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Abstract
In this paper, we study the existence of positive solutions to the fractional
boundary value problem

Dα
0+x(t) + q(t)f(t, x(t)) = 0, 0 < t < 1,

together with the boundary conditions

x(0) = x′(0) = · · · = x(n−2)(0) = 0,Dβ
0+x(1) =

∫ 1

0
h(s, x(s)) dA(s),

where n > 2, n − 1 < α ≤ n, β ∈ [1, α − 1], and Dα
0+ and Dβ

0+ are the
standard Riemann-Liouville fractional derivatives of order α and β, respec-
tively. We consider two different cases: f , h : [0, 1] × R → R, and f ,
h : [0, 1] × [0,∞) → [0,∞). In the first case, we prove the existence and
uniqueness of the solutions of the above problem, and in the second case,
we obtain sufficient conditions for the existence of positive solutions of the
above problem. We apply a number of different techniques to obtain our
results including Schauder’s fixed point theorem, the Leray-Schauder al-
ternative, Krasnosel’skii’s cone expansion and compression theorem, and
the Avery-Peterson fixed point theorem. The generality of the Riemann-
Stieltjes boundary condition includes many problems studied in the litera-
ture. Examples are included to illustrate our findings.
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1. Introduction

In this paper, we consider the fractional differential equation

Dα
0+x(t) + q(t)f(t, x(t)) = 0, 0 < t < 1, (1.1)

together with the boundary conditions

x(0) = x′(0) = · · · = x(n−2)(0) = 0, (1.2)

Dβ
0+x(1) =

∫ 1

0
h(s, x(s)) dA(s), (1.3)

where n− 1 < α ≤ n, n > 2, β ∈ [1, α − 1] is fixed, q : (0, 1) → [0,∞) is a
continuous function, f, h : (0, 1)× [0,∞) → [0,∞) are continuous functions.
The nonlinear boundary condition in (1.3) is a Riemann-Stieltjes integral

with A being nondecreasing and of bounded variation. Here, Dα
0+ and Dβ

0+
are Riemann-Liouville fractional derivatives of order α and β, respectively.

Fractional differential equations have drawn the attention of many re-
searchers during last two decades due to their applications in biology and
engineering; see the monographs [12, 18, 22] and the references cited there
in. Due to the importance of positive solutions in real world applications,
researchers have devoted much of their interest to obtaining sufficient con-
ditions for the existence of positive solution of various fractional differential
equations. This is evident from the book by Henderson and Luca [12].

In the following, we describe some of the works that attracted us to
study the problem (1.1)–(1.3).

In [6], Cabada and Wang obtained a sufficient condition for the exis-
tence of a positive solution to the fractional boundary value problem

cDαu(t) + f(t, u(t)) = 0, 0 < t < 1, 2 < α < 3,

u(0) = u′′(0) = 0, u(1) =λ

∫ 1

0
u(s) ds, 0 < λ < 2,

where cDα is the Caputo fractional derivative.
Inspired by the work in [6], Sun and Wang [24] studied the existence of

multiple positive solutions to the nonlinear fractional differential equation
with integral boundary conditions

cDαu(t) + f(t, u(t), u′(t)) = 0, 0 ≤ t ≤ 1, 2 < α < 3,

u(0) = u′′(0) = 0, u(1) =λ

∫ 1

0
u(s) ds, 0 < λ < 2,
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where cDα is Caputo’s fractional derivative.
In [15], Jankowski used a fixed point theorem due to Avery and Peterson

to study the existence of three positive solutions to the fractional boundary
value problems with the Riemann-Stieltjes boundary conditions

Dα
1 x(t) + f(t, x(t), x′β(t)) = 0, 0 < t < 1, 2 < α ≤ 3,

x(1) = 0, x′(1) = 0, x(0) =

∫ 1

0
x(t) dΛ(t),

and

Dα
1 x(t) + g(t, x(μ(t)), x′β(t)) = 0, 0 < t < 1, 2 < α ≤ 3,

x(1) = 0, x′(1) = 0, x′(0) +
∫ 1

0
x(t) dΛ(t) = 0,

where
∫ 1
0 x(t) dΛ(t) is a Stieltjes type integral with a suitable function Λ of

bounded variation.
Benmezai and Saadi [4] studied existence of positive solutions to the

three point fractional boundary value problem

Dα
0+u(t) + λf(t, u(t)) = 0, 0 < t < 1, 2 < α ≤ 3,

u(0) = u′(0) = 0, u′(1) − μu′(η) =
∫ 1

0
g(u)u′(s) ds,

where μ and λ are parameters with μ ≥ 0, λ > 0, η ∈ (0, 1), and Dα
0+ is

the standard Riemann-Liouville fractional derivative of order α.
Wang [26] studied the existence of at least one positive solution of the

fractional differential equation involving Riemann-Stieltjes integral condi-
tions

Dα
0+x(t) + λa(t)f(t, x(t)) = 0, 0 < t < 1, n− 1 < α ≤ n, n ≥ 3,

x(0) = x′(0) = · · · = x(n−2)(0) = 0, x(1) = μ

∫ 1

0
h(x(t)) dA(t),

where Dα
0+ is again the standard Riemann-Liouville derivative and λ and

μ > 0 are parameters.
Tan et al. [25] studied the existence and uniqueness of positive solutions

to the fractional differential equation with nonlocal boundary conditions

−Dα
0+x(t) = f(t, x(t), x′(t)) + g(t, x(t)), 0 < t < 1, n− 1 < α ≤ n, n ≥ 3,

xk(0) = 0, 0 ≤ k ≤ n− 2, x(1) =

∫ 1

0
x(s) dA(s),

where Dα
0+ is the Riemann-Liouville fractional derivative,

∫ 1
0 x(s) dA(s) de-

notes the Riemann-Stieltjes integral of x with respect to A, A : [0, 1] → R
is a function of bounded variation, and dA can be a signed measure.
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Cabada et al. [5] used a fixed point theorem due to Krasnosel’skii
to obtain a positive solution of the nonlinear fractional boundary value
problem

cDαu(t) + f(t, u(t)) = 0, 0 < t < 1, 2 < α ≤ 3,

u′(0) = u′′(0) = 0, u(1) = λ

∫ 1

0
u(s) ds, 0 ≤ λ < 1,

where cDα is Caputo’s fractional differential operator of order α.
Guezane-Lakoud and Ashryalev [9] used the Guo-Krasnosel’skii fixed

point theorem to establish a positive solution to the system

cDα
0+u(t) = g(t)f(u(t)), 0 < t < 1, 1 < α < 2,

u′(0) = 0, Eu(0)−Bu(1) =
∫ 1

0
h(u(s)) ds,

where f , h : Rn → Rn and g : [0, 1] → R are given functions, u : [0, 1] → Rn

is the unknown function, and cDα
0+ is the Caputo fractional derivative.

Ahmad et al. [1] used the Leray-Schauder alternative theorem and Ba-
nach contraction principle to obtain sufficient condition for the existence of
positive solutions to the coupled system of nonlinear fractional differential
equations

Dαx(t) = f(t, x(t), y(t),Dγy(t)), 0 ≤ t ≤ T, 1 < α ≤ 2, 0 < γ < 1

Dβy(t) = g(t, x(t),Dδx(t), y(t)), 0 ≤ t ≤ T, 1 < β ≤ 2, 0 < δ < 1

together with the coupled nonlocal integral boundary conditions

x(0) = h(y),

∫ T

0
y(s) ds = μ1x(η),

y(0) = φ(x),

∫ T

0
x(s) ds = μ2y(ζ), η, ζ ∈ (0, T ),

where cDi, i = α, β, γ, and δ are Caputo fractional derivatives of order α,
β, γ and δ, respectively.

Luca and Tudorache [20] used a nonlinear alternative of Leray-Schauder
type to show the existence of at least one positive solution of the system of
nonlinear fractional differential equations{

Dα
0+u(t) + λf(t, u(t), v(t)) = 0, 0 < t < 1, n− 1 < α ≤ n,

Dβ
0+v(t) + λg(t, u(t), v(t)) = 0, 0 < t < 1, m− 1 < β ≤ m,

(1.4)

with the integral boundary conditions

u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(1) =

∫ 1

0
u(s) dH(s)
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v(0) = v′(0) = · · · = v(m−2)(0) = 0, v(1) =

∫ 1

0
v(s) dK(s),

where m,n ∈ N , n,m ≥ 3, Dα
0+ and Dβ

0+ are the Riemann-Liouville deri-
vatives of order α and β respectively, and the integrals in the boundary
conditions are Riemann-Stieltjes integrals.

