2\alpha-2+2\beta-\alpha\beta)^{2\alpha-2+2\beta-\alpha\beta}} \cdot \frac{(b-a)^{\alpha-1}}{\Gamma(\alpha)},$$

where $(t,s) \in [a,b] \times [a,b].$

P r o o f. We divide our proof in two parts.

Part I. Denote $\gamma - 1 = 1 - (2 - \alpha)(1 - \beta) = \alpha - 1 + 2\beta - \alpha\beta$, the function G(t, s) can be rewritten as the following form

$$(b-a)^{\gamma-1}\Gamma(\alpha)G(t,s) = \begin{cases} g_1(t,s), & a \le s \le t \le b, \\ g_2(t,s), & a \le t \le s \le b, \end{cases}$$

where

$$g_1(t,s) = (t-a)^{\gamma-1}(b-s)^{\alpha-1} - (b-a)^{\gamma-1}(t-s)^{\alpha-1}, \quad a \le s \le t \le b, g_2(t,s) = (t-a)^{\gamma-1}(b-s)^{\alpha-1}, \quad a \le t \le s \le b.$$

Obviously, $g_2(t, s)$ is an increasing function in t. And $0 \le g_2(t, s) \le g_2(s, s)$. Now we turn our attention to the function $g_1(t, s)$. We start by fixing an arbitrary $t \in [a, b)$. Differentiating $g_1(t, s)$ with respect to s, and by the condition $0 \le (\frac{t-s}{b-s})^{2-\alpha} \le 1, 0 \le (\frac{t-a}{b-a})^{\gamma-1} \le 1$, we get

838

$$\frac{\partial g_1(t,s)}{\partial s} = (\alpha - 1)[(b-a)^{\gamma - 1}(t-s)^{\alpha - 2} - (t-a)^{\gamma - 1}(b-s)^{\alpha - 2}]$$
$$= (\alpha - 1)(b-a)^{\gamma - 1}(t-s)^{\alpha - 2} \left[1 - \left(\frac{t-a}{b-a}\right)^{\gamma - 1}\left(\frac{t-s}{b-s}\right)^{2-\alpha}\right] \ge 0.$$

Hence, for a given $t, g_1(t, s)$ is an increasing function of $s \in [a, t]$. Therefore, we have

$$g_1(t,a) \le g_1(t,s) \le g_1(t,t).$$

Since

$$g_1(t,a) = (t-a)^{\gamma-1}(b-a)^{\alpha-1} - (b-a)^{\gamma-1}(t-a)^{\alpha-1} = (t-a)^{\gamma-1}(b-a)^{\alpha-1} \left[1 - \left(\frac{b-a}{t-a}\right)^{2\beta-\alpha\beta}\right] < 0,$$

therefore,

$$|g_1(t,s)| \le \max\left\{\max_{t\in[a,b]}g_1(t,t), -\max_{t\in[a,b]}g_1(t,a)\right\}.$$

Let

$$f_1(t) = g_1(t,t) = (t-a)^{\gamma-1}(b-t)^{\alpha-1}, \quad t \in [a,b].$$

Now, we differentiate $f_1(t)$ on (a, b), and we obtain

$$f_1'(t) = (t-a)^{\gamma-2}(b-t)^{\alpha-2}[(\gamma-1)(b-t) - (\alpha-1)(t-a)].$$

Observe that $f'_1(t)$ has a unique zero, attained at the point

$$t = t_1^* = a + \frac{\gamma - 1}{\alpha + \gamma - 2}(b - a).$$

Since, $f_1''(t_1^*) \leq 0$, we conclude that

$$\max_{t \in [a,b]} f_1(t) = f_1(t_1^*) = \frac{(\alpha - 1)^{\alpha - 1} (\gamma - 1)^{\gamma - 1}}{(\alpha + \gamma - 2)^{\alpha + \gamma - 2}} (b - a)^{\alpha + \gamma - 2} = \frac{(\alpha - 1)^{\alpha - 1} (\alpha - 1 + 2\beta - \alpha\beta)^{\alpha - 1 + 2\beta - \alpha\beta}}{(2\alpha - 2 + 2\beta - \alpha\beta)^{2\alpha - 2 + 2\beta - \alpha\beta}} (b - a)^{2\alpha - 2 + 2\beta - \alpha\beta}.$$

