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IN A TWO-LAYER COMPOSITE SLAB

Yuriy Povstenko

Abstract

The heat conduction equation is considered in a composite body con-
sisting of two regions: 0 < x < L and −L < x < 0. Heat conduction in one
region is described by the equation with the Caputo fractional derivative of
order α, whereas in another region by the equation with the Caputo frac-
tional derivative of order β. The integral transforms technique is used. The
approximate solution valid for small values of time is analyzed in detail.
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1. Introduction

The classical Fourier law states the proportionality of the heat flux q
to the temperature gradient

q = −k grad T, (1.1)

where k is the thermal conductivity. In combination with the law of con-
servation of energy, the Fourier law leads to the standard parabolic heat
conduction equation.

The classical theory of heat conduction is quite acceptable for different
physical situations. However, many experimental and theoretical studies
testify that in media with complex internal structure the conventional par-
abolic heat conduction equation is no longer sufficiently accurate. For an
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extensive bibliography on this subject see [7], [8], [19], [30], [35] and refer-
ences threin. The time-nonlocal dependence between the heat flux vector
and the temperature gradient with the “long-tail” power kernel [21], [22],
[23], [31] can be interpreted in terms of fractional calculus

q = −kD1−α
RL gradT, 0 < α ≤ 1, (1.2)

q = −k Iα−1 gradT, 1 < α ≤ 2. (1.3)

Here Iαf(t) and Dα
RLf(t) are the Riemann-Liouville fractional integral and

derivative of order α, respectively [6], [9], [20]:

Iαf(t) =
1

Γ(α)

∫ t

0
(t− τ)α−1f(τ) dτ, α > 0, (1.4)

Dα
RLf(t) =

dn

dtn

[
1

Γ(n− α)

∫ t

0
(t− τ)n−α−1f(τ) dτ

]
, n− 1 < α < n.

(1.5)
In combination with the law of conservation of energy, the constitutive
equations (1.2) and (1.3) result in the time-fractional heat conduction equa-
tion

∂αT

∂tα
= aΔT (1.6)

with the Caputo fractional derivative

dαf(t)

dtα
=

1

Γ(n− α)

∫ t

0
(t− τ)n−α−1

dnf(τ)

dτn
dτ, n− 1 < α < n, (1.7)

where Γ(α) is the gamma function.
The details of obtaining Eq. (1.6) based on (1.2) and (1.3) can be found

in [24], [31]. Equation (1.6) is a mathematical model of many important
physical phenomena (see [2], [16], [17], [30], [36], among others).

Some authors [13], [20] do not use a separate notation for the Riemann-
Liouville fractional integral assuming that Iαf(t) = D−αRLf(t), α > 0. Such
a notation allows us to rewrite Eqs. (1.2) and (1.3) as one dependence

q = −kD1−α
RL gradT, 0 < α ≤ 2. (1.8)

Different kinds of boundary conditions for the time-fractional heat con-
duction equation (1.6) were analyzed in [25], [26], [31]. The problem of frac-
tional heat conduction in two joint half-lines was studied in [26], [28]. The
central-symmetric problem for a composite medium containing a spherical
inclusion was investigated in [27]. A one-dimensional problem for a com-
posite body consisting of a layer and a half-space was considered in [29] (see
also [31], where all these problems were studied in detail). In the present
paper, we investigate time-fractional heat conduction in a two-layer slab
occupying a region 0 < x < L and a region −L < x < 0. Heat conduction
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in one region is described by equation (1.6) with the Caputo fractional de-
rivative of order α, whereas heat conduction in another region is described
by equation (1.6) with the time-derivative of order β. Similar problem
was considered in [10], where numerical inversion of the Laplace transform
was used. We obtain the analytical solution valid for small values of time.
Different problems of classical heat conduction in composite media were
considered by many authors (see, for example, books [12], [18]).

2. Mathematical preliminaries

To solve the problem considered in this paper the integral transform
technique will be used. Recall the Laplace transform rules for fractional
integrals and derivatives [6], [9], [20]:

L{Iαf(t)} =
1

sα
f∗(s), (2.1)

L{Dα
RLf(t)} = sαf∗(s)−

n−1∑
k=0

DkIn−αf(0+)sn−1−k, n−1 < α < n, (2.2)

L
{
df(t)

dtα

}
= sαf∗(s)−

n−1∑
k=0

f (k)(0+)sα−1−k, n− 1 < α < n, (2.3)

where the asterisk denotes the Laplace transform, s is the transform vari-
able.

The finite cos-Fourier transform is the convenient reformulation of the
cos-Fourier series in the domain 0 ≤ x ≤ L, [33]:

F{f(x)} = f̃(ξm) =

∫ L

0
f(x) cos(xξm) dx, (2.4)

F −1{f̃(ξm)} = f(x) =
2

L

∞∑
m=0

′ f̃(ξm) cos(xξm), (2.5)

where
ξm =

mπ

L
. (2.6)

The prime near the sum denotes that the term corresponding to m = 0
should be multiplied by 1/2. The finite cos-Fourier transform is used in the
case of Neumann boundary condition as

F
{
d2f(x)

dx2

}
= −ξ2m f̃(ξm)− df(x)

dx

∣∣∣∣∣
x=0

+ (−1)m
df(x)

dx

∣∣∣∣∣
x=L

. (2.7)

Similarly, in the domain −L ≤ x ≤ 0:

F{f(x)} = f̃(ξm) =

∫ 0

−L
f(x) cos(xξm) dx, (2.8)
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F −1{f̃(ξm)} = f(x) =
2

L

∞∑
m=0

′ f̃(ξm) cos(xξm), (2.9)

F
{
d2f(x)

dx2

}
= −ξ2m f̃(ξm) +

df(x)

dx

∣∣∣∣∣
x