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Abstract

In this paper a new way to compute analytic approximate polynomial
solutions for a class of nonlinear variable order fractional differential equa-
tions is proposed, based on the Polynomial Least Squares Method (PLSM).
In order to emphasize the accuracy and the efficiency of the method several
examples are included.
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1. Introduction

Fractional order differential equations are successfully used in the mod-
eling of practical problems from various fields of physics and engineering
such as biophysics, aerodynamics, electrical circuits etc. ([6], [7], [11]).
Recently, variable order fractional differential equations proved their use-
fulness in fields such as anomalous diffusion ([2], [10], [13]), processing of
geographical data ([4]), heterogeneous media ([12]), noise reduction and
signal-processing ([14]), Lagrangian mechanics ([1]).

With the exception of a limited number of particular cases, variable
order fractional differential equations can not be solved analytically using
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traditional methods. If an exact solution of the problem can not be deter-
mined and a numerical solutions in not sufficient, an analytic approximate
solution should be computed.

In the present paper we obtain analytic approximate solutions for the
following class of nonlinear variable order fractional differential equations:

Dα(x)u(x) + a(x) · u′(x) + b(x) · u(x) = f(x), 0 ≤ x ≤ 1, (1.1)

u(0) = μ1, u(1) = μ2, (1.2)

where u ∈ Cn[0, 1], α : [0, 1] → R+, μ1, μ2 ∈ R, the functions a, b, f ∈
C[0, 1] are given such that the problem (1.1),(1.2) satisfy the existence and

unicity conditions for a continuous solution, and Dα(x) denotes the variable
order Caputo fractional derivative ([2], [10]):

Dα(x)u(x) =
1

Γ(n− α(x))

∫ x

0
(x− τ)n−α(x)−1 d

nu(τ)

dτn
dτ,

t > 0, n− 1 < α(x) ≤ n, n ∈ N.

2. The Polynomial Least Squares Method

Attached to the problem (1.1),(1.2) we consider the following operator:

D(u) = Dα(x)u+ a(x) · u′(x) + b(x) · u(x)− f(x), (2.1)

where u ∈ Cn[0, 1]. We denote by ũ an approximate solution of equa-
tion (1.1). The error obtained by replacing the exact solution u with the
approximation ũ is given by the remainder:

R(x, ũ) = D(ũ(x)), x ∈ [0, 1]. (2.2)

For ε ∈ R+, we will compute approximate polynomial solutions ũ of
the problem (1.1),(1.2) on the interval [0, 1]. We impose for ũ the following
conditions:

|R(x, ũ)| < ε, (2.3)

ũ(0) = μ1, ũ(1) = μ2. (2.4)

Definition 2.1. We call an ε-approximate polynomial solution of the
problem (1.1),(1.2) an approximate polynomial solution ũ satisfying the
relations (2.3),(2.4).

Definition 2.2. We call a weak ε-approximate polynomial solution of
the problem (1.1,1.2) an approximate polynomial solution ũ satisfying the
relation:

1∫
0

|R(x, ũ)|dx ≤ ε,

together with the initial conditions (2.4).



ANALYTIC APPROXIMATE SOLUTIONS FOR . . . 1045

Definition 2.3. Let Pm(x) = a0 + a1x + ... + amxm, ai ∈ R, i =
0, 1, ...,m be a sequence of polynomials satisfying the conditions:

Pm(0) = μ1, Pm(1) = μ2.

We call the sequence of polynomials Pm(x) convergent to the solution of
the problem (1.1),(1.2) if lim

m→∞D(Pm(x)) = 0.

We remark that from the hypothesis of the problem (1.1),(1.2) it follows
that there exists a sequence of polynomials Pm(x) which converges to the
solution of the problem.

In the following we will compute a weak ε-polynomial solution of the
type:

ũ(x) =

m∑
k=0

ckx
k, (2.5)

where the constants c0, c1, ..., cm are calculated using the following steps:

• By substituting the approximate solution (2.5) in the equation (1.1)
we obtain the following expression:

R(x, c0, c1, ..., cm) = R(x, ũ) = Dα(x)ũ+ a(x) · ũ′(x) + b(x) · ũ(x)− f(x).
(2.6)

If we could find c00, c
0
1, ..., c

0
m such that R(x, c00, c

0
1, ..., c

0
m) = 0 for

any x ∈ [0, 1] and the equivalents of (1.2):

ũ(0) = μ1, ũ(1) = μ2, (2.7)

are also satisfied, then by substituting c00, c
0
1, ..., c

0
m in (2.5) we obtain

the exact solution of (1.1,1.2).
• Next we attach to the problem (1.1,1.2) the following real func-
tional:

J(c2, c3, ..., cm) =

1∫
0

R2(x, c0, c1, ..., cm)dx, (2.8)

where c0, c1 are computed as functions of c2, c3, ..., cm by using the
initial conditions (2.7).