Let

 $f_2(t) = -g_1(t,a) = (b-a)^{\gamma-1}(t-a)^{\alpha-1} - (t-a)^{\gamma-1}(b-a)^{\alpha-1}, t \in [a,b].$ If $\beta = 0$ or $\alpha = 2$, then $f_2(t) \equiv 0$, if $\beta(2-\alpha) \neq 0$, we differentiate $f_2(t)$ on (a,b), we obtain

 $f'_2(t) = (b-a)^{\alpha-1}(t-a)^{\gamma-2}[(\alpha-1)(b-a)^{\gamma-\alpha} - (\gamma-1)(t-a)^{\gamma-\alpha}].$ Observe that $f'_2(t)$ has a unique zero, attained at the point

$$t = t_2^* = a + \left(\frac{\alpha - 1}{\gamma - 1}\right)^{\frac{1}{\beta(2 - \alpha)}} (b - a).$$

Since $f''(t_2^*) \leq 0$, we conclude that

$$\max_{t \in [a,b]} f_2(t) = f_2(t_2^*)$$
$$= \frac{\gamma - \alpha}{\gamma - 1} \left(\frac{\alpha - 1}{\gamma - 1}\right)^{\frac{\alpha - 1}{\gamma - \alpha}} (b - a)^{\alpha + \gamma - 2}$$
$$= \frac{2\beta - \alpha\beta}{\alpha - 1 + 2\beta - \alpha\beta} \left(\frac{\alpha - 1}{\alpha - 1 + 2\beta - \alpha\beta}\right)^{\frac{\alpha - 1}{\beta(2 - \alpha)}} (b - a)^{2\alpha - 2 + 2\beta - \alpha\beta}.$$

Part II. Now, we prove that $\max_{t \in [a,b]} f_2(t) \leq \max_{t \in [a,b]} f_1(t)$. If $\beta = 0$ or $\alpha = 2$, then $f_2(t) \equiv 0$, the conclusion is obvious. If $0 < \beta < 1$ and $1 < \alpha < 2$, let $\delta = \frac{\alpha + \gamma - 2}{\gamma - 1}$, then $1 < \delta < 2$. Applying Lemma 3.2, we obtain $\max_{t \in [a,b]} f_2(t) = \frac{\gamma - \alpha}{\gamma - 1} \left(\frac{\alpha - 1}{\gamma - 1}\right)^{\frac{\alpha - 1}{\gamma - \alpha}} (b - a)^{\alpha + \gamma - 2}$

$$= (2-\delta)(\delta-1)^{\frac{\delta-1}{2-\delta}}(b-a)^{\alpha+\gamma-2} \le \frac{(\delta-1)^{\delta-1}}{\delta^{\delta}}(b-a)^{\alpha+\gamma-2}$$
$$= \left[\frac{(\alpha-1)^{\alpha-1}(\gamma-1)^{\gamma-1}}{(\alpha+\gamma-2)^{\alpha+\gamma-2}}\right]^{\frac{1}{\gamma-1}}(b-a)^{\alpha+\gamma-2}$$
$$< \frac{(\alpha-1)^{\alpha-1}(\gamma-1)^{\gamma-1}}{(\alpha+\gamma-2)^{\alpha+\gamma-2}}(b-a)^{\alpha+\gamma-2} = \max_{t\in[a,b]} f_1(t).$$

Therefore,

$$\begin{aligned} |g_1(t,s)| &\leq \max\left\{ \max_{t \in [a,b]} g_1(t,t) - \max_{t \in [a,b]} g_1(t,a) \right\} \\ &= \max\left\{ \max_{t \in [a,b]} f_1(t), \max_{t \in [a,b]} f_2(t) \right\} = \max_{t \in [a,b]} f_1(t) \\ &= \frac{(\alpha - 1)^{\alpha - 1} (\alpha - 1 + 2\beta - \alpha\beta)^{\alpha - 1 + 2\beta - \alpha\beta}}{(2\alpha - 2 + 2\beta - \alpha\beta)^{2\alpha - 2 + 2\beta - \alpha\beta}} (b - a)^{2\alpha - 2 + 2\beta - \alpha\beta}. \end{aligned}$$

Thus

$$\begin{aligned} |G(t,s)| &\leq \frac{1}{(b-a)^{\gamma-1}\Gamma(\alpha)} \max_{s\in[a,b]} |g_1(t,s)| \\ &\leq \frac{(\alpha-1)^{\alpha-1}(\alpha-1+2\beta-\alpha\beta)^{\alpha-1+2\beta-\alpha\beta}}{(2\alpha-2+2\beta-\alpha\beta)^{2\alpha-2+2\beta-\alpha\beta}} \cdot \frac{(b-a)^{\alpha-1}}{\Gamma(\alpha)}. \end{aligned}$$

The proof is complete.