In another work, Henderson and Luca [11] studied the nonexistence of
positive solutions of the system (1.3) with the coupled integral boundary
conditions

u(0) = u′(0) = · · · = u(n−2)(0) = 0, u(1) =

∫ 1

0
v(s) dH(s)

v(0) = v′(0) = · · · = v(m−2)(0) = 0, v(1) =

∫ 1

0
u(s) dK(s).

Very recently, Henderson and Luca [13] used the Guo-Krasnosel’skii
fixed point theorem and nonlinear alternative of Leray-Schauder type to
find the existence of at least one positive solution to the system (1.4) with
the coupled boundary conditions{

u(0) = u′(0) = · · · = u(n−2)(0) = 0, u′(1) =
∫ 1
0 v(s) dH(s)

v(0) = v′(0) = · · · = v(m−2)(0) = 0, v′(1) =
∫ 1
0 u(s) dK(s),

(1.5)

where f and g are sign changing continuous functions. Henderson et al.
[14] used Guo-Krasnosel’skii fixed point theorem to find the existence of at
least one positive solution to the system (1.4)–(1.5), where f and g are non
negative functions.

The motivation for the present work has come from a recent work by
Qiao and Zhou [23], who used the Krasnosel’skii fixed point theorem to find
the existence of at least one positive solution to the multi-point singular
fractional boundary value problem

Dα
0+x(t) + q(t)f(t, x(t)) = 0, 0 < t < 1, n > 2, n− 1 < α ≤ n,

x(0) = x′(0) = · · · = x(n−2)(0) = 0,

Dβ
0+x(1) =

∞∑
i=1

αix(ξi), β ∈ [1, α− 1],

αi ≥ 0, i = 1, 2, · · · , 0 < ξ1 < ξ2 < · · · < ξi−1 < ξi < · · · < 1,

Γ(α)

Γ(α− β)
−

∞∑
i=1

αiξ
α−1
i > 0,

whereDα
0+ andDβ

0+ are Riemann-Liouville fractional derivatives. In partic-

ular, if h(t, x) ≡ x, then the Riemann-Stieltjes integral λ[x] =
∫ 1
0 x(s) dA(s)

covers a variety of nonlocal boundary conditions including the cases
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λ[x] =γx(δ), γ ≥ 0, δ ∈ (0, 1),

λ[x] =

l∑
i=1

γjx(δi), γi ∈ R, i = 1, 2, · · · , l, 0 < δ1 < δ2 < · · · < δl < 1,

λ[x] =

∫ 1

0
x(t)g(t) dt, g ∈ C((0, 1), R).

From the above cited references and the available literature, it appears
that no work has been done on the existence of the positive solution of the
fractional boundary value problem (FBVP for short) (1.1)–(1.3). This moti-
vates us to study the existence of at least one positive solution of the FBVP
(1.1)–(1.3). Our existence theorems are based on the Krasnosel’skii’s cone
expansion and compression fixed point theorem and the Leray-Schauder
fixed point theorem.

In order to establish our results, we assume that the following conditions
are satisfied:

(A1): f , h ∈ C((0, 1) × (0,∞), [0,∞));
(A2): q ∈ C((0, 1), [0,∞)) and q does not vanish identically on any

subinterval of (0, 1);
(A3): for any positive numbers r1 and r2 with r1 < r2, there ex-

ist continuous functions pf and ph : (0, 1) → [0,∞) such that∫ 1
0 G(1, s)q(s)pf (s) ds <∞ and

∫ 1
0 ph dA(s) <∞, where

f(t, x) ≤ pf (t) and h(t, x) ≤ ph(t), 0 < t < 1, tα−1r1 ≤ x ≤ r2.

The remainder of this paper is divided into three sections. Basic nota-
tions and preliminaries are given in the Section 2. Section 3 contains results
on the existence and uniqueness of a nontrivial solution of the FBVP (1.1)–
(1.3) with both f and h : [0, 1] × R → R. In Section 4, we consider the
FBVP (1.1)–(1.3) with f and h as considered in (A1). Examples are given
to illustrate our theorems.

2. Preliminaries

In this section, we provide some lemmas that are needed to prove the
main results in this paper. For the basic definition and results on the
Riemann-Liouville fractional derivative of order α for a function x(t), and
the fractional integral of x(t), we refer the reader to [12, 18, 22].

Lemma 2.1. ([18]) The general solution to Dαx(t) = 0 with α ∈
(n− 1, n] and n > 1 is the function



722 S. Padhi, J.R. Graef, S. Pati

x(t) = c1t
α−1 + c2t

α−2 + · · ·+ cnt
α−n, ci ∈ R, i = 1, 2, · · · , n.

Lemma 2.2. ([18]) Let α > 0. Then the following equality holds for
x(t):

D−α
0+D

α
0+x(t) = x(t) + c1t

α−1 + c2t
α−2 + · · ·+ cnt

α−n,
where ci ∈ R, i = 1, 2, · · · , n, and n is the smallest integer greater than or
equal to α.

Lemma 2.3. For y ∈ C[0, 1], the unique solution to the problem⎧⎪⎨⎪⎩
Dα

0+x(t) + y(t) = 0,

x(0) = x′(0) = · · · = x(n−2)(0) = 0,

Dβ
0+x(1) =

∫ 1
0 V (s) dA(s),

(2.1)

is given by

x(t) =

∫ 1

0
G(t, s)q(s)y(s) ds +

Γ(α− β)

Γ(α)
tα−1

∫ 1

0
V (s) dA(s), (2.2)

where G(t, s) is the Green’s function defined by

G(t, s) =
1

Γ(α)

{
tα−1(1− s)α−β−1 − (t− s)α−1, 0 ≤ s ≤ t ≤ 1,

tα−1(1− s)α−β−1, 0 ≤ t ≤ s ≤ 1.
(2.3)

P r o o f. In view of Lemmas 2.1 and 2.2, a general solution of the
fractional equation Dα

0+x(t) + y(t) = 0 is given by

x(t) = c1t
α−1 + c2t

α−2 + · · ·+ cnt
α−n − 1

Γ(α)

∫ t

0
(t− s)α−1y(s) ds (2.4)

Since x(0) = x′(0) = · · · = x(n−2)(0) = 0, from (2.4) we obtain that
c2 = c3 = · · · = cn = 0. Hence, (2.4) becomes

x(t) = c1t
α−1 − 1

Γ(α)

∫ t

0
(t− s)α−1y(s) ds. (2.5)

Taking the β-th fractional derivative on the both sides of (2.5), we have

Dβ
0+x(t) = c1(α− β + n− 1)(α − β + n− 2) · · · (α− β)tα−β−1 Γ(α)

Γ(n+ α− β)

− 1

Γ(α− β)

∫ t

0
(t− s)α−β−1y(s) ds. (2.6)

Using the integral boundary condition Dβ
0+x(1) =

∫ 1
0 V (s) dA(s) in (2.6),

we obtain
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c1 =
1

Γ(α)

∫ 1

0
(1− s)α−β−1y(s) ds+

Γ(α− β)

Γ(α)

∫ 1

0
V (s)dA(s).

This together with the (2.5) yields (2.2), which is a solution of (2.1). This
completes the proof of the lemma. �

Lemma 2.4. For any s, t ∈ [0, 1], the Green’s function G(t, s) given in
(2.3) satisfies

tα−1G(1, s) = tα−1 max
0≤t≤1

G(t, s) ≤ G(t, s) ≤ max
0≤t≤1

G(t, s) = G(1, s). (2.7)

P r o o f. It is clear that G(t, s) is continuous for all s, t ∈ [0, 1]. Fur-
thermore, (1 − s)α−β−1 ≥ (1 − s)α−1 for all s ∈ [0, 1] and β ∈ [1, α − 1]
imply that G(t, s) ≥ 0 for all s, t ∈ [0, 1].

Set g1(t, s) = tα−1(1 − s)α−β−1 − (t − s)α−1 and g2(t, s) = tα−1(1 −
s)α−β−1; then, for any s, t ∈ [0, 1], we have ∂g2

∂t = (α−1)tα−2(1−s)α−β−1 ≥
0, which implies that g2(t, s) is a nondecreasing function of t. For 0 ≤ s ≤
t ≤ 1, we have

∂g1(t, s)

∂t
≥ (α− 1)tα−2(1− s)α−β−1[1− (1− s)β] ≥ 0,

which implies that g1(t, s) is a nondecreasing function of t. Consequently,
G(t, s) is a nondecreasing function of t. Hence,

max
0≤t≤1

G(t, s) = G(1, s) = (1− s)α−β−1[1− (1− s)β].