• We compute the values of c02, c
0
3, ..., c

0
m as the values which give the

minimum of the functional (2.8) and the values of c00, c
0
1 again as

functions of c02, c
0
2, ..., c

0
m by using the initial conditions.

• Using the constants c00, c
0
1, ..., c

0
m thus determined, we consider the

polynomial:

Tm(x) =

m∑
k=0

c0k xk. (2.9)

The following convergence theorem holds:
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Theorem 2.1. The sequence of polynomials Tm(x) from (2.9) satisfies
the property:

lim
m→∞

1∫
0

R2(x, Tm)dx = 0.

Moreover, ∀ε > 0, ∃m0 ∈ N such that ∀m ∈ N, m > m0 it follows that
Tm(x) is a weak ε-approximate polynomial solution of the problem (1.1,1.2).

P r o o f. Based on the way the polynomials Tm(x) are computed and
taking into account the relations (2.6-2.9), the following inequalities are
satisfied:

0 ≤
1∫

0

R2(x, Tm(x))dx ≤
1∫

0

R2(x, Pm(x))dx, ∀m ∈ N,

where Pm(x) is the sequence of polynomials introduced in Definition 2.3.
It follows that:

0 ≤ lim
m→∞

1∫
0

R2(x, Tm(x))dx ≤ lim
m→∞

1∫
0

R2(x, Pm(x))dx = 0.

We obtain:

lim
m→∞

1∫
0

R2(x, Tm(x))dx = 0.

From this limit we obtain that ∀ε > 0, ∃m0 ∈ N such that ∀m ∈ N, m >
m0, it follows that Tm(x) is a weak ε -approximate polynomial solution of
the problem (1.1),(1.2). �

We remark that any ε-approximate polynomial solution of the prob-
lem (1.1,1.2) is also a weak ε2-approximate polynomial solution, but the
opposite is not always true. It follows that the set of weak approximate
solutions of the problem (1.1,1.2) also contains the approximate solutions
of the problem.

Taking into account the above remark, in order to find ε-approximate
polynomial solutions of the problem (1.1,1.2) by using the Polynomial Least
Squares Method (PLSM) we will first determine weak approximate poly-
nomial solutions, ũ. If |R(x, ũ)| < ε then ũ is also an ε-approximate poly-
nomial solution of the problem.

3. Examples

This section includes several test problems with fractional derivatives of
both constant and variable order. Approximate solutions for these problems
were proposed in some other papers and the comparison with our results
emphasizes the accuracy of PLSM.
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3.1. Example 1. The first example is the following fractional boundary
value problem with multi-point boundary conditions:{

D1.3u(x) + cos(x) · u′(x) + 2 · u(x) = f(x), 0 ≤ x ≤ 1,

u(0) = 0, u(1) = u(18 ) + 2 · u(12) + 31
49 · u(78),

(3.1)

where f(x) = Γ(3)
Γ(1.7) · x0.7 + 2 · x2 + 2 · x · cos(x).

The exact solution of this problem is u(x) = x2.

Approximate solutions for this problem using reproducing kernel meth-
ods were proposed by Geng and Cui in [5] (with absolute errors larger than
10−6) and by Li and Wu in [8] (with absolute errors larger than 10−8).

Using the PLSM, we computed a solution (2.5) of the type ũ(x) =
c0 + c1 · x+ c2 · x2.

This solution should satisfy the multi-point boundary conditions of
(3.1). Imposing the corresponding conditions ũ(0) = 0, ũ(1) = ũ(18) +

2 · ũ(12 ) + 31
49 · ũ(78 ), we obtain c0 = 0, c1 = 0 and the approximation be-

comes: ũ(x) = c2 · x2.
The corresponding remainder (2.6) is in this case:

R(x, ũ) = (c2 − 1) ·
(

2·x0.7

Γ(1.7) + 2 · x · (x+ cos(x))
)
.

It is clear that the value c2 = 1 leads to a zero remainder and thus, by
replacing this value in ũ(x) we obtain the exact solution of the problem:
ũ(x) = x2.