Now, we are ready to state and prove the main result of this paper.

THEOREM 3.1. If a nontrivial continuous solution of the fractional boundary value problem

840

$$(D_{a^+}^{\alpha,\beta}u)(t) + q(t)u(t) = 0, \quad a < t < b, \ 1 < \alpha \le 2, \ 0 \le \beta \le 1,$$
$$u(a) = 0, \quad u(b) = \sum_{i=1}^{m-2} \beta_i u(\xi_i),$$

exists, where q is a real and continuous function in [a, b], then

$$\int_{a}^{b} |q(s)| ds \ge \frac{\Gamma(\alpha)}{(b-a)^{\alpha-1}L} \cdot \frac{1}{1 + \sum_{i=1}^{m-2} \beta_i T(b)}.$$
 (3.1)

P r o o f. Let B = C[a, b] be the set of real valued and continuous functions in [a, b]. Then B is a Banach space with respect to the Chebyshev norm $||u|| = \sup_{t \in [a,b]} |u(t)|$. It follows from Lemma 3.1 that a solution uto the boundary value problem satisfies the integral equation

$$u(t) = \int_{a}^{b} G(t,s)q(s)u(s)ds + T(t) \int_{a}^{b} \sum_{i=1}^{m-2} \beta_{i}G(\xi_{i},s)q(s)u(s)ds,$$

Now, an application Lemma 3.3 yields

$$\|u\| \leq \frac{(b-a)^{\alpha-1}L}{\Gamma(\alpha)} \left(1 + \sum_{i=1}^{m-2} \beta_i T(b)\right) \int_a^b |q(s)| ds \|u\|,$$

which implies that (3.1) holds.

Let $\beta = 0$ in Theorem 3.1, then we have the following result.

COROLLARY 3.1. If a nontrival solution to the fractional boundary value problem

$$(D_{a^{+}}^{\alpha}u)(t) + q(t)u(t) = 0, \quad a < t < b, \ 1 < \alpha \le 2,$$
$$u(a) = 0, \quad u(b) = \sum_{i=1}^{m-2} \beta_{i}u(\xi_{i}),$$

exists, where q is a real and continuous function in [a, b], then

$$\int_{a}^{b} |q(s)| ds \ge \Gamma(\alpha) \left(\frac{4}{b-a}\right)^{\alpha-1} \frac{(b-a)^{\alpha-1} - \sum_{i=1}^{m-2} \beta_i (\xi_i - a)^{\alpha-1}}{(1+\sum_{i=1}^{m-2} \beta_i)(b-a)^{\alpha-1} - \sum_{i=1}^{m-2} \beta_i (\xi_i - a)^{\alpha-1}}.$$
 (3.2)

Let $\beta = 1$ in Theorem 3.1, we have the following result.

COROLLARY 3.2. If a nontrival solution to the fractional boundary value problem

$$({}^{C}D_{a^{+}}^{\alpha}u)(t) + q(t)u(t) = 0, \quad a < t < b, \ 1 < \alpha \le 2,$$
$$u(a) = 0, \quad u(b) = \sum_{i=1}^{m-2} \beta_{i}u(\xi_{i}),$$

exists, where q is a real and continuous function in [a, b], then

$$\int_{a}^{b} |q(s)| ds \ge \frac{\Gamma(\alpha)\alpha^{\alpha}}{[(\alpha-1)(b-a)]^{\alpha-1}} \frac{b-a-\sum_{i=1}^{m-2}\beta_{i}(\xi_{i}-a)}{(1+\sum_{i=1}^{m-2}\beta_{i})(b-a)-\sum_{i=1}^{m-2}\beta_{i}(\xi_{i}-a)}.$$
 (3.3)

REMARK 3.1. Let $\beta_1 = \beta_2 = \cdots = \beta_{m-2} = 0$ in Corollary 3.1, then we obtain (1.5), let $\beta_1 = \beta_2 = \cdots = \beta_{m-2} = 0$ in Corollary 3.2, we get (1.8).

