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Abstract

In this work, we establish Lyapunov-type inequalities for the fractional
boundary value problems with Hilfer fractional derivative under multi-point
boundary conditions, the results are new and generalize and improve some
early results in the literature.
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1. Introduction

The well-known result of Lyapunov [8] states that if u(t) is a nontrivial
solution of the differential system

u′′(t) + r(t)u(t) = 0, t ∈ (a, b),
u(a) = 0 = u(b),

(1.1)

where r(t) is a continuous function defined in [a, b], then∫ b

a
|r(t)|dt > 4

b− a
, (1.2)

and the constant 4 cannot be replaced by a larger number.
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Lyapunov inequality (1.2) is a useful tool in various branches of mathe-
matics including disconjugacy, oscillation theory, and eigenvalue problems.
Many improvements and generalizations of the inequality (1.2) have ap-
peared in the literature. A thorough literature review of continuous and
discrete Lyapunov-type inequalities and their applications can be found in
the survey articles by Cheng [2], Brown and Hinton [1] and Tiryaki [9].

The study of Lyapunov-type inequalities for the differential equation
depends on a fractional differential operator was initiated by Ferreira [3].
He first obtained a Lyapunov-type inequality when the differential equation
depends on the Riemann-Liouville fractional derivative, the main result is
as follows.

Theorem 1.1. If the following fractional boundary value problem

(Dα
a+u)(t) + q(t)u(t) = 0, a < t < b, 1 < α ≤ 2, (1.3)

u(a) = 0 = u(b), (1.4)

has a nontrivial solution, where q is a real and continuous function, then∫ b

a
|q(s)|ds > Γ(α)

(
4

b− a

)α−1

. (1.5)

One year later, Ferreira [4] obtained a Lyapunov-type inequality when
the differential equation depends on the Caputo fractional derivative.

Theorem 1.2. If a nontrivial continuous solution of the fractional
boundary value problem

(CDα
a+u)(t) + q(t)u(t) = 0, a < t < b, 1 < α ≤ 2, (1.6)

u(a) = 0 = u(b), (1.7)

exists, where q is a real and continuous function, then∫ b

a
|q(s)|ds > Γ(α)αα

[(α − 1)(b− a)]α−1
. (1.8)

Many other generalizations and extensions of inequality (1.2) exist in
the literature, see for instance [11] – [16] and references therein.

Motivated by the above works, in this paper, we establish Lyapunov-
type inequalities for the fractional boundary value problems with Hilfer
fractional derivative under a multi-point boundary condition,

(Dα,β
a+
u)(t) + q(t)u(t) = 0, a < t < b, 1 < α ≤ 2, 0 ≤ β ≤ 1, (1.9)

u(a) = 0, u(b) =
m−2∑
i=1

βiu(ξi), (1.10)
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where Dα,β
a+

denotes the Hilfer fractional derivative of order order α and
type 0 ≤ β ≤ 1.

In this paper, we assume that a < ξ1 < ξ2 < · · · < ξm−2 < b, βi ≥ 0 (i =

1, 2, . . . ,m−2), 0 ≤
∑m−2

i=1 βi(ξi−a)1−(2−α)(1−β) < (b−a)1−(2−α)(1−β) and
denote

T (t) =
(t− a)1−(2−α)(1−β)

(b− a)1−(2−α)(1−β) −
∑m−2

i=1 βi(ξi − a)1−(2−α)(1−β) , a ≤ t ≤ b,

L =
(α− 1)α−1(α− 1 + 2β − αβ)α−1+2β−αβ

(2α − 2 + 2β − αβ)2α−2+2β−αβ .

2. Preliminaries

In this section, we recall the concepts of the Riemann-Liouville frac-
tional integral, the Riemann-Liouville fractional derivative, the Caputo
fractional derivative of order α ≥ 0 and the Hilfer fractional derivative
of order α (n− 1 < α ≤ n, n ∈ N), and type 0 ≤ β ≤ 1.

Let I be a certain interval in R. We denote by AC(I;R) the space of
real valued and absolutely continuous functions on I. For n = 1, 2, . . . , we
denote by ACn(I;R) the space of real valued functions f(x) which have

continuous derivatives up to order n− 1 on I with f (n−1) ∈ AC(I;R), that
is

ACn(I;R) =

{
f : I → R such that Dn−1f ∈ AC(I;R)

(
D =

d

dx

)}
.

