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Abstract

Noether theorem is an important aspect to study in dynamical sys-
tems. Noether symmetry and conserved quantity for the fractional Birkhof-
fian system are investigated. Firstly, fractional Pfaff actions and frac-
tional Birkhoff equations in terms of combined Riemann-Liouville deriv-
ative, Riesz-Riemann-Liouville derivative, combined Caputo derivative and
Riesz-Caputo derivative are reviewed. Secondly, the criteria of Noether
symmetry within combined Riemann-Liouville derivative, Riesz-Riemann-
Liouville derivative, combined Caputo derivative and Riesz-Caputo de-
rivative are presented for the fractional Birkhoffian system, respectively.
Thirdly, four corresponding conserved quantities are obtained. The classi-
cal Noether identity and conserved quantity are special cases of this paper.
Finally, four fractional models, such as the fractional Whittaker model, the
fractional Lotka biochemical oscillator model, the fractional Hénon-Heiles
model and the fractional Hojman-Urrutia model are discussed as examples
to illustrate the results.
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1. Introduction

The Riemann-Liouville derivative and Caputo derivative are two pop-
ular versions of the derivatives of fractional calculus (FC). The Riemann-
Liouville derivative sounds some more convenient for theoretical studies
in FC, however, its extraordinary singularity is limiting its applications
in engineering and physical modeling. A fractional derivative with weak
singularity, the so-called Caputo derivative, was introduced by Caputo in
1960s. This derivative can successfully be used for solving fractional initial
value problems with more natural initial conditions and has been applied
widely in the modeling process of many practical problems. Anyway, both
of these definitions have their irreplaceable advantages.

In fact, fractional order dynamical systems can better describe phenom-
ena from the engineering practice and can more truly reveal the natural
world. Therefore, the fractional dynamics has made great progress in theo-
ries and applications, such as the fractional Lagrangian mechanics, the frac-
tional Hamiltonian mechanics, the fractional generalized Hamiltonian me-
chanics, the fractional Birkhoffian mechanics and the fractional dynamics
of the nonholonomic system [2, 25, 26, 28, 30, 31, 35, 36, 37, 38, 40, 42, 46],
as well as their applications, see for example, [5, 7, 8, 9, 11, 23, 41].

The Noether symmetry and conserved quantity for the fractional dy-
namical system were first introduced by Frederico and Torres in 2007 by
introducing a new fractional order operator [15]. Using this operator, some
results have been obtained [13, 16, 17, 18, 19, 24, 29, 48]. However, Ferreira
and Malinowska expressed their doubts about the validity of the Noether
theorem got through this fractional operator, and they presented a coun-
terexample to express their ideas, [12]. At the same time, they recom-
mended Atanacković’s definition of fractional conserved quantity. Actu-
ally, in 2009, based on the classical definition of the conserved quantity,
Atanacković [4] gave a definition of fractional conserved quantity, which
is different from the definition in [15]. Based on this definition, fractional
conserved quantity for the non-conservative system [14], the Hamiltonian
system [45], the generalized Hamiltonian system [27] and the Birkhoffian
system [43, 44, 47] were achieved.

As we all know, Birkhoffian mechanics is considered as an important
direction of modern analytical mechanics to study [20], and it is more
general than Newtonian mechanics, Lagrangian mechanics and Hamilton-
ian mechanics, as well as general holonomic and nonholonomic mechanics
[33, 34]. Besides, Birkhoffian mechanics can also apply to statistical me-
chanics, quantum mechanics, biological physics, hadron physics, atomic and
molecular physics and so forth [39]. In order to better solve the fractional
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dimension problems in science and engineering, and further explore the in-
ternal properties and dynamical behaviors of fractional dynamical systems,
we intend to study the fractional Noether symmetry and conserved quan-
tity on the basis of Atanacković’s definition for the fractional Birkhoffian
mechanics, which was established by Luo [28] in 2014.

This paper is organized as follows. First, the some basics of the frac-
tional Birkhoffian mechanics are reviewed. Secondly, the Noether theory
for the fractional Birkhoffian system with combined Riemann-Liouville de-
rivative, Riesz-Riemann-Liouville derivative, combined Caputo derivative
and Riesz-Caputo derivative is established, respectively. And finally, some
four applications of the results are presented.

2. Fractional derivatives and their properties

In this section, we list some definitions of fractional derivatives and their
properties, including the Riemann-Liouville derivative, Caputo derivative,
Riesz-Riemann-Liouville derivative and Riesz-Caputo derivative [1, 28].