Acknowledgements

The author would like to express their gratitude to Professor V. Kiryakova and the anonymous referee for his (or her) valuable suggestions, which have greatly improved the original manuscript.

References

- R.C. Brown, D.B. Hinton, Lyapunov inequalities and their applications. In: Survey on Classical Inequalities (Ed. T.M. Rassias), Kluwer Academic Publishers, Dordrecht, 2000, 1–25.
- [2] S. Cheng, Lyapunov inequalities for differential and difference equations. *Fasc. Math.* 23 (1991), 25–41.
- [3] R.A.C. Ferreira, A Lyapunov-type inequality for a fractional boundary value problem. *Fract. Calc. Appl. Anal.* **16**, No 4 (2013), 978–984; DOI: 0.2478/s13540-013-0060-5; https://www.degruyter.com/

view/j/fca.2013.16.issue-4/issue-files/fca.2013.16.issue-4.xml.

- [4] R.A.C. Ferreira, On a Lyapunov-type inequality and the zeros of a certain Mittag-Leffler function. J. Math. Anal. Appl. 412, No 2 (2014), 1058–1063.
- [5] R. Hilfer, Fractional calculus and regular variation in thermodynamics. In: Applications of Fractional Calculus in Physics (Ed. R. Hilfer), World Scientific, Singapore (2000).
- [6] R. Hilfer, Y. Luchko and Z. Tomovski, Operational method for the solution of fractional differential equations with generalized Riemann-Liouville fractional derivatives. *Fract. Calc. Appl. Anal.* 12, No 3 (2009), 299–318.

- [7] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, *Theory and Applications of Fractional Differential Equations*. North-Holland Math. Studies # 204, Elsevier, Amsterdam, 2006.
- [8] A.M. Lyapunov, Problème général de la stabilité du mouvement (French Transl. of a Russian paper dated 1893). Ann. Fac. Sci. Univ. Toulouse 2 (1907), 27–247 (Reprinted as: Ann. Math. Studies, No 17, Princeton Univ. Press, Princeton, NJ, USA, 1947).
- [9] A. Tiryaki, Recent development of Lyapunov-type inequalities. Adv. Dyn. Syst. Appl., 5 No 2 (2010), 231–248.
- [10] Z. Tomovski, Generalized Cauchy type problems for nonlinear fractional differential equations with composite fractional derivative operator. *Nonlinear Analysis* 75, No 7 (2012), 3364–3384.
- [11] M. Jleli, B. Samet, Lyapunov-type inequalities for a fractional differential equation with mixed boundary conditions. *Math. Inequal. Appl.* 18, No 2 (2015), 443–451.
- [12] M. Jleli, B. Samet, Lyapunov-type inequalities for fractional boundary value problems. *Electr. J. Differ. Equ.* 88 (2015), 1–11.
- [13] D. O'Regan, B. Samet, Lyapunov-type inequality for a class of fractional differential equations. J. Inequal. Appl. 247 (2015), 1–10.
- [14] J. Rong, C. Bai, Lyapunov-type inequality for a fractional differential equation with fractional boundary condition. Adv. Difference Equ. 82 (2015), 1–10.
- [15] M. Jleli, M. Kirane, B Samet, Lyapunov-type inequalities for a fractional p-Laplacian system. *Fract. Calc. Appl. Anal.* 20, No 6 (2017), 1485–1506.
- [16] A. Alsaedi, B. Ahmad, M. Kirane, A survey of useful inequalities in fractional calculus. *Fract. Calc. Appl. Anal.* 20, No 3 (2017), 574–594; DOI: 10.1515/fca-2017-0031; https://www.degruyter.com/ view/j/fca.2017.20.issue-3/issue-files/fca.2017.20.issue-3.xml.

^{1,2} Department of Mathematics
 Tianjin University of Finance and Economics
 Tianjin 300222, P. R. CHINA

¹ e-mail: wang_youyu@163.com

Received: April 16, 2017 Revised: June 5, 2018

² e-mail: qichaowang@163.com

Please cite to this paper as published in:

Fract. Calc. Appl. Anal., Vol. **21**, No 3 (2018), pp. 833–843, DOI: 10.1515/fca-2018-0044