Clearly, we have AC1(I;R) = AC(I;R).

Definition 2.1. ([7]) Let f ∈ L1((a, b);R), where (a, b) ∈ R2, a < b.
The Riemann-Liouville fractional integral of order α > 0 of f is defined by

(Iαa+f)(t) =
1

Γ(α)

∫ t

a
(t− s)α−1f(s)ds, a.e. t ∈ [a, b].

Definition 2.2. ([7]) Let α > 0 and m be the smallest integer greater
or equal than α. The Riemann-Liouville fractional derivative of order α of
a function f : [a, b] → R, where (a, b) ∈ R2, a < b, is defined by

(Dα
a+f)(t) = (DmIm−α

a+
f)(t)

=
1

Γ(m− α)

( d
dt

)m ∫ t

a
(t− s)m−α−1f(s)ds, a.e. t ∈ [a, b].

Definition 2.3. ([7]) Let α > 0 and m be the smallest integer greater
or equal than α. The Caputo fractional derivative of order α of a function
f ∈ ACm[a, b] is defined by
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(CDα
a+f)(t) = (Im−α

a+
Dmf)(t)

=
1

Γ(m− α)

∫ t

a
(t− s)m−α−1f (m)(s)ds, a.e. t ∈ [a, b].

Definition 2.4. ([5], [6]) The Hilfer fractional derivative or general-
ized Riemann-Liouville fractional derivative of order α(n − 1 < α ≤ n, n ∈
N), and type 0 ≤ β ≤ 1 with respect to t, is defined as

(Dα,β
a+
f)(t) =

(
I
β(n−α)
a+

dn

dtn

(
I
(1−β)(n−α)
a+

f
))

(t).

Remark 2.1. In the above definition, type β allows Dα,β
a+

to interpolate
continuously between the classical Riemann-Liouville fractional derivative
and the Caputo fractional derivative. As in the case β = 0, the definition
reduces to the classical Riemann-Liouville fractional derivative and for β =
1, it gives the Caputo fractional derivative.

In [10], the compositional property of Riemann-Liouville fractional in-
tegral operator with the Hilfer fractional derivative operator is obtained.

Lemma 2.1. ([10]) Let f ∈ L1(a, b), n − 1 < α ≤ n, n ∈ N, 0 ≤ β ≤ 1,

I
(n−α)(1−β)
a+

f ∈ ACk[a, b]. Then the Riemann-Liouville fractional integral

Iαa+ and the Hilfer fractional derivative operator Dα,β
a+

are connected by the
relation(
Iαa+D

α,β
a+
f
)
(t) = f(t)

−
n−1∑
k=0

(t− a)k−(n−α)(1−β)

Γ(k − (n− α)(1− β) + 1)
lim
t→a+

dk

dtk

(
I
(n−α)(1−β)
a+

f
)
(t).

3. Main results

We begin by writing problem (1.9)-(1.10) in its equivalent integral form.

Lemma 3.1. If the function u ∈ C[a, b] is a solution to the boundary
value problem (1.9) − (1.10), then u satisfies the integral equation

u(t) =

∫ b

a
G(t, s)q(s)u(s)ds + T (t)

∫ b

a

m−2∑
i=1

βiG(ξi, s)q(s)u(s)ds,

where G(t, s) is defined as
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G(t, s)=
1

Γ(α)

⎧⎪⎨⎪⎩
(
t−a
b−a
)1−(2−α)(1−β)

(b− s)α−1−(t− s)α−1, a ≤ s ≤ t ≤ b,(
t−a
b−a
)1−(2−α)(1−β)

(b− s)α−1, a ≤ t ≤ s ≤ b.

P r o o f. From Lemma 2.1, if u ∈ C[a, b] is a solution to the boundary
value problem (1.9)-(1.10), then we have

u(t) =c0
(t− a)−(2−α)(1−β)

Γ(1− (2− α)(1 − β))
+ c1

(t− a)1−(2−α)(1−β)

Γ(2− (2− α)(1 − β))

−
∫ t

a

(t− s)α−1

Γ(α)
q(s)u(s)ds,

where c0 and c1 are some real constants. Since u(a) = 0, we get immediately
that c0 = 0, thus

u(t) = c1
(t− a)1−(2−α)(1−β)

Γ(2− (2− α)(1 − β))
− 1

Γ(α)

∫ t

a
(t− s)α−1q(s)u(s)ds.