In order to complete the proof of the lemma, it is enough to show that
g1(t, s) ≥ tα−1g1(1, s) for 0 ≤ s ≤ t ≤ 1, which follows from the following
calculations:

g1(t, s) = tα−1(1− s)α−β−1 − (t− s)α−1

= tα−1(1− s)α−β−1 − tα−1
(
1− s

t

)α−1

≥ tα−1[(1− s)α−β−1 − (1− s)α−1].

This proves the lemma. �

We shall use the following fixed point theorems to prove our main results
in Section 3.

Theorem 2.1. (Schauder’s fixed point theorem [8]) Let B be a non-
empty, bounded, closed subset of a Banach space X and T : B → B be a
completely continuous operator. Then, T has at least one fixed point in B.
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Theorem 2.2. (Leray-Schauder theorem [8]) Let B be a convex subset
of a Banach space X, 0 ∈ B, and T : B → X be a completely continuous
operator. Then, either:

(i): T has at least one fixed point in B; or
(ii): The set {x ∈ B : x = μTx, 0 < μ < 1} is unbounded.

Next, we present some concepts about cones in a Banach space.

Definition 2.1. Let X be a real Banach space. A nonempty convex
closed set P ⊂ X is said to be a cone provided that

(i): ku ∈ P for all u ∈ P and all k ≥ 0, and
(ii): u,−u ∈ P implies u = 0.

Theorem 2.3. (Krasnosel’skii’s fixed point theorem [8]) Let X be
a real Banach space and K ⊂ X be a cone. Assume that K1 and K2 are
bounded open subsets of X with θ ∈ K1, K1 ⊂ K2, and T : K∩(K2\K1) →
K is a completely continuous operator such that either:

(i): ‖Tx‖ ≤ ‖x‖, x ∈ K ∩ ∂K1, and ‖Tx‖ ≥ ‖x‖, x ∈ K ∩ ∂K2; or
(ii): ‖Tx‖ ≥ ‖x‖, x ∈ K ∩ ∂K1, and ‖Tx‖ ≤ ‖x‖, x ∈ K ∩ ∂K2.

Then T has a fixed point in K ∩ (K2 \K1).

Definition 2.2. A map Φ is said to be a nonnegative continuous
concave functional on a cone P of a real Banach space X if Φ : P → R+ is
continuous and

Φ(tx+ (1− t)y) ≥ tΦ(x) + (1− t)Φ(y)

for all x, y ∈ P and t ∈ [0, 1].
Similarly, we say the map φ is a nonnegative continuous convex func-

tional on a cone P of a real Banach space X if φ : P → R+ is continuous
and

φ(tx+ (1− t)y) ≤ tφ(x) + (1− t)φ(y)

for all x, y ∈ P and t ∈ [0, 1].

An operator is called completely continuous if it is continuous and maps
bounded sets into precompact sets.

We will use the following notations as introduced by Avery and Peterson
[3]. Let φ and Θ be nonnegative convex functionals on P , let Φ be a
nonnegative continuous concave functional on P , and let ψ be a nonnegative
continuous functional on P . Then, for positive numbers c1, c2, c3, and c4,
we define the following sets:
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⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

P (φ, c4) = {x ∈ P : φ(x) < c4};
P (φ, c4) = {x ∈ P : φ(x) ≤ c4};
P (φ,Φ, c2, c4) = {x ∈ P : c2 ≤ Φ(x), φ(x) ≤ c4};
P (φ,Θ,Φ, c2, c3, c4) = {x ∈ P : c2 ≤ Φ(x),Θ(x) ≤ c3, φ(x) ≤ c4};
R(φ,ψ, c1, c4) = {x ∈ P : c1 ≤ ψ(x), φ(x) ≤ c4}.

(2.8)
The following fixed point theorem due to Avery and Peterson [3] will be
used to establish the existence of multiple positive solutions to FBVP (1.1)–
(1.3).

Theorem 2.4. (Avery and Peterson [3]) Let P be a cone in a real
Banach spaceX. Let φ andΘ be nonnegative continuous convex functionals
on P , let Φ be a nonnegative continuous concave functional on P , and let
ψ be a nonnegative continuous functional on P satisfying ψ(kx) ≤ kψ(x)
for 0 ≤ k ≤ 1, such that for some positive numbers M̄ and c4

Φ(x) ≤ ψ(x) and ‖x‖ ≤ M̄φ(x)

for all x ∈ P (φ, c4). Suppose

T : P (φ, c4) → P (φ, c4)
is a completely continuous operator and there exist constants c1, c2, and c3
with c1 < c2 such that

(S1): {x ∈ P (φ,Θ,Φ, c2, c3, c4) : Φ(x) > c2} is nonempty and Φ(Tx)
> c2 for x ∈ P (φ,Θ,Φ, c2, c3, c4);

(S2): Φ(Tx) > c2 for x ∈ P (φ,Φ, c2, c4) with Θ(Tx) > c3;
(S3): 0 �∈ R(φ,ψ, c1, c4) and ψ(Tx) < c1 for x ∈ R(φ,ψ, c1, c4) with
ψ(x) = c1.

Then T has at least three fixed points x1, x2, x3 ∈ P (φ, c4), such that
φ(xi) ≤ c4, i = 1, 2, 3, c2 < Φ(x1), c1 < ψ(x2), Φ(x2) < c2, and ψ(x3) < c1.

In this paper, we take X = C[0, 1] to be the Banach space endowed
with the norm ‖x‖ = max

0≤t≤1
|x(t)|. Define a cone K on X by

K = {x ∈ X : x(t) ≥ 0, x(t) ≥ tα−1‖x‖, 0 ≤ t ≤ 1}, (2.9)
and an operator T : K → X by

(Tx)(t) =

∫ 1

0
G(t, s)q(s)f(s, x(s)) ds +

Γ(α− β)

Γ(α)
tα−1

∫ 1

0
h(s, x(s)) dA(s).

(2.10)
In view of the Lemma 2.3, it is easy to verify that x(t) is a positive solution
of FBVP (1.1)–(1.3) if and only if x(t) is a fixed point of the operator T
on the cone K.
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Lemma 2.5. T (K) ⊂ K.

P r o o f. Let x ∈ K; then x(t) ≥ 0 and x(t) ≥ tα−1‖x‖ for t ∈ [0, 1].
Since f(t, x) ≥ 0, h(t, x) ≥ 0, q(t) ≥ 0, A is non decreasing, and G(t, s) ≥ 0
for all s, t ∈ [0, 1], we have that (Tx)(t) ≥ 0 for all t ∈ [0, 1]. For s, t ∈ [0, 1],

‖Tx‖ = max
0≤t≤1

∣∣∣∣∫ 1

0
G(t, s)q(s)f(s, x(s)) ds

+
Γ(α− β)

Γ(α)
tα−1

∫ 1

0
h(s, x(s)) dA(s)

∣∣∣∣
≤ max

0≤t≤1
tα−1

∫ 1

0
G(1, s)q(s)f(s, x(s)) ds

+
Γ(α− β)

Γ(α)
max
0≤t≤1

tα−1

∫ 1

0
h(s, x(s)) dA(s)

≤
∫ 1

0
G(1, s)q(s)f(s, x(s)) ds +

Γ(α− β)

Γ(α)

∫ 1

0
h(s, x(s)) dA(s),

and

(Tx)(t) =

∫ 1

0
G(t, s)q(s)f(s, x(s)) ds +

Γ(α− β)

Γ(α)
tα−1

∫ 1

0
h(s, x(s)) dA(s)

≥ tα−1

∫ 1

0
G(1, s)q(s)f(s, x(s)) ds

+
Γ(α− β)

Γ(α)
tα−1

∫ 1

0
h(s, x(s)) dA(s),

which implies that (Tx)(t) ≥ tα−1‖Tx‖, That is, T (K) ⊂ K, and this
proves the lemma. �

Let us denote K(r) = {x ∈ K : ‖x‖ < r} and ∂K(r) = {x ∈ K : ‖x‖ =
r}.