Let f(t) be continuous and integrable, then the left and the right
Riemann-Liouville derivatives are

RL
t1 Dα

t f(t) =
1

Γ(n− α)
(
d

dt
)n

∫ t

t1

(t− ξ)n−α−1f(ξ)dξ, (2.1)

RL
t Dβ

t2
f(t) =

1

Γ(n− β)
(− d

dt
)n

∫ t2

t
(ξ − t)n−β−1f(ξ)dξ, (2.2)

the left and the right Caputo derivatives are

C
t1D

α
t f(t) =

1

Γ(n− α)

∫ t

t1

(t− ξ)n−α−1(
d

dξ
)nf(ξ)dξ, (2.3)

C
t D

β
t2f(t) =

1

Γ(n− β)

∫ t2

t
(ξ − t)n−β−1(− d

dξ
)nf(ξ)dξ, (2.4)

the Riesz-Riemann-Liouville derivative and the Riesz-Caputo derivative are

R
t1D

α
t2f(t) =

1

2Γ(n− α)
(
d

dt
)n

∫ t2

t1

|t− ξ|n−α−1f(ξ)dξ, (2.5)

RC
t1 Dα

t2f(t) =
1

2Γ(n − α)

∫ t2

t1

|t− ξ|n−α−1(
d

dξ
)nf(ξ)dξ, (2.6)

where Γ(∗) is the Gamma function, α and β are orders of fractional deriva-
tives with n − 1 ≤ α, β < n. When α, β are integers, the usual integer
definition of a derivative is used. In addition, the Riemann-Liouville de-
rivative of a constant is not zero while the Caputo derivative of a constant
is zero, and for α = β = 1, the left derivative is the negative of the right
derivative.
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The combined Riemann-Liouville derivative and the combined Caputo
derivative are

RLDα,β
γ f(t) = γRL

t1 Dα
t f(t) + (−1)n(1− γ)RL

t Dβ
t2f(t), (2.7)

CDα,β
γ f(t) = γCt1D

α
t f(t) + (−1)n(1− γ)Ct D

β
t2f(t), (2.8)

where t1D
α
t and tD

β
t2 can help for dealing with dynamical systems exhibiting

the arrow of time, γ determines the different quantity of information from
the past and the future to keep track of the past and future of the dynamics.

From formulae (2.7) and (2.8), we have

RLDα,α
1/2f(t) =

1

2
[RL
t1 Dα

t f(t) + (−1)nRL
t Dα

t2f(t)] =
R
t1D

α
t2f(t), (2.9)

CDα,α
1/2f(t) =

1

2
[Ct1D

α
t f(t) + (−1)nCt D

α
t2f(t)] =

RC
t1 Dα

t2f(t), (2.10)

i.e., the Riesz-Riemann-Liouville derivative and the Riesz-Caputo deriva-
tive can be deduced from the combined Riemann-Liouville derivative (2.7)
and the combined Caputo derivative (2.8) by setting β = α, γ = 1

2 , respec-
tively.

What is more, when α, β → 1, we have

t1D
1
t = d/dt, tD

1
t2 = −d/dt, Dα,β

γ = γt1D
1
t + (−1)n(1− γ)tD

1
t2 = d/dt.

(2.11)

3. Fractional Birkhoff equations

In this section, fractional Pfaff actions and fractional Birkhoff equations
with different fractional derivatives are listed, see [28].

Assume that a mechanical system is determined by 2n Birkhoffian vari-
ables aμ, the Birkhoffian is B = B(t, aμ), and the Birkhoff functions are
Rν = Rν(t, a

μ), μ, ν = 1, 2, · · · , 2n.
A unified fractional Pfaff action is defined as

A =

∫ t2

t1

(RνD
α,β
γ aν −B)dt. (3.1)

Case A: Based on the combined Riemann-Liouville derivative, frac-
tional Pfaff action is expressed as

ARL =

∫ t2

t1

(Rν
RLDα,β

γ aν −B)dt. (3.2)

When 0 < α, β < 1, fractional Birkhoff equations in terms of combined
Riemann-Liouville derivative have the form

∂Rν

∂aμ
RLDα,β

γ aν − CDβ,α
1−γRμ − ∂B

∂aμ
= 0, μ, ν = 1, 2, · · · , 2n. (3.3)
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Case B: Based on the Riesz-Riemann-Liouville derivative, fractional
Pfaff action is expressed as

AR =

∫ t2

t1

(Rν
R
t1D

α
t2a

ν −B)dt. (3.4)

When 0 < α < 1, fractional Birkhoff equations in terms of Riesz-Riemann-
Liouville derivative have the form

∂Rν

∂aμ
R
t1D

α
t2a

ν − RC
t1 Dα

t2Rμ − ∂B

∂aμ
= 0, μ, ν = 1, 2, · · · , 2n. (3.5)

Equations (3.5) can also be obtained from equations (3.3) when β = α,
γ = 1

2 .
Case C: Based on the combined Caputo derivative, fractional Pfaff

action is expressed as

AC =

∫ t2

t1

(Rν
CDα,β

γ aν −B)dt. (3.6)

When 0 < α, β < 1, fractional Birkhoff equations in terms of combined
Caputo derivative have the form