The boundary condition u(b) =
∑m−2

i=1 βiu(ξi) yields

c1
(b− a)1−(2−α)(1−β)

Γ(2− (2− α)(1 − β))
− 1

Γ(α)

∫ b

a
(b− s)α−1q(s)u(s)ds

=

m−2∑
i=1

βi

[
c1

(ξi − a)1−(2−α)(1−β)

Γ(2− (2− α)(1 − β))
− 1

Γ(α)

∫ ξi

a
(ξi − s)α−1q(s)u(s)ds

]
,

so,

c1 =
Γ(2− (2− α)(1 − β))

[
(Iαa+qu)(b) −

∑m−2
i=1 βi(I

α
a+qu)(ξi)

]
(b− a)1−(2−α)(1−β) −

∑m−2
i=1 βi(ξi − a)1−(2−α)(1−β) .

Hence

u(t) = c1
(t− a)1−(2−α)(1−β)

Γ(2− (2 − α)(1 − β))
− 1

Γ(α)

∫ t

a
(t− s)α−1q(s)u(s)ds

=
(t− a)1−(2−α)(1−β)

[
(Iαa+qu)(b)−

∑m−2
i=1 βi(I

α
a+qu)(ξi)

]
(b− a)1−(2−α)(1−β) −

∑m−2
i=1 βi(ξi − a)1−(2−α)(1−β)

− 1

Γ(α)

∫ t

a
(t− s)α−1q(s)u(s)ds,

by the relation
1

(b− a)1−(2−α)(1−β) −
∑m−2

i=1 βi(ξi − a)1−(2−α)(1−β) =
1

(b− a)1−(2−α)(1−β)

+

∑m−2
i=1 βi(ξi − a)1−(2−α)(1−β)

(b− a)1−(2−α)(1−β)[(b− a)1−(2−α)(1−β) −
∑m−2

i=1 βi(ξi − a)1−(2−α)(1−β)]
,
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we obtain

u(t) =
1

Γ(α)

∫ b

a

(t− a)1−(2−α)(1−β)(b− s)α−1

(b− a)1−(2−α)(1−β) q(s)u(s)ds

− 1

Γ(α)

∫ t

a
(t− s)α−1q(s)u(s)ds

+
(t− a)1−(2−α)(1−β)∑m−2

i=1 βi
∫ b
a

(ξi−a)1−(2−α)(1−β)(b−s)α−1

(b−a)1−(2−α)(1−β) q(s)u(s)ds

[(b− a)1−(2−α)(1−β) −
∑m−2

i=1 βi(ξi − a)1−(2−α)(1−β)]Γ(α)

−
(t− a)1−(2−α)(1−β)∑m−2

i=1 βi
∫ ξi
a (ξi − s)α−1q(s)u(s)ds

[(b− a)1−(2−α)(1−β) −
∑m−2

i=1 βi(ξi − a)1−(2−α)(1−β)]Γ(α)

=

∫ b

a
G(t, s)q(s)u(s)ds + T (t)

∫ b

a

m−2∑
i=1

βiG(ξi, s)q(s)u(s)ds.

which concludes the proof. �

Lemma 3.2. ([4]) If 1 < δ < 2, then

(2− δ)(δ − 1)
δ−1
2−δ ≤ (δ − 1)δ−1

δδ
.

Lemma 3.3. The function G defined in Lemma 3.1 satisfies the follow-
ing property:

|G(t, s)| ≤ (α− 1)α−1(α− 1 + 2β − αβ)α−1+2β−αβ

(2α − 2 + 2β − αβ)2α−2+2β−αβ · (b− a)α−1

Γ(α)
,

where (t, s) ∈ [a, b] × [a, b].

P r o o f. We divide our proof in two parts.

Part I. Denote γ − 1 = 1 − (2 − α)(1 − β) = α − 1 + 2β − αβ, the
function G(t, s) can be rewritten as the following form

(b− a)γ−1Γ(α)G(t, s) =

{
g1(t, s), a ≤ s ≤ t ≤ b,

g2(t, s), a ≤ t ≤ s ≤ b,
where

g1(t, s) = (t− a)γ−1(b− s)α−1 − (b− a)γ−1(t− s)α−1, a ≤ s ≤ t ≤ b,
g2(t, s) = (t− a)γ−1(b− s)α−1, a ≤ t ≤ s ≤ b.