Lemma 2.6. Suppose that conditions (A1)–(A2) hold and there exist
constants r1 and r2 with 0 < r1 < r2 such that condition (A3) is satisfied.

Then the operator T : K(r2) \K(r1) → K is completely continuous.

P r o o f. From the continuity of G(t, s), and (A1)–(A3), it follows that

T is continuous on K(r2) \K(r1). For any x ∈ K(r2) \K(r1), we have

|Tx| =
∣∣∣∣∫ 1

0
G(t, s)q(s)f(s, x(s)) ds +

Γ(α− β)

Γ(α)
tα−1

∫ 1

0
h(s, x(s)) dA(s)

∣∣∣∣
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≤
∫ 1

0
G(1, s)q(s)pf (s) ds +

Γ(α− β)

Γ(α)

∫ 1

0
ph(s) dA(s),

for t ∈ [0, 1], which implies that T is uniformly bounded.
Since G(t, s) is continuous on [0, 1] × [0, 1], it is uniformly continuous

on [0, 1]× [0, 1]. Hence, for every ε > 0 there exists δ ∈
(
0, ε

α−1

)
such that,

|G(t1, s)−G(t2, s)| < ε

for |t1 − t2| < δ, and (t1, s), (t2, s) ∈ [0, 1] × [0, 1]. Then, for any x ∈
K(r2) \K(r1) and t1, t2 ∈ [0, 1] with |t1 − t2| < δ, we have

|(Tx)(t1)− (Tx)(t2)|

≤
∫ 1

0
|G(t1, s)−G(t2, s)| q(s)f(s, x(s))ds

+
Γ(α− β)

Γ(α)
|tα−1
1 − tα−1

2 |
∫ 1

0
h(s, x(s)) dA(s)

≤ ε

∫ 1

0
q(s)pf (s) ds+

Γ(α− β)

Γ(α)
|t1 − t2|

α−2∑
i=0

tα−2−i
1 ti2

∫ 1

0
ph(s) dA(s)

≤ ε

∫ 1

0
q(s)pf (s) ds+

Γ(α− β)

Γ(α)
δ(α − 1)

∫ 1

0
ph(s) dA(s)

≤ ε

[∫ 1

0
q(s)pf (s) ds+

Γ(α− β)

Γ(α)

∫ 1

0
ph(s) dA(s)

]
.

Hence, T is equicontinuous. Consequently, T is relatively compact on
K(r2) \ K(r1), and hence compact on K(r2) \ K(r1). Thus, the opera-

tor T : K(r2) \K(r1) → K is completely continuous. This completes the
proof of the lemma. �

Throughout the remainder of this paper, we set

λ =

∫ 1

0
G(1, s)q(s) ds +

Γ(α− β)

Γ(α)

∫ 1

0
dA(s). (2.11)

3. Existence and uniqueness of solutions

In this section, we consider the FBVP (1.1)–(1.3) with f and h :
[0, 1] × R → R. We define the operator T : X → X by (2.10). Then,
an application of the Arzelà-Ascoli theorem shows that the mapping T is
completely continuous.

Theorem 3.1. Assume that the functions f and h satisfies the Lips-
chitz conditions

|f(t, x1)− f(t, x2)| ≤ L|x1 − x2|
and
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|h(t, x1)− f(t, x2)| ≤M |x1 − x2|
for (t, x1), (t, x2) ∈ [0, 1] ×R with

0 < L

∫ 1

0
G(1, s)q(s) ds +

MΓ(α− β)

Γ(α)

∫ 1

0
dA(s) < 1. (3.1)

Then FBVP (1.1)–(1.3) has a unique solution.

P r o o f. Since x(t) is a solution of FBVP (1.1)–(1.3) if and only if x(t)
is a fixed point of the operator T on X, it is enough to show that T has a
fixed point in X. For any x1, x2 ∈ X with t ∈ [0, 1], we have

|(Tx1 − Tx2)(t)| ≤
∫ 1

0
G(1, s)q(s)|f(s, x1(s))− f(s, x2(s))| ds

+
Γ(α− β)

Γ(α)

∫ 1

0
|h(s, x1(s))− h(s, x2(s))| dA(s)

≤
[
L

∫ 1

0
G(1, s)q(s) ds +

MΓ(α− β)

Γ(α)

∫ 1

0
dA(s)

]
‖x1 − x2‖.

Hence, in view of (3.1), T is a contraction mapping. By the Banach con-
traction principle, T has a unique fixed point. Hence, FBVP (1.1)–(1.3)
has a unique solution, and this completes the proof of the theorem. �

Remark 3.1. Suppose, in addition to the assumptions of Theorem
3.1, that f(t, 0) ≡ 0 and h(t, 0) ≡ 0 on [0, 1]; then x(t) ≡ 0 is a solution of
the FBVP (1.1)–(1.3). In this case, by uniqueness, FBVP (1.1)–(1.3) has
no nontrivial solutions.

Theorem 3.2. Assume that

lim
|x|→∞

max
0≤t≤1

|f(t, x)|
|x| = 0 and lim

|x|→∞
max
0≤t≤1

|h(t, x)|
|x| = 0 (3.2)

hold with f(t, 0) �≡ 0 and h(t, 0) �≡ 0 on [0, 1]. Then FBVP (1.1)–(1.3) has
at least one nontrivial solution.

P r o o f. Choose constants l and m, such that

l

∫ 1

0
G(1, s)q(s) ds +

mΓ(α− β)

Γ(α)

∫ 1

0
dA(s) ≤ 1.

By (3.2), there exists c1 > 0 such that |f(t, x)| ≤ l|x| and |h(t, x)| ≤ m|x|
for any t ∈ [0, 1] and |x| ≥ c1. Now, f , h ∈ C([0, 1]×R,R) implies that there
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exist constants l1 > 0 andm1 > 0 such that |f(t, x)| ≤ l1 and |h(t, x)| ≤ m1

on [0, 1] × [−c1, c1].
Setting c2 = max{c1, l1/l} and c3 = max{c2,m1/m}, we see that

|f(t, x)| ≤ lc2 on [0, 1] × [−c2, c2] (3.3)

and

|h(t, x)| ≤ mc3 on [0, 1] × [−c3, c3]. (3.4)

Set c4 = max{c2, c3} and define a bounded, closed, and convex set B ⊂ X
by

B = {x ∈ X : ‖x‖ ≤ c4}.
Then, for any x ∈ B, we have |x(t)| ≤ c4 on [0, 1]. Hence, from (2.7),
(2.10), (3.3), and (3.4), we have

|(Tx)(t)| =
∣∣∣∣∫ 1

0
G(t, s)q(s)f(s, x(s)) ds +

Γ(α− β)

Γ(α)
tα−1

∫ 1

0
h(s, x(s)) dA(s)

∣∣∣∣
≤ c4

[
l

∫ 1

0
G(1, s)q(s) ds +

mΓ(α− β)

Γ(α)

∫ 1

0
dA(s)

]
≤ c4.

Hence ‖Tx‖ ≤ c4, that is, T (B) ⊂ B. By the Schauder fixed point theorem,
Theorem 2.1 above, T has at least one fixed point in B. Clearly, x(t) ≡ 0
is not a fixed point because f(t, 0) �≡ 0 and h(t, 0) �≡ 0 on [0, 1]. Therefore,
FBVP (1.1)–(1.3) has at least one nontrivial solution. This proves the
theorem. �

Remark 3.2. The conditions (3.2) in Theorem 3.2 can be satisfied by
a broad range of functions. For example, condition (3.2) is satisfied by all
bounded functions. In the case of unbounded functions, many functions,
such as p(t)xλsgnx+1 and p(t)+xλsgnx ln(x2+1)+esinx, with p ∈ C[0, 1]
and λ ∈ (0, 1), also satisfy condition (3.2).

Example 3.1. Consider the problem (1.1)–(1.3) with f(t, x) = h(t, x)
= x1/3 + sin t. The conditions of Theorem 3.2 are satisfied, so the problem
(1.1)–(1.3) has at least one nontrivial solution. On the other hand, since f
and h do not satisfy Lipschitz conditions in x near 0, the solution may not
be unique.