∂Rν

∂aμ
CDα,β

γ aν − RLDβ,α
1−γRμ − ∂B

∂aμ
= 0, μ, ν = 1, 2, · · · , 2n. (3.7)

Case D: Based on the Riesz-Caputo derivative, fractional Pfaff action
is expressed as

ARC =

∫ t2

t1

(Rν
RC
t1 Dα

t2a
ν −B)dt. (3.8)

When 0 < α < 1, fractional Birkhoff equations in terms of Riesz-Caputo
derivative have the form

∂Rν

∂aμ
RC
t1 Dα

t2a
ν − R

t1D
α
t2Rμ − ∂B

∂aμ
= 0, μ, ν = 1, 2, · · · , 2n. (3.9)

Equations (3.9) can also be obtained from equations (3.7) when β = α,
γ = 1

2 .
When α, β → 1, all Eqs. (3.3) (3.5) (3.7) and (3.9) reduce to the

classical Birkhoff equations [34]

(
∂Rν

∂aμ
− ∂Rμ

∂aν
)ȧν − ∂Rμ

∂t
− ∂B

∂aμ
= 0, μ, ν = 1, 2, · · · , 2n. (3.10)

4. Noether symmetry for fractional Birkhoffian machanics

In this section, Noether symmetry based on different fractional deriva-
tives is investigated under the condition of 0 < α, β < 1.

Considering the infinitesimal transformations

t̄ = t+�t, āν(t̄) = aν(t) +�aν , (4.1)
whose expanding forms are

t̄ = t+ εξ0(t, a
μ), āν(t̄) = aν(t) + εξν(t, a

μ), (4.2)
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where ε is an infinitesimal parameter, ξ0 and ξν are infinitesimal generators.

Under the infinitesimal transformations (4.1), the unified fractional
Pfaff action becomes

Ā =

∫ t̄2

t̄1

[Rν(t̄, ā
μ)Dα,β

γ āν −B(t̄, āμ)]dt̄. (4.3)

Denoting the main linear part which accurates to the first-order infini-
tesimal of Ā−A as �A.

Definition 4.1. If the condition �A = 0 holds, then the infinitesimal
transformations (4.1) are called Noether symmetric transformations.

The Noether symmetry can be verified from the Noether symmetric
transformations.

4.1. Noether symmetry in terms of combined Riemann-Liouville
derivative. Under the infinitesimal transformations (4.1), the fractional
Pfaff action in terms of combined Riemann-Liouville derivative becomes

ĀRL =
∫ t̄2
t̄1
[Rν(t̄, ā

μ)γRL
t̄1

Dα
t̄ ā

ν(t̄)

+Rν(t̄, ā
μ)(−1)n(1− γ)RL

t̄ Dβ
t̄2
āν(t̄)−B(t̄, āμ)]dt̄. (4.4)

In fact,

RL
t̄1

Dα
t̄ ā

ν(t̄) = RL
t1 Dα

t a
ν + RL

t1 Dα
t δa

ν +�t d
dt

RL
t1 Dα

t a
ν

− 1
Γ(1−α)

d
dt [(t− t1)

−αaν(t1)�t1], (4.5)

RL
t̄ Dβ

t̄2
āν(t̄) = RL

t Dβ
t2a

ν + RL
t Dβ

t2δa
ν

+�t d
dt

RL
t Dβ

t2a
ν − 1

Γ(1−β)
d
dt [(t2 − t)−βaν(t2)�t2]. (4.6)

Then using formulae (4.5) and (4.7), we get

�ARL =

∫ t2

t1

{Rν(t+�t, aμ +�aμ)γ[RL
t1 Dα

t a
ν + RL

t1 Dα
t δa

ν

+ �t
d

dt
RL
t1 Dα

t a
ν − 1

Γ(1− α)

d

dt
(t− t1)

−αaν(t1)�t1] + (−1)n(1− γ)

× Rν(t+�t, aμ +�aμ)[RL
t Dβ

t2a
ν + RL

t Dβ
t2δa

ν +�t
d

dt
RL
t Dβ

t2a
ν

− 1

Γ(1− β)

d

dt
(t2 − t)−βaν(t2)�t2]−B(t+�t, aμ +�aμ)}

× (1 +
d

dt
�t)dt−ARL
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=

∫ t2

t1

{Rν
RLDα,β

γ δaν + (Rν
d

dt
RLDα,β

γ aν +
∂Rν

∂t
RLDα,β

γ aν − ∂B

∂t
)�t

+ (
∂Rν

∂aμ
RLDα,β

γ aν − ∂B

∂aμ
)�aμ − γ[Rν

1

Γ(1− α)

d

dt
(t− t1)

−αaν(t1)�t1]

+ (Rν
RLDα,β

γ aν −B)
d

dt
�t+ (1− γ)[Rν

1

Γ(1− β)

d

dt
(t2 − t)−β

× aν(t2)�t2]}dt. (4.7)