Obviously, g2(t, s) is an increasing function in t. And 0 ≤ g2(t, s) ≤ g2(s, s).
Now we turn our attention to the function g1(t, s). We start by fixing an
arbitrary t ∈ [a, b). Differentiating g1(t, s) with respect to s, and by the
condition 0 ≤ ( t−sb−s)

2−α ≤ 1, 0 ≤ ( t−ab−a)
γ−1 ≤ 1, we get
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∂g1(t, s)

∂s
= (α− 1)[(b− a)γ−1(t− s)α−2 − (t− a)γ−1(b− s)α−2]

= (α− 1)(b− a)γ−1(t− s)α−2

[
1−

(
t− a

b− a

)γ−1( t− s

b− s

)2−α]
≥0.

Hence, for a given t, g1(t, s) is an increasing function of s ∈ [a, t]. Therefore,
we have

g1(t, a) ≤ g1(t, s) ≤ g1(t, t).
Since

g1(t, a) = (t− a)γ−1(b− a)α−1 − (b− a)γ−1(t− a)α−1

= (t− a)γ−1(b− a)α−1

[
1−

(
b−a
t−a
)2β−αβ]

< 0,

therefore,

|g1(t, s)| ≤ max

{
max
t∈[a,b]

g1(t, t),− max
t∈[a,b]

g1(t, a)

}
.

Let

f1(t) = g1(t, t) = (t− a)γ−1(b− t)α−1, t ∈ [a, b].

Now, we differentiate f1(t) on (a, b), and we obtain

f ′1(t) = (t− a)γ−2(b− t)α−2[(γ − 1)(b − t)− (α− 1)(t− a)].

Observe that f ′1(t) has a unique zero, attained at the point

t = t∗1 = a+
γ − 1

α+ γ − 2
(b− a).

Since, f ′′1 (t
∗
1) ≤ 0, we conclude that

max
t∈[a,b]

f1(t) = f1(t
∗
1)

=
(α− 1)α−1(γ − 1)γ−1

(α+ γ − 2)α+γ−2
(b− a)α+γ−2

=
(α− 1)α−1(α− 1 + 2β − αβ)α−1+2β−αβ

(2α − 2 + 2β − αβ)2α−2+2β−αβ (b− a)2α−2+2β−αβ .

Let

f2(t) = −g1(t, a) = (b− a)γ−1(t− a)α−1−(t− a)γ−1(b− a)α−1, t ∈ [a, b].

If β = 0 or α = 2, then f2(t) ≡ 0, if β(2− α) �= 0, we differentiate f2(t) on
(a, b), we obtain

f ′2(t) = (b− a)α−1(t− a)γ−2[(α− 1)(b − a)γ−α − (γ − 1)(t− a)γ−α].
Observe that f ′2(t) has a unique zero, attained at the point

t = t∗2 = a+

(
α− 1

γ − 1

) 1
β(2−α)

(b− a).

Since f ′′(t∗2) ≤ 0, we conclude that
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max
t∈[a,b]

f2(t) = f2(t
∗
2)

=
γ − α

γ − 1

(
α− 1

γ − 1

) α−1
γ−α

(b− a)α+γ−2

=
2β − αβ

α− 1 + 2β − αβ

(
α− 1

α− 1 + 2β − αβ

) α−1
β(2−α)

(b− a)2α−2+2β−αβ .

Part II. Now, we prove that max
t∈[a,b]

f2(t) ≤ max
t∈[a,b]

f1(t). If β = 0 or

α = 2, then f2(t) ≡ 0, the conclusion is obvious. If 0 < β < 1 and

1 < α < 2, let δ = α+γ−2
γ−1 , then 1 < δ < 2. Applying Lemma 3.2, we obtain

max
t∈[a,b]

f2(t) =
γ − α

γ − 1

(
α− 1

γ − 1

) α−1
γ−α

(b− a)α+γ−2

= (2− δ)(δ − 1)
δ−1
2−δ (b− a)α+γ−2 ≤ (δ − 1)δ−1

δδ
(b− a)α+γ−2

=

[
(α− 1)α−1(γ − 1)γ−1

(α+ γ − 2)α+γ−2

] 1
γ−1

(b− a)α+γ−2

<
(α− 1)α−1(γ − 1)γ−1

(α+ γ − 2)α+γ−2
(b− a)α+γ−2 = max

t∈[a,b]
f1(t).