Example 3.2. Consider (1.1)–(1.3) with f(t, x) = h(t, x) = p tan−1x+
et, where 0 < p < 1

λ . It is easy to see that |f(t, x1)− f(t, x2)| ≤ p|x1 − x2|
and |h(t, x1) − h(t, x2)| ≤ p|x1 − x2| for any (t, x1), (t, x2) ∈ [0, 1] × R.
Then, by Theorem 3.1, this problem has a unique solution. Moreover,
since f(t, 0) �≡ 0 and h(t, 0) �≡ 0, the solution is a nontrivial one.
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4. Existence of Positive Solutions

In this section, we shall use the Theorems 2.1–2.4 to prove our results.
We assume, throughout this section, that f and h satisfies (A1).

Theorem 4.1. Suppose that there exist continuous functions h1, f1 :
(0, 1) × [0,∞) → [0,∞) and a constant c1 > 0 such that

(H1): f(t, x) ≤ f1(t)c1 and h(t, x) ≤ h1(t)c1 for 0 ≤ x(t) ≤ c1 and
0 ≤ t ≤ 1,

and ∫ 1

0
G(1, s)q(s)f1(s) ds +

Γ(α− β)

Γ(α)

∫ 1

0
h1(s) dA(s) ≤ 1. (4.1)

Then FBVP (1.1)–(1.3) has at least one non-negative solution.

P r o o f. We define a convex, closed, and bounded set B ⊂ X by

B = {x ∈ X : 0 ≤ x(t) ≤ c1, t ∈ [0, 1]}. (4.2)

Then, for x ∈ B, we have

(Tx)(t) =

∫ 1

0
G(t, s)q(s)f(s, x(s)) ds +

Γ(α− β)

Γ(α)
tα−1

∫ 1

0
h(s, x(s)) dA(s)

≤ c1

[∫ 1

0
G(1, s)q(s)f1(s) ds +

Γ(α− β)

Γ(α)

∫ 1

0
h1(s) dA(s)

]
≤ c1.

Hence Tx ∈ B, that is, T (B) ⊂ B. Clearly, T : B → B is completely
continuous. By Theorem 2.1, T has a fixed point x in B, which in turn is
a non-negative solution of FBVP (1.1)–(1.3). This proves the theorem. �

Remark 4.1. In the proof of Theorem 4.1, we used Schauder’s fixed
point theorem to obtain a fixed point of the operator T in B. We can
also use Theorem 2.2 to prove this existence. In fact, we may observe that
x(t) = μ(Tx)(t) ≤ μc1 < ∞ for x ∈ B implies that the set {x ∈ B : x =
μTx, 0 < μ < 1} is bounded. Hence, by Theorem 2.2, the operator T
has a fixed point in B, which corresponds to a non-negative solution of the
problem (1.1)–(1.3).

Although the conditions of Theorem 4.1 appear to be simple and easily
verifiable, other nice conditions for the existence of a non-negative solution
of the problem (1.1)–(1.3) are given in the following result.

Theorem 4.2. Suppose that

(H2): lim sup
x→0

max
0≤t≤1

f(t,x)
x = 0 and lim sup

x→0
max
0≤t≤1

h(t,x)
x = 0.
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Then the problem (1.1)–(1.3) has at least one non-negative solution.

P r o o f. By (H2), there exists a constant c1 such that

f(t, x) ≤ εx(t) for 0 ≤ x(t) ≤ c1 and 0 ≤ t ≤ 1

and

h(t, x) ≤ εx(t) for 0 ≤ x(t) ≤ c1 and 0 ≤ t ≤ 1

hold, where ε > 0 is chosen so that it satisfies ελ ≤ 1, where λ is given
in (2.11). For the above choice of c1, we consider the closed, convex, and
bounded subset B of X given in (4.2). Then for x ∈ B, we have

(Tx)(t) =

∫ 1

0
G(t, s)q(s)f(s, x(s)) ds +

Γ(α− β)

Γ(α)
tα−1

∫ 1

0
h(s, x(s)) dA(s)

≤
∫ 1

0
G(1, s)q(s)εx(s) ds +

Γ(α− β)

Γ(α)

∫ 1

0
εx(s) dA(s)

≤ c1ε

[∫ 1

0
G(1, s)q(s) ds +

Γ(α− β)

Γ(α)

∫ 1

0
dA(s)

]
≤ c1.

This proves that T (B) ⊂ B. The conclusion then follows as before. �

Theorem 4.3. Assume that there exist continuous functions h2 and
f2 : [0, 1] → [0,∞) and a constant c∗ > 0 such that

(H3): f(t, x) ≤ f2(t)x(t) and h(t, x) ≤ h2(t)x(t) for x(t) ≥ c∗ and
0 ≤ t ≤ 1, and∫ 1

0
G(1, s)q(s)f2(s) ds+

Γ(α− β)

Γ(α)

∫ 1

0
h2(s) dA(s) < 1.

Then FBVP (1.1)–(1.3) has at least one non-negative solution.

P r o o f. From the continuity of h(t, x) and f(t, x), we can find con-
stants γf and γh such that

γf = max
0≤t≤1
0≤x≤c∗

f(t, x) and γh = max
0≤t≤1
0≤x≤c∗

h(t, x). (4.3)

Hence, from (H3), we have

f(t, x) ≤ f2(t)x(t) + γf for x ≥ 0 and 0 ≤ t ≤ 1

and

h(t, x) ≤ h2(t)x(t) + γh for x ≥ 0 and 0 ≤ t ≤ 1.

Choose a constant c4 > 0 such that
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c4 ≥
γf
∫ 1
0 G(1, s)q(s) ds +

Γ(α−β)
Γ(α) γh

∫ 1
0 dA(s)

1−
[∫ 1

0 G(1, s)q(s)f2(s) ds +
Γ(α−β)
Γ(α)

∫ 1
0 h2(s) dA(s)

]
and define a bounded, closed, and convex subset B of X by

B = {x ∈ X : 0 ≤ x(t) ≤ c4, 0 ≤ t ≤ 1}. (4.4)

Then for x ∈ B, we have

(Tx)(t) =

∫ 1

0
G(t, s)q(s)f(s, x(s)) ds +

Γ(α− β)

Γ(α)
tα−1

∫ 1

0
h(s, x(s)) dA(s)

≤
∫ 1

0
G(1, s)q(s)(f2(s)x(s) + γf ) ds

+
Γ(α− β)

Γ(α)

∫ 1

0
(h2(s)x(s) + γh) dA(s)

≤ c4

[∫ 1

0
G(1, s)q(s)f2(s) ds +

Γ(α− β)

Γ(α)

∫ 1

0
h2(s) dA(s)

]
+ γf

∫ 1

0
G(1, s)q(s) ds +

Γ(α− β)

Γ(α)
γh

∫ 1

0
dA(s) ≤ c4,

which implies that T (B) ⊂ B. Clearly, T : B → B is completely continu-
ous, so by Theorem 2.1, T has a fixed point x(t) in B that is a non-negative
solution of (1.1)–(1.3). �

As described in Remark 4.1, Theorem 2.2 could also be applied to find
the existence of a fixed point of T in B.

Theorem 4.4. If

(H4): lim sup
x→∞

max
0≤t≤1

f(t,x)
x = 0 and lim sup

x→∞
max
0≤t≤1

h(t,x)
x = 0,

then the problem (1.1)–(1.3) has at least one non-negative solution.

P r o o f. By (H4), we can find a constant c∗ > 0 such that

f(t, x) ≤ εx(t) for x(t) ≥ c∗ and 0 ≤ t ≤ 1

and

h(t, x) ≤ εx(t) for x(t) ≥ c∗ and 0 ≤ t ≤ 1,

where ε satisfies ελ < 1. For the above choice of c∗, we consider the
constants γf and γh as in (4.3). Then, we have

f(t, x(t)) ≤ εx(t) + γf for x(t) ≥ 0 and 0 ≤ t ≤ 1
and

h(t, x(t)) ≤ εx(t) + γh for x(t) ≥ 0 and 0 ≤ t ≤ 1.
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Choose a constant c4 > 0 such that

c4 ≥
γf
∫ 1
0 G(1, s)q(s) ds +

Γ(α−β)
Γ(α) γh

∫ 1
0 dA(s)

1− ε
[∫ 1

0 G(1, s)q(s) ds +
Γ(α−β)
Γ(α)

∫ 1
0 dA(s)

] .
For the above choice of c4, we consider the bounded, closed, and convex
subset B of X in (4.4). Then, for x ∈ B, we have

(Tx)(t) =

∫ 1

0
G(t, s)q(s)f(s, x(s)) ds +

Γ(α− β)

Γ(α)
tα−1

∫ 1

0
h(s, x(s)) dA(s)

≤
∫ 1

0
G(1, s)q(s)(εx(s) + γf ) ds +

Γ(α− β)

Γ(α)

∫ 1

0
(εx(s) + γh) dA(s)

≤ c4ε

[∫ 1

0
G(1, s)q(s) ds +

Γ(α− β)

Γ(α)

∫ 1

0
dA(s)

]
+ γf

∫ 1

0
G(1, s)q(s) ds +

Γ(α− β)

Γ(α)
γh

∫ 1

0
dA(s) ≤ c4,

which implies that T (B) ⊂ B. The conclusion again follows as before. �

In Theorems 4.1–4.4, the solution whose existence is guaranteed is a
non-negative one that may be the zero solution. In the following, we apply
the well known Krasnosel’skii fixed point theorem, Theorem 2.3 above, to
obtain the existence of a positive solution of (1.1)–(1.3).