Let �ARL = 0, we get

Rν
RLDα,β

γ (ξν − ȧνξ0) + (Rν
d
dt

RLDα,β
γ aν + ∂Rν

∂t
RLDα,β

γ aν − ∂B
∂t )ξ0

+(∂Rν
∂aμ

RLDα,β
γ aν − ∂B

∂aμ )ξμ − γ[Rν
1

Γ(1−α)
d
dt(t− t1)

−αaν(t1)

×ξ0(t1, a
μ(t1))] + (Rν

RLDα,β
γ aν −B)ξ̇0 + (1− γ)[Rν

1
Γ(1−β)

d
dt(t2 − t)−β

× aν(t2)ξ0(t2, a
μ(t2))] = 0. (4.8)

Therefore, we have the following

Criterion 4.1. For the fractional Birkhoffian system (3.3), if the in-
finitesimal generators ξ0 and ξν satisfy formula (4.8), then the infinitesimal
transformations (4.2) are Noether symmetric transformations.

Formula (4.8) is the Noether identity for the fractional Birkhoffian sys-
tem in terms of combined Riemann-Liouville derivative.

4.2. Noether symmetry in terms of Riesz-Riemann-Liouville de-
rivative. Under the infinitesimal transformations (4.1), the fractional Pfaff
action in terms of Riesz-Riemann-Liouville derivative becomes

ĀR =

∫ t̄2

t̄1

[Rν(t̄, ā
μ)Rt̄1D

α
t̄2
āν(t̄)−B(t̄, āμ)]dt̄. (4.9)

Since

R
t̄1
Dα

t̄2
āν(t̄) = R

t1D
α
t2a

ν + R
t1D

α
t2δa

ν +�t d
dt

R
t1D

α
t2a

ν

+ 1
2Γ(1−α)

d
dt |t− t2|−αaν(t2)�t2 − 1

2Γ(1−α)
d
dt |t− t1|−αaν(t1)�t1,(4.10)

it is obtained from �AR = 0 that

Rν
R
t1D

α
t2(ξν − ȧνξ0) + (Rν

d
dt

R
t1D

α
t2a

ν + ∂Rν
∂t

R
t1D

α
t2a

ν − ∂B
∂t )ξ0 + (∂Rν

∂aμ

×R
t1D

α
t2a

ν − ∂B
∂aμ )ξμ + Rν

2Γ(1−α)
d
dt |t− t2|−αaν(t2)ξ0(t2, a

μ(t2)) + (Rν

×R
t1D

α
t2a

ν −B)ξ̇0 − Rν
2Γ(1−α)

d
dt |t− t1|−αaν(t1)ξ0(t1, a

μ(t1)) = 0. (4.11)

Therefore, we have the following
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Criterion 4.2. For the fractional Birkhoffian system (3.5), if the infin-
itesimal generators ξ0 and ξν satisfy formula (4.11), then the infinitesimal
transformations (4.2) are Noether symmetric transformations.

Formula (4.11) is the Noether identity for the fractional Birkhoffian
system in terms of Riesz-Riemann-Liouville derivative.

Formula (4.11) can also be achieved from formula (4.8) by setting β = α,
γ = 1

2 .

4.3. Noether symmetry in terms of combined Caputo derivative.
Under the infinitesimal transformations (4.1), the fractional Pfaff action in
terms of combined Caputo derivative becomes

ĀC =
∫ t̄2
t̄1
[Rν(t̄, ā

μ)γCt̄1D
α
t̄ ā

ν(t̄)

+Rν(t̄, ā
μ)(−1)n(1− γ)Ct̄ D

β
t̄2
āν(t̄)−B(t̄, āμ)]dt̄. (4.12)

Using

C
t̄1
Dα

t̄ ā
ν(t̄) = C

t1D
α
t a

ν + C
t1D

α
t δa

ν +�t d
dt

C
t1D

α
t a

ν

− 1
Γ(1−α) (t− t1)

−αȧν(t1)�t1, (4.13)

C
t̄ D

β
t̄2
āν(t̄) = C

t D
β
t2a

ν + C
t D

β
t2δa

ν +�t d
dt

C
t D

β
t2a

ν

− 1
Γ(1−β) (t2 − t)−β ȧν(t2)�t2, (4.14)

from Definition 4.1 of the Noether symmetric transformations, we get

Rν
CDα,β

γ (ξν − ȧνξ0) + (Rν
d
dt

CDα,β
γ aν + ∂Rν

∂t
CDα,β

γ aν − ∂B
∂t )ξ0 + (∂Rν

∂aμ

×CDα,β
γ aν − ∂B

∂aμ )ξμ −Rν
γ

Γ(1−α) (t− t1)
−αȧν(t1)ξ0(t1, a

μ(t1)) + (Rν

×CDα,β
γ aν−B)ξ̇0 +Rν

1−γ
Γ(1−β) (t2 − t)−β ȧν(t2)ξ0(t2, a

μ(t2))=0. (4.15)

Therefore, we have

Criterion 4.3. For the fractional Birkhoffian system (3.7), if the infin-
itesimal generators ξ0 and ξν satisfy formula (4.15), then the infinitesimal
transformations (4.2) are Noether symmetric transformations.