Therefore,

|g1(t, s)| ≤ max

{
max
t∈[a,b]

g1(t, t)− max
t∈[a,b]

g1(t, a)

}
= max

{
max
t∈[a,b]

f1(t), max
t∈[a,b]

f2(t)

}
= max

t∈[a,b]
f1(t)

=
(α− 1)α−1(α− 1 + 2β − αβ)α−1+2β−αβ

(2α − 2 + 2β − αβ)2α−2+2β−αβ (b− a)2α−2+2β−αβ .

Thus

|G(t, s)| ≤ 1

(b− a)γ−1Γ(α)
max
s∈[a,b]

|g1(t, s)|

≤ (α − 1)α−1(α− 1 + 2β − αβ)α−1+2β−αβ

(2α− 2 + 2β − αβ)2α−2+2β−αβ · (b− a)α−1

Γ(α)
.

The proof is complete. �

Now, we are ready to state and prove the main result of this paper.

Theorem 3.1. If a nontrivial continuous solution of the fractional
boundary value problem
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(Dα,β
a+
u)(t) + q(t)u(t) = 0, a < t < b, 1 < α ≤ 2, 0 ≤ β ≤ 1,

u(a) = 0, u(b) =
m−2∑
i=1

βiu(ξi),

exists, where q is a real and continuous function in [a, b], then∫ b

a
|q(s)|ds ≥ Γ(α)

(b− a)α−1L
· 1

1 +
∑m−2

i=1 βiT (b)
. (3.1)

P r o o f. Let B = C[a, b] be the set of real valued and continuous
functions in [a, b]. Then B is a Banach space with respect to the Chebyshev
norm ‖u‖ = supt∈[a,b] |u(t)|. It follows from Lemma 3.1 that a solution u
to the boundary value problem satisfies the integral equation

u(t) =

∫ b

a
G(t, s)q(s)u(s)ds + T (t)

∫ b

a

m−2∑
i=1

βiG(ξi, s)q(s)u(s)ds,

Now, an application Lemma 3.3 yields

‖u‖ ≤ (b− a)α−1L

Γ(α)

(
1 +

m−2∑
i=1

βiT (b)

)∫ b

a
|q(s)|ds‖u‖,

which implies that (3.1) holds. �

Let β = 0 in Theorem 3.1, then we have the following result.

Corollary 3.1. If a nontrival solution to the fractional boundary
value problem

(Dα
a+u)(t) + q(t)u(t) = 0, a < t < b, 1 < α ≤ 2,

u(a) = 0, u(b) =
m−2∑
i=1

βiu(ξi),

exists, where q is a real and continuous function in [a, b], then

∫ b

a

|q(s)|ds ≥ Γ(α)(
4

b− a
)α−1

(b− a)α−1 −
m−2∑
i=1

βi(ξi − a)α−1

(1 +

m−2∑
i=1

βi)(b − a)α−1 −
m−2∑
i=1

βi(ξi − a)α−1

. (3.2)

Let β = 1 in Theorem 3.1, we have the following result.

Corollary 3.2. If a nontrival solution to the fractional boundary
value problem
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(CDα
a+u)(t) + q(t)u(t) = 0, a < t < b, 1 < α ≤ 2,

u(a) = 0, u(b) =

m−2∑
i=1

βiu(ξi),

exists, where q is a real and continuous function in [a, b], then

∫ b

a

|q(s)|ds ≥ Γ(α)αα

[(α− 1)(b− a)]α−1

b− a−
m−2∑
i=1

βi(ξi − a)

(1 +

m−2∑
i=1

βi)(b − a)−
m−2∑
i=1

βi(ξi − a)

. (3.3)

Remark 3.1. Let β1 = β2 = · · · = βm−2 = 0 in Corollary 3.1, then we
obtain (1.5), let β1 = β2 = · · · = βm−2 = 0 in Corollary 3.2, we get (1.8).
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