We introduce the following “height” functions to control the growth of
the nonlinear terms f(t, x) and h(t, x). For any r > 0, let

f1(t, r) =min{f(t, x); tα−1r ≤ x ≤ r}, 0 < t < 1;

f2(t, r) =max{f(t, x); tα−1r ≤ x ≤ r}, 0 < t < 1;

h1(t, r) =min{h(t, x); tα−1r ≤ x ≤ r}, 0 < t < 1; and

h2(t, r) =max{h(t, x); tα−1r ≤ x ≤ r}, 0 < t < 1.

Theorem 4.5. Let (A1)–(A2) hold and assume that there exist con-
stants r1 and r2 with 0 < r1 < r2 such that (A3) holds. In addition, assume
that one of the following conditions is satisfied:

(H5): r1 ≤
∫ 1
0 G(1, s)q(s)f1(s, r1) ds+

Γ(α−β)
Γ(α)

∫ 1
0 h1(s, r1) dA(s) <∞,

and∫ 1

0
G(1, s)q(s)f2(s, r2) ds +

Γ(α− β)

Γ(α)

∫ 1

0
h2(s, r2) dA(s) ≤ r2;
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(H6):
∫ 1
0 G(1, s)q(s)f2(s, r1) ds +

Γ(α−β)
Γ(α)

∫ 1
0 h2(s, r1) dA(s) ≤ r1, and

r2 ≤
∫ 1

0
G(1, s)q(s)f1(s, r2) ds+

Γ(α− β)

Γ(α)

∫ 1

0
h1(s, r2) dA(s) <∞.

Then FBVP (1.1)–(1.3) has at least one positive solution x∗(t) that is
strictly increasing, x∗ ∈ K, and r1 ≤ x∗(t) ≤ r2 for 0 ≤ t ≤ 1.

P r o o f. We shall prove the existence of a positive solution of (1.1)–
(1.3) if (H5) holds. The proof if (H6) holds is similar. By Lemma 2.6,

T : K ∩ (K(r2) \ K(r1)) → K is completely continuous, where K is the
cone in X defined in (2.9).

By (H5), if x ∈ ∂K(r1), then ‖x‖ = r1 and tα−1r1 ≤ x(t) ≤ r1 holds
for 0 ≤ t ≤ 1. Hence, by the definitions of f1(t, r1) and h1(t, r1), we have

f(t, x(t)) ≥ f1(t, r1) for tα−1r1 ≤ x(t) ≤ r1, 0 < t < 1

and

h(t, x(t)) ≥ h1(t, r1) for tα−1r1 ≤ x(t) ≤ r1, 0 < t < 1.

Then, from (2.7) and (2.10), we have

‖Tx‖ = max
0≤t≤1

∣∣∣∣∫ 1

0
G(t, s)q(s)f(s, x(s)) ds

+
Γ(α− β)

Γ(α)
tα−1

∫ 1

0
h(s, x(s)) dA(s)

∣∣∣∣
≥ max

0≤t≤1

∣∣∣∣tα−1

∫ 1

0
G(1, s)q(s)f1(s, r1) ds

+
Γ(α− β)

Γ(α)
tα−1

∫ 1

0
h1(s, r1) dA(s)

∣∣∣∣
≥
∫ 1

0
G(1, s)q(s)f1(s, r1) ds +

Γ(α− β)

Γ(α)

∫ 1

0
h1(s, r1) dA(s)

≥ r1 = ‖x‖,
which implies that ‖Tx‖ ≥ ‖x‖ for x ∈ K ∩ ∂K(r1).

Next, let x ∈ K ∩ ∂K(r2). Then, ‖x‖ = r2 with tα−1r2 ≤ x(t) ≤ r2 for
0 ≤ t ≤ 1. Hence, by the definitions of f2(t, r2) and h2(t, r2), we have

f(t, x(t)) ≤ f2(t, r2), for tα−1r2 ≤ x(t) ≤ r2, 0 < t < 1

and

h(t, x(t)) ≤ h2(t, r2), for tα−1r2 ≤ x(t) ≤ r2, 0 < t < 1.

Consequently, from (2.10), we have
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‖Tx‖ = max
0≤t≤1

∣∣∣∣∫ 1

0
G(t, s)q(s)f(s, x(s)) ds

+
Γ(α− β)

Γ(α)
tα−1

∫ 1

0
h(s, x(s)) dA(s)

∣∣∣∣
≤
∫ 1

0
G(1, s)q(s)f(s, x(s)) ds +

Γ(α− β)

Γ(α)

∫ 1

0
h(s, x(s) dA(s)

≤
∫
G(1, s)q(s)f2(s, r2) ds +

Γ(α− β)

Γ(α)

∫ 1

0
h2(s, r2) dA(s)

≤ r2 = ‖x‖,
that is, ‖Tx‖ ≤ ‖x‖ holds for x ∈ K ∩ ∂K(r2). By Theorem 2.3, T has a

fixed point x∗(t) in K ∩ (K(r2)\K(r1)), and r1 ≤ ‖x∗‖ ≤ r2, which implies
x∗ is a positive solution of FBVP (1.1)–(1.3). Moreover,

x′∗(t) = (Tx∗)′(t) =
∫ 1

0

∂G(t, s)

∂t
q(s)f(s, x(s))ds

+ (α− 1)tα−2

∫ 1

0
h(s, x(s))dA(s) > 0

implies that x∗(t) is an increasing solution of (1.1)–(1.3). This completes
the proof of the theorem. �

Example 4.1. Consider the boundary value problem (1.1)–(1.3) with
α = 7

2 , β = 3
2 , q(t) =

1
4
√
1−t , f(t, x) = x5 + 1

2x
1
3
, h(t, x) = t(x5 + 1

2x
1
3
), and

A(t) =

⎧⎪⎨⎪⎩
t, if t ∈ [0, 4/9) ∪ [5/9, 8/9),

4/9, if t ∈ [4/9, 5/9),

8/9, if t ∈ [8/9, 1].

(4.5)

Clearly,
∫ 1
0 dA(t) =

8
9 , Γ(α− β) = Γ(2) = 1, Γ(α) = Γ(72 ) = 3.3233,

f1(t, r) =
1

t
h1(t, r) = min{x5 + 1

2x
1
3

: t
5
2 r ≤ x ≤ r}

≥ t
25
2 r5 +

1

2
r

−1
3

and

f2(t, r) =
1

t
h2(t, r) = max{x5 + 1

2x
1
3

: t
5
2 r ≤ x ≤ r}

≤ r5 +
1

2
t
−5
6 r

−1
3 .
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Choose r1 = 1
100 and r2 = 1. For this choice of r1 and r2, we can find

pf (t) = r52 +
1
2t

−5
6 r

−1
3

1 and ph(t) = t(r52 + 1
2t

−5
6 r

−1
3

1 ) such that (A3) holds.

For r1 =
1

100 , we have∫ 1

0
G(1, s)q(s)f1(s, r1) ds +

Γ(α− β)

Γ(α)

∫ 1

0
h1(s, r1) dA(s)

>
1

4Γ(72 )

∫ 1

0
[(1 − s)− (1− s)

5
2 ]

1

(1− s)
1
2

[(
1

100

)5

s
25
2 +

1

2

(
1

100

)−1
3

]
ds

>
1

100
= r1.