Formula (4.15) is the Noether identity for the fractional Birkhoffian
system in terms of combined Caputo derivative.

4.4. Noether symmetry in terms of Riesz-Caputo derivative. Un-
der the infinitesimal transformations (4.1), the fractional Pfaff action in
terms of Riesz-Caputo derivative becomes

ĀRC =

∫ t̄2

t̄1

[Rν(t̄, ā
μ)RC

t̄1
Dα

t̄2
āν(t̄)−B(t̄, āμ)]dt̄. (4.16)

Since
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RC
t̄1

Dα
t̄2
āν(t̄) = RC

t1 Dα
t2a

ν + RC
t1 Dα

t2δa
ν +�t d

dt
RC
t1 Dα

t2a
ν

+ 1
2Γ(1−α) [|t− t2|−αȧν(t2)�t2 − |t− t1|−αȧν(t1)�t1], (4.17)

and �ARC = 0, we get

Rν
RC
t1 Dα

t2(ξν − ȧνξ0) + (Rν
d

dt
RC
t1 Dα

t2a
ν +

∂Rν

∂t
RC
t1 Dα

t2a
ν − ∂B

∂t
)ξ0

+(
∂Rν

∂aμ
RC
t1 Dα

t2a
ν − ∂B

∂aμ
)ξμ +

Rν

2Γ(1− α)
|t− t2|−αȧν(t2)ξ0(t2, a

μ(t2))

+(Rν
RC
t1 Dα

t2a
ν −B)ξ̇0 − Rν

2Γ(1− α)
|t− t1|−αȧν(t1)ξ0(t1, a

μ(t1)) = 0.(4.18)

Therefore, we have

Criterion 4.4. For the fractional Birkhoffian system (3.9), if the infin-
itesimal generators ξ0 and ξν satisfy formula (4.18), then the infinitesimal
transformations (4.2) are Noether symmetric transformations.

Formula (4.18) is the Noether identity for the fractional Birkhoffian
system in terms of Riesz-Caputo derivative.

Formula (4.18) can also be obtained from formula (4.15) by setting
β = α, γ = 1

2 .
When α, β → 1, considering Γ(0) = ∞, formulae (4.8) (4.11) (4.15) and

(4.18) all reduce to the classical Noether identity [32]

Rν ξ̇ν −Bξ̇0 + (
∂Rν

∂t
ȧν − ∂B

∂t
)ξ0 + (

∂Rν

∂aμ
ȧν − ∂B

∂aμ
)ξμ = 0. (4.19)

5. Conserved quantity for fractional Birkhoffian machanics

In this section, conserved quantities based on different fractional deriva-
tives are achieved under the condition of 0 < α, β < 1.

Theorem 5.1. For the fractional Birkhoffian system (3.3), if the infin-
itesimal transformations (4.2) are the Noether symmetric transformations,
then there exists a conserved quantity for this system

IRL = (Rν
RLDα,β

γ aν −B)ξ0 +
∫ t
t1
[Rν

RLDα,β
γ (ξν − ȧνξ0) + (ξν

− ȧνξ0)
CDβ,α

1−γRν ]dτ − ∫ t
t1
[ γRν

Γ(1−α)
d
dτ (τ − t1)

−αaν(t1)ξ0(t1, a
μ(t1))

− (1−γ)Rν

Γ(1−β)
d
dτ (t2 − τ)−βaν(t2)ξ0(t2, a

μ(t2))]dτ = const . (5.1)
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P r o o f. From Eqs.(3.3) and formula (4.8), we have

d

dt
IRL = (Rν

RLDα,β
γ aν −B)ξ̇0 + ξ0(

∂Rν

∂t
+

∂Rν

∂aμ
ȧμ)RLDα,β

γ aν

+ ξ0Rν
d

dt
RLDα,β

γ aν − ξ0(
∂B

∂t
+

∂B

∂aμ
ȧμ) +Rν

RLDα,β
γ (ξν − ȧνξ0)

+ (ξν − ȧνξ0)
CDβ,α

1−γRν − [
γRν

Γ(1− α)

d

dt
(t− t1)

−αaν(t1)

× ξ0(t1, a
μ(t1))− (1− γ)Rν

Γ(1− β)

d

dt
(t2 − t)−βaν(t2)ξ0(t2, a

μ(t2))]

= −Rν
RLDα,β

γ (ξν − ȧνξ0)− (Rν
d

dt
RLDα,β

γ aν +
∂Rν

∂t
RLDα,β

γ aν

− ∂B

∂t
)ξ0 − (

∂Rν

∂aμ
RLDα,β

γ aν − ∂B

∂aμ
)ξμ + ξ0(

∂Rν

∂t
+

∂Rν

∂aμ
ȧμ)

× RLDα,β
γ aν + ξ0Rν

d

dt
RLDα,β

γ aν − ξ0(
∂B

∂t
+

∂B

∂aμ
ȧμ)

+ Rν
RLDα,β

γ (ξν − ȧνξ0) + (ξν − ȧνξ0)
CDβ,α

1−γRν

= −(
∂Rν

∂aμ
RLDα,β

γ aν − CDβ,α
1−γRμ − ∂B

∂aμ
)(ξμ − ȧμξ0) = 0.

�

Theorem 5.2. For the fractional Birkhoffian system (3.5), if the infin-
itesimal transformations (4.2) are the Noether symmetric transformations,
then there exists a conserved quantity for this system

IR = (Rν
R
t1D

α
t2a

ν −B)ξ0 +
∫ t
t1
[Rν

R
t1D

α
t2(ξν − ȧνξ0) + (ξν

− ȧνξ0)
RC
t1 Dα

t2Rν ]dτ +
∫ t
t1

Rν
2Γ(1−α)

d
dτ [|τ − t2|−αaν(t2)ξ0(t2, a

μ(t2))

− |τ − t1|−αaν(t1)ξ0(t1, a
μ(t1))]dτ = const . (5.2)

P r o o f. Using Eqs.(3.5) and formula (4.11), we can get the result. �

Theorem 5.3. For the fractional Birkhoffian system (3.7), if the infin-
itesimal transformations (4.2) are the Noether symmetric transformations,
then there exists a conserved quantity for this system

IC = (Rν
CDα,β

γ aν −B)ξ0 +
∫ t
t1
[Rν

CDα,β
γ (ξν − ȧνξ0) + (ξν

− ȧνξ0)
RLDβ,α

1−γRν ]dτ − ∫ t
t1
[ γRν

Γ(1−α) (τ − t1)
−αȧν(t1)ξ0(t1, a

μ(t1))

− (1−γ)Rν

Γ(1−β) (t2 − τ)−β ȧν(t2)ξ0(t2, a
μ(t2))]dτ = const . (5.3)
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P r o o f. The result can be verified from Eqs.(3.7) and formula (4.15).
�

Theorem 5.4. For the fractional Birkhoffian system (3.9), if the infin-
itesimal transformations (4.2) are the Noether symmetric transformations,
then there exists a conserved quantity for this system

IRC = (Rν
RC
t1 Dα

t2a
ν −B)ξ0 +

∫ t
t1
[Rν

RC
t1 Dα

t2(ξν − ȧνξ0) + (ξν

− ȧνξ0)
R
t1D

α
t2Rν ]dτ +

∫ t
t1
[ Rν
2Γ(1−α) [|τ − t2|−αȧν(t2)ξ0(t2, a

μ(t2))

− |τ − t1|−αȧν(t1)ξ0(t1, a
μ(t1))]dτ = const . (5.4)

P r o o f. Taking advantage of Eqs.(3.9) and formula (4.18), we can
complete this proof. �

When α, β → 1, since Γ(0) = ∞, we can get the classical conserved
quantity [32].

Theorem 5.5. For the classical Birkhoffian system (3.10), if the infin-
itesimal generators ξ0 and ξν satisfy the classical Noether identity (4.19),
then there exists a conserved quantity for this system

I = Rνξν −Bξ0 = const . (5.5)

6. Applications

In this section, we present four applications.

Application 6.1. The Lotka biochemical oscillator model is an im-
portant class of biological model, which can well describe the competition
between different species during the research of ecology [34]. The fractional
Lotka biochemical oscillator model in terms of combined Riemann-Liouville
derivative has the form [28]

1
2
RLDα,β

γ a2 + 1
2
CDβ,α

1−γa
2 − α2 − β2 expa

1 = 0,

1
2
RLDα,β

γ a1 + 1
2
CDβ,α

1−γa
2 − α2 − β2 expa

1 = 0, (6.1)

whose Birkhoffian and Birkhoff equations are

B = α2a
1 − α1a

2 − β1 expa
2 + β2 expa

1, R1 = −1

2
a2, R2 =

1

2
a1, (6.2)

try to find out its conserved quantity.
Since

d

dt
RL
t1 Dα

t a
ν = RL

t1 Dα
t ȧ

ν +
1

Γ(1− α)

d

dt
(t− t1)

−αaν(t1), (6.3)
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d

dt
RL
t Dβ

t2a
ν = RL

t Dβ
t2 ȧ

ν +
1

Γ(1− β)

d

dt
(t2 − t)−βaν(t2), (6.4)

it is obtained that
ξ0 = 1, ξ1 = ξ2 = 0 (6.5)

is a solution to the Noether identity (4.8). Hence, from Theorem 5.1, we
obtain a conserved quantity

IRL = −1
2a

2RLDα,β
γ a1 + 1

2a
1RLDα,β

γ a2 − α2a
1 + α1a

2

+β1expa
2 − β2expa

1 +
∫ t
t1
(12a

2 d
dτ

RLDα,β
γ a1 − 1

2a
1 d
dτ

RLDα,β
γ a2

+ 1
2 ȧ

1CDβ,α
1−γa

2 − 1
2 ȧ

2CDβ,α
1−γa

1)dτ. (6.6)

When α, β → 1, we obtain the classical conserved quantity

α2a
1 − α1a

2 − β1expa
2 + β2expa

1 = const . (6.7)

Application 6.2. The Whittaker equations are important aspects of
the phylogeny of classical mechanics [10]. The fractional Whittaker model
in terms of Riesz-Riemann-Liouville derivative has the form [28]

−1
2
R
t1D

α
t2a

1 + 1
2
R
t1D

α
t2a

4 − 1
2
RC
t1 Dα

t2(a
1 − a4) = 0,

1
2
R
t1D

α
t2a

2 + 1
2
RC
t1 Dα

t2a
2 − a4 = 0,

−1
2
R
t1D

α
t2a

2 + 1
2
R
t1D

α
t2a

3 − 1
2
RC
t1 Dα

t2a
2 + 1

2
RC
t1 Dα

t2a
3 − a1 + a4 = 0,

−1
2
R
t1D

α
t2a

4 − 1
2
RC
t1 Dα

t2a
4 + a3 = 0, (6.8)

whose Birkhoffian and Birkhoff equations are

B = 1
2 [2a

1a4 − (a3)2 − (a4)2],

R1 = −1
2a

2, R2 =
1
2(a

1 − a4), R3 =
1
2a

4, R4 =
1
2 (a

2 − a3), (6.9)

try to find out its conserved quantity.
Considering

d

dt
R
t1D

α
t2a

ν = R
t1D

α
t2 ȧ

ν +
1

2Γ(1− α)

d

dt
[|t− t1|−αaν(t1)− |t− t2|−αaν(t2)],

(6.10)
it follows from the Noether identity (4.11) that

ξ0 = 1, ξ1 = ξ2 = ξ3 = ξ4 = 0. (6.11)

Therefore, from Theorem 5.2, we obtain a conserved quantity

IR = −1
2a

2R
t1D

α
t2a

1 + 1
2(a

1 − a4)Rt1D
α
t2a

2 + 1
2a

4R
t1D

α
t2a

3 + 1
2 (a

2 − a3)

×R
t1D

α
t2a

4 − 1
2 [2a

1a4 − (a3)2 − (a4)2] +
∫ t
t1
[12a

2 d
dτ

R
t1D

α
t2a

1 − 1
2 (a

1 − a4)

× d
dτ

R
t1D

α
t2a

2 − 1
2a

4 d
dτ

R
t1D

α
t2a

3 − 1
2 (a

2 − a3) d
dτ

R
t1D

α
t2a

4 + 1
2 ȧ

1RC
t1 Dα

t2a
2

− 1
2 ȧ

2RC
t1 Dα

t2(a
1 − a4)− 1

2 ȧ
3RC
t1 Dα

t2a
4 − 1

2 ȧ
4RC
t1 Dα

t2(a
2 − a3)]dτ. (6.12)
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When α → 1, we obtain the classical conserved quantity

2a1a4 − (a3)2 − (a4)2 = const . (6.13)

Application 6.3. The Hojman-Urrutia equations occupy an impor-
tant position in the study of the inverse problem of Birkhoff mechanics
and Lagrange mechanics [21, 34]. The fractional Hojman-Urrutia model in
terms of combined Caputo derivative has the form [28]

RLDβ,α
1−γa

2 + RLDβ,α
1−γa

3 = 0, CDα,β
γ a1 − a3 = 0,

CDα,β
γ a1 − RLDβ,α

1−γa
4 − (a3 + a2) = 0, CDα,β

γ a3 + a4 = 0, (6.14)

whose Birkhoffian and Birkhoff equations are

B =
1

2
[(a3)2+2a2a3− (a4)2], R1 = a2+a3, R3 = a4, R2 = R4 = 0. (6.15)

Now we discuss the Noether symmetry and conserved quantity for this
fractional model.

Taking calculation of the Noether identity (4.15), where
d

dt
C
t1D

α
t a

ν = C
t1D

α
t ȧ

ν +
1

Γ(1− α)
(t− t1)

−αȧν(t1), (6.16)

d

dt
C
t D

β
t2a

ν = C
t D

β
t2 ȧ

ν +
1

Γ(1− β)
(t2 − t)−β ȧν(t2), (6.17)

we have
ξ0 = 1, ξ1 = 0, ξ2 = 1, ξ3 = 0, ξ4 = 1. (6.18)

From Theorem 5.3, we obtain a conserved quantity

IC = (a2 + a3)CDα,β
γ a1 + a4CDα,β

γ a3 − 1
2(a

3)2 − a2a3 + 1
2(a

4)2

− ∫ t
t1
[(a2 + a3) d

dτ
CDα,β

γ a1 + a4 d
dτ

CDα,β
γ a3

+ ȧ1RLDβ,α
1−γ(a

2 + a3) + ȧ3RLDβ,α
1−γa

4]dτ. (6.19)

When α, β → 1, we get the classical conserved quantity

1

2
(a3)2 + a2a3 − 1

2
(a4)2 = const . (6.20)

Application 6.4. The Hénon-Heiles model plays an important role
in chaos [2, 6, 22]. The fractional Hénon-Heiles model in terms of Riesz-
Caputo derivative has the form [28]

RC
t1 Dα

t2a
3 + a1 + 2a1a2 = 0, RC

t1 Dα
t2a

4 + a2 − (a2)2 + (a1)2 = 0,
R
t1D

α
t2a

1 − a3 = 0, R
t1D

α
t2a

2 − a4 = 0, (6.21)

whose Birkhoffian and Birkhoff equations are

B = 1
2 [(a

1)2 + (a2)2 + (a3)2 + (a4)2 + 2a2(a1)2 − 2
3(a

2)3],

R1 = R2 = 0, R3 = −a1, R4 = −a2. (6.22)
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Now we discuss the Noether symmetry and conserved quantity for this
fractional Hénon-Heiles model.

Making use of

d

dt
RC
t1 Dα

t2a
ν = RC

t1 Dα
t2 ȧ

ν +
1

2Γ(1− α)
[|t− t1|−αȧν(t1)− |t− t2|−αȧν(t2)],

(6.23)
Noether identity (4.18) gives

ξ0 = ξ1 = ξ2 = 1, ξ3 = ξ4 = 0. (6.24)

Therefore, from Theorem 5.4, we obtain a conserved quantity

IRC = −a1RC
t1 Dα

t2a
3 − a2RC

t1 Dα
t2a

4 − 1
2 [(a

1)2 + (a2)2 + (a3)2

+(a4)2 + 2a2(a1)2 − 2
3(a

2)3] +
∫ t
t1
(a1 d

dτ
RC
t1 Dα

t2a
3 + a2 d

dτ
RC
t1 Dα

t2a
4

+ ȧ3Rt1D
α
t2a

1 + ȧ4Rt1D
α
t2a

2)dτ. (6.25)

When α → 1, we obtain the classical conserved quantity

(a1)2 + (a2)2 + (a3)2 + (a4)2 + 2a2(a1)2 − 2

3
(a2)3 = const . (6.26)

7. Conclusion

A new research field called fractional Birkhoffian mechanics, which can
be used to study problems of science and engineering, was constructed
in Ref. [28] recently. We discuss the Noether symmetry and conserved
quantity for the fractional Birkhoffian mechanics in this paper. Noether
identities and conserved quantities in terms of combined Riemann-Liouville
derivative, Riesz-Riemann-Liouville derivative, combined Caputo derivative
and Riesz-Caputo derivative are presented, respectively. Our Theorem 5.1
- Theorem 5.4 are the new results. The classical Noether identity and
conserved quantity are special cases of the results achieved in this paper.

Noether symmetries for four fractional dynamical models, including
the fractional Whittaker model, the fractional Hénon-Heiles model, the
fractional Lotka biochemical oscillator model and the fractional Hojman-
Urrutia model are discussed in this paper, and the corresponding conserved
quantities are obtained.

Considering the significance of the fractional calculus and the Birkhof-
fian dynamics, further research, for instance, perturbation to Noether sym-
metry and adiabatic invariants for the fractional Birkhoffian mechanics,
can be done in the future. Besides, Lie symmetry and conserved quan-
tity, Mei symmetry and conserved quantity for fractional mechanics, such
as fractional Lagrangian mechanics, fractional Hamiltonian mechanics and
fractional Birkhoffian mechanics, are also hoped to be investigated.
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lems with fractional derivatives: Invariance conditions and Noether’s
theorem. Nonlinear Anal. 71, No 5-6 (2009), 1504–1517.

[5] D. Baleanu, S.I. Muslih, E.M. Rabei, On fractional Euler-Lagrange
and Hamilton equations and the fractional generalization of total time
derivative. Nonlinear Dyn. 53, No 1-2 (2008), 67–74.

[6] M. Brack, Bifurcation cascades and self-similarity of periodic or-
bits with analytical scaling constants in Hénon-Heiles type potentials.
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