3.2. Example 2. Next, we have the following variable order fractional
differential equations with boundary conditions:{

Dα(x)u(x) + cos(x) · u′(x) + 4 · u(x) + 5 · u(x2) = f(x), 0 ≤ x ≤ 1,

u(0) = 0, u(1) = 1,

(3.2)

where α(x) =
5 + sin(x)

4
, f(x) =

2 · x2−α(x)

Γ(3− α(x))
+5 ·x4+4 ·x2+2 ·x · cos(x).

The exact solution of this problem is also u(x) = x2.
An approximate solution of this problem using a method based on the

reproducing kernel method was proposed by Li and Wu in [9], with absolute
errors larger than 10−8

Using the PLSM, we compute a solution (2.5) of the type ũ(x) = c0 +
c1 · x+ c2 · x2.

Imposing the corresponding boundary conditions ũ(0) = 0, ũ(1) = 1,
we obtain c0 = 0, c1 = 1 − c2 and the approximation becomes: ũ(x) =
(1− c2) · x+ c2 · x2.

The corresponding remainder (2.6) is:
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R(x, ũ)=(c2−1)·
(

2 · x 3
4
− sin(x)

4

Γ
(
1
4(7−sin(x))

) +
(
5 · x4−x2−4 · x)+(2x−1) · cos(x)

)
.

The value c2 = 1 leads to a zero remainder and by replacing this value
in ũ(x) we obtain the exact solution of the problem: ũ(x) = x2.

3.3. Example 3. The third example is the following variable order frac-
tional differential equation with an initial condition:{

Dα(x)u(x)− 10 · u′(x) + u(x) = f(x), 0 ≤ x ≤ 1,

u(0) = 5,
(3.3)

where α(x) =
x+ 2 · ex

7
, f(x) = 10 ·

(
x2−α(x)

Γ(3−α(x)) +
x1−α(x)

Γ(2−α(x))

)
+ 5 · x2 − 90 ·

x− 95.

The exact solution of the problem is u(x) = 5 · (1 + x2).
Using PLSM, we compute a solution (2.5) of the type ũ(x) = c0 + c1 ·

x+ c2 · x2.
Imposing the corresponding initial condition ũ(0) = 5, we obtain c0 = 5

and the approximation becomes: ũ(x) = 5 + c1 · x+ c2 · x2.
The corresponding remainder (2.6) is:

R(x, ũ) =
x

1
7
(−2)(ex−3) (2 · (c1 − 10) · ex − 13 · c1 − 14 · c2x+ 70 · x+ 130)

(2 · ex − 13) Γ
(
13
7 − 2·ex

7

)
+ c1 · (x− 10) + x · (c2 · (x− 20) − 5 · x+ 90) + 100.

Next we compute the functional (2.8) (too large to be included here)
and minimize it obtaining the values: c1 = 10.000000000000004, c2 =
4.999999999999997.

The approximate analytical solution of the problem (3.3) by PLSM is:
ũ(x) = 5 + 10.000000000000004 · x+ 4.999999999999997 · x2.
An approximate solution of this problem using a method based on Le-

gendre wavelets was proposed by Chen et al. in [3].
Table 1 presents the values of the absolute errors corresponding to the

solution proposed by Chen et al. (denoted by LWM) and to our solution
(denoted by PLSM).

4. Conclusions

The Polynomial Least Squares Method (PLSM) is presented as a straight-
forward and efficient method to compute approximate polynomial solutions
for variable order fractional differential equations.

The examples included clearly illustrate the accuracy of the method,
since for all the problems we were able to compute better approximations
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LWM PLSM

0.2 8 · 10−12 1 · 10−15

0.4 2 · 10−9 1 · 10−15

0.6 9 · 10−10 1 · 10−15

0.8 1 · 10−10 1 · 10−16

1.0 1 · 10−10 1 · 10−16

Table 1. Comparison of absolute errors of the approximate
solutions for the problem (3.3)

than the ones computed in previous papers. Moreover, for several of the
problems we were able to compute the exact solution of the problem.

We mention that while in this paper we solved only a class of variable
order fractional differential equations, the PLSM can be easily adapted for
other types of differential and integral equations, both linear and nonlinear.
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1 e-mail: constantin.bota@upt.ro
2 e-mail: bogdan.caruntu@upt.ro Received: July 9, 2016

Revised: June 26, 2017

Please cite to this paper as published in:

Fract. Calc. Appl. Anal., Vol. 20, No 4 (2017), pp. 1043–1050,
DOI: 10.1515/fca-2017-0054