Next, for r2 = 1, we have∫ 1

0
G(1, s)q(s)f2(s, r2) ds+

Γ(α− β)

Γ(α)

∫ 1

0
h2(s, r2) dA(s)

≤ 1

4Γ(72 )

∫ 1

0
[(1− s)− (1− s)

5
2 ]

1

(1 − s)
1
2

(
1 +

1

2
s

−5
6

)
ds

+
3

2Γ(72 )

∫ 1

0
dA(s)

≤ 1

4Γ(72 )

∫ 1

0
(1− s)

1
2

(
1 +

1

2
s

−5
6

)
ds+

4

3Γ(72 )

=
1

4Γ(72 )

[∫ 1

0
(1− s)

1
2 ds+

1

2

∫ 1

0
(1− s)

1
2 s

−5
6 ds

]
+

4

3Γ(72)

=
1

4Γ(72 )

[
2

3
+

1

2
β

(
1

6
,
3

2

)]
+

4

3Γ(72)

=
1

4Γ(72 )

[
2

3
+

1

2

Γ(16 )Γ(
3
2)

Γ(53)

]
+

4

3Γ(72 )

=
1

4Γ(72 )

[
2

3
+

1

2

(5.566)(0.886)

(0.9027)

]
+

4

3Γ(72 )

= 0.6568 < 1 = r2.

Hence, by (H5) of Theorem 4.5, the problem (1.1)–(1.3) has at least one
positive increasing solution x∗(t) with 1

100 ≤ x∗(t) ≤ 1 for 0 ≤ t ≤ 1.

Consider the functions g(s) = G(1, s), with
∫ 1
1/2 g(s) ds > 0, and c(t) =

tα−1. Then by (2.7), we have

c(t)g(s) ≤ G(t, s) ≤ g(s) for 0 ≤ t, s ≤ 1. (4.6)
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Since (4.6) is valid, we can take the subinterval [12 , 1] ⊂ [0, 1] for which the
inequality

μG(1, s) ≤ G(t, s) ≤ G(1, s) (4.7)
replaces (2.7), where

μ =
1

2α−1
= min

t∈[ 1
2
,1]
c(t) = min

t∈[ 1
2
,1]

1

tα−1
. (4.8)

In this case, the operator T , defined in (2.10), maps the cone

N = {x ∈ C[0, 1] : x(t) ≥ 0, t ∈ [0, 1]}
into the sub-cone P , where

P = {x ∈ C[0, 1] : min
t∈[1/2,1]

x(t) ≥ μ‖x‖}, (4.9)

where μ is given in (4.8).

Now, we shall use Theorem 2.4 to find sufficient conditions for the
existence of three positive solutions of the FBVP (1.1)–(1.3).

Theorem 4.6. Assume that there exist continuous functions f1, h1 :
[0, 1]× [0,∞) → [0,∞) such that (4.1) holds and that there exist constants
c1, c2, c3, and c4 with

0 < c1 < c2 <
c2
μ

= c3 ≤ c4

such that

(H7): f(t, x) < f1(t)c1 and h(t, x) < h1(t)c1 for 0 ≤ x(t) ≤ c1 and
0 ≤ t ≤ 1;

(H8): f(t, x) > c2
μλ and h(t, x) > c2

μλ for c2 ≤ x(t) ≤ c2
μ and 1/2 ≤ t ≤

1;
(H9): f(t, x) ≤ f1(t)c4 and h(t, x) ≤ h1(t)c4 for 0 ≤ x(t) ≤ c4 and

0 ≤ t ≤ 1.

Then the FBVP (1.1)–(1.3) has at least three positive solutions xi with
‖xi‖ ≤ c4, i = 1, 2, 3.

P r o o f. Consider the cone P given in (4.9). We define a nonnegative
continuous concave functional Φ on P by

Φ(x) = min
t∈[1/2,1]

|x(t)|

so that Φ(x) ≤ ‖x‖. We consider two nonnegative continuous convex func-
tionals φ and Θ on P given by

Θ(x) = φ(x) = ‖x‖,
and a nonnegative continuous function ψ on P given by

ψ(x) = ‖x‖.
Then,
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ψ(kx) = ‖kx‖ ≤ |k|‖x‖ ≤ |k|ψ(x) = kψ(x), 0 ≤ k ≤ 1,

Φ(x) = min
t∈[1/2,1]

|x(t)| ≤ ‖x‖ = ψ(x),

and we can find M ≥ 1 such that

‖x‖ = φ(x) ≤Mφ(x) for every x ∈ P (φ, c4).

We consider the operator T : P → X defined by (2.10). It is clear that
x(t) is a solution of the FBVP (1.1)–(1.3) if and only if it is a fixed point
of T in the cone P . Also, conditions (A1) and (A2) imply that (Tx)(t) ≥ 0
for t ∈ [0, 1]. Proceeding along the lines of the proof of Lemma 2.5, we can

show that T (P ) ⊂ P . If x ∈ P (φ, c4), then φ(x) = ‖x‖ ≤ c4 for 0 ≤ x ≤ c4
and 0 ≤ t ≤ 1. Then, by (H7), we have

φ(Tx) = ‖Tx‖ = max
t∈[0,1]

|(Tx)(t)|

= max
t∈[0,1]

∣∣∣∣∫ 1

0
G(t, s)q(s)f(s, x(s)) ds

+
Γ(α− β)

Γ(α)
tα−1

∫ 1

0
h(s, x(s)) dA(s)

∣∣∣∣
≤ c4

[∫ 1

0
G(1, s)q(s)f1(s) ds+

Γ(α− β)

Γ(α)

∫ 1

0
h1(s) dA(s)

]
≤ c4.

Hence, T : P (φ, c4) → P (φ, c4).

Next, we prove that T : P (φ, c4) → P (φ, c4) is completely continuous.
From the continuity of G(t, s), f(t, x), and h(t, x) for (t, s) ∈ [0, 1] × [0, 1],
it follows that T is continuous on P . For the given c4 > 0, we consider the
set

Pc4 = {x ∈ P : ‖x‖ ≤ c4}.
Setting

M1 = max
t∈[0,1]
x∈[0,c4]

f(t, x) and M2 = max
t∈[0,1]
x∈[0,c4]

h(t, x),

we have

|(Tx)(t)| =
∣∣∣∣∫ 1

0
G(t, s)q(s)f(s, x(s)) ds +

Γ(α− β)

Γ(α)
tα−1

∫ 1

0
h(s, x(s)) dA(s)

∣∣∣∣
≤M1

∫ 1

0
G(1, s)q(s) ds +

M2Γ(α− β)

Γ(α)

∫ 1

0
dA(s),

which implies that T is uniformly bounded on Pc4 . Since G(t, s) is contin-
uous on [0, 1] × [0, 1], it is uniformly continuous there, so for every ε > 0,
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there exists δ ∈
(
0, ε

α−1

)
such that |G(t1, s)−G(t2, s)| < ε for |t1 − t2| ≤ δ

and (t1, s), (t2, s) ∈ [0, 1] × [0, 1]. Consequently, for any x ∈ Pc4 and t1,
t2 ∈ [0, 1] with |t1 − t2| < δ, we have

|(Tx)(t1)− (Tx)(t2)| ≤
∫ 1

0
|G(t1, s)−G(t2, s)|q(s)f(s, x(s)) ds

+
Γ(α− β)

Γ(α)
|tα−1
1 − tα−1

2 |
∫ 1

0
h(s, x(s)) dA(s)

≤ εM1

∫ 1

0
q(s) ds

+
Γ(α− β)

Γ(α)
|t1 − t2|M2

(
α−2∑
i=0

tα−i−2
1 ti2

)∫ 1

0
dA(s)

≤ εM1

∫ 1

0
q(s) ds +

Γ(α− β)

Γ(α)
M2δ(α − 1)

∫ 1

0
dA(s)

≤ ε

(
M1

∫ 1

0
q(s) ds +

Γ(α− β)

Γ(α)
M2

∫ 1

0
dA(s)

)
.

Hence, T (Pc4) is equicontinuous, and so the set T (Pc4) is relatively compact.
Thus, T : Pc4 → Pc4 is completely continuous by the Arzelà Ascoli theorem.

Thus, for the convex function φ(x) = ‖x‖ on P , the mapping T : P (φ, c4) →
P (φ, c4) is completely continuous.

Set x0(t) = c2+c3
2 = c2

2μ(μ + 1) for any t ∈ [0, 1]; then x0(t) > 0.

Moreover,

Θ(x0) = ‖x0‖ =
c2 + c3

2
=
c2
2μ

(μ + 1) <
c2
μ

= c3,

Φ(x0) = min
t∈[1/2,1]

|x0| =
c2 + c3

2
>

2c2
2

= c2,

and

φ(x0) =
c2 + c3

2
=
c2
2μ

(μ + 1) <
c2
μ

= c3 ≤ c4,

imply that the set {x ∈ P (φ,Θ,Φ, c2, c3, c4) : Φ(x) > c2} is nonempty.
Now, we consider the interval c2 ≤ x(t) ≤ c3 =

c2
μ for t ∈ [1/2, 1]. Then

we have

Φ(Tx) = min
t∈[1/2,1]

[∫ 1

0
G(t, s)q(s)f(s, x(s)) ds

+
Γ(α− β)

Γ(α)
tα−1

∫ 1

0
h(s, x(s)) dA(s)

]
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≥ μ

[∫ 1

0
G(1, s)q(s)f(s, x(s)) ds +

Γ(α− β)

Γ(α)

∫ 1

0
h(s, x(s)) dA(s)

]
> μ

[
c2
μλ

∫ 1

0
G(t, s)q(s) ds +

Γ(α− β)

Γ(α)

c2
μλ

∫ 1

0
dA(s)

]
= c2

for x ∈ P (φ,Θ,Φ, c2, c3, c4). Hence, condition (S1) of Theorem 2.4 is sat-
isfied.

Next, assume that x ∈ P (φ,Φ, c2, c4) with Θ(Tx) > c3. Then we have

Φ(Tx) = min
t∈[1/2,1]

(Tx)(t) ≥ μ‖Tx‖ = μΘ(Tx) > μc3 = c2,

which proves (S2) holds.
Clearly φ(0) = 0 < c1 implies that φ ∈ R(φ,ψ, c1, c4). Let x ∈ φ ∈

R(φ,ψ, c1, c4) with ψ(x) = ‖x‖ = c1. Then,

ψ(Tx) = max
t∈[0,1]

∣∣∣∣∫ 1

0
G(t, s)q(s)f(s, x(s)) ds

+
Γ(α− β)

Γ(α)
tα−1

∫ 1

0
h(s, x(s)) dA(s)

∣∣∣∣
< c1

[∫ 1

0
G(1, s)q(s)f1(s) ds +

Γ(α− β)

Γ(α)

∫ 1

0
h1(s) dA(s)

]
≤ c1.

by (4.1). Hence, (S3) is satisfied. Therefore, by Theorem 2.4, the FBVP
(1.1)–(1.3) has at least three positive solutions x1, x2, and x3 with ‖xi‖ ≤
c4, i = 1, 2, 3. The location of the solutions xi, i = 1, 2, 3, are c2 ≤
mint∈[1/2,1] x1(t), c3 ≤ ‖x2‖ with mint∈[1/2,1] x2(t) < c3, and ‖x3‖ < c3.
The proof of the theorem is complete. �

Remark 4.2. The use of conditions (H7) and (H9) in Theorem
4.6 forces us to assume that (4.1) holds, which is required to prove T :

P (φ, c4) → P (φ, c4) and (S3) holds.

Theorem 4.7. Assume that there is a constant c2 > 0 such that (H8)
holds and there are continuous functions f1 and h1 : [0, 1]× [0,∞) → [0,∞)
such that

(H10): lim sup
x→∞

max
0≤t≤1

f(t,x)
f1(t)x

= 0 and lim sup
x→∞

max
0≤t≤1

h(t,x)
h1(t)x

= 0

and

(H11): lim sup
x→0

max
0≤t≤1

f(t,x)
f1(t)x

= 0 and lim sup
x→0

max
0≤t≤1

h(t,x)
h1(t)x

= 0.

Then the FBVP (1.1)–(1.3) has at least three positive solutions.
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P r o o f. To prove this theorem, we shall obtain the constants c4 and
c1 from the assumptions (H10) and (H11). Then the remainder of the
proof is similar to the proof of Theorem 4.6.

By (H10), there exist ε > 0 with

0 < ε <
1∫ 1

0 G(1, s)q(s)f1(s) ds +
Γ(α−β)
Γ(α)

∫ 1
0 h1(s) dA(s)

(4.10)

and η > 0 such that f(t, x) ≤ εf1(t)x(t) and h(t, x) ≤ εh1(t)x(t) for
x(t) ≥ η and 0 ≤ t ≤ 1. Set Mf = max0≤x(t)≤η

0≤t≤1

f(t, x) and Mh =

max0≤x(t)≤η
0≤t≤1

h(t, x); then we have f(t, x) ≤ εf1(t)x(t) +Mf and h(t, x) ≤

εh1(t)x(t) +Mh for x(t) ≥ 0 and 0 ≤ t ≤ 1. Now, we choose a constant
c4 > 0 such that

c4 ≥ max

⎧⎨⎩c2μ , Mf

∫ 1
0 G(1, s)q(s) ds +

Γ(α−β)
Γ(α) Mh

∫ 1
0 dA(s)

1− ε
[∫ 1

0 G(1, s)q(s)f1(s) ds +
Γ(α−β)
Γ(α)

∫ 1
0 h1(s) dA(s)

]
⎫⎬⎭ .

Consider the non-negative continuous convex functional φ on the cone P
defined by φ(x) = ‖x‖. Then, for x ∈ P (φ, c4), we have

φ(Tx) = ‖Tx‖ = max
t∈[0,1]

|(Tx)(t)|

= max
t∈[0,1]

∣∣∣∣∫ 1

0
G(t, s)q(s)f(s, x(s)) ds

+
Γ(α− β)

Γ(α)
tα−1

∫ 1

0
h(s, x(s)) dA(s)

∣∣∣∣
≤
∫ 1

0
G(1, s)q(s)(εf1(s)x(s) +Mf ) ds

+
Γ(α− β)

Γ(α)

∫ 1

0
(εh1(s)x(s) +Mh) dA(s)

≤
∫ 1

0
G(1, s)q(s)(εf1(s)‖x‖ +Mf ) ds

+
Γ(α− β)

Γ(α)

∫ 1

0
(εh1(s)‖x‖ +Mh) dA(s)

≤ εc4

[∫ 1

0
G(1, s)q(s)f1(s) ds+

Γ(α− β)

Γ(α)

∫ 1

0
h1(s) dA(s)

]
+Mf

∫ 1

0
G(1, s)q(s) ds +

Γ(α− β)

Γ(α)
Mh

∫ 1

0
dA(s) ≤ c4.
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Hence, T : P (φ, c4) → P (φ, c4). By choosing the functions Φ, Θ, and ψ
as in Theorem 4.6, and using (H8), we can prove that conditions (S1) and
(S2) of Theorem 2.4 are satisfied. To complete the proof of the theorem,
it is sufficient to find a constant c1, which we can obtain from condition
(H11). Indeed, by (H11), there exist constants ε > 0 satisfying (4.10) and
c1 with 0 < c1 < c2 such that f(t, x) ≤ εf1(t)x and h(t, x) ≤ εh1(t)x for
0 ≤ x ≤ c1 and 0 ≤ t ≤ 1. Hence, for 0 ≤ x ≤ c1 and the continuous
functional ψ(x) = ‖x‖ on the cone P , we have

ψ(Tx) = max
t∈[0,1]

∣∣∣∣∫ 1

0
G(t, s)q(s)f(s, x(s)) ds

+
Γ(α− β)

Γ(α)
tα−1

∫ 1

0
h(s, x(s)) dA(s)

∣∣∣∣
≤ ε

[∫ 1

0
G(1, s)q(s)f1(s)‖x‖ ds +

Γ(α− β)

Γ(α)

∫ 1

0
h1(s)‖x‖ dA(s)

]
≤ εc1

[∫ 1

0
G(1, s)q(s)f1(s) ds +

Γ(α− β)

Γ(α)

∫ 1

0
h1(s) dA(s)

]
< c1.

This completes the proof of the theorem. �

Example 4.2. Consider the boundary value problem (1.1)–(1.3) with
α = 7

2 , β = 3
2 , f(t, x) = h(t, x) = e29x2e−x, A(t) as in (4.5), and q(t) =

1
(1−t)−(1−t)5/2 , 0 < t < 1. Hence, λ = 1.26747 and μ = 2−5/2 < 1. Assuming

f1(t) = h1(t) = 1, we see that (H10) and (H11) are satisfied. Also, con-
dition (H8) is satisfied with c2 = 5. Hence, by Theorem 4.7, this problem
has at least three positive solutions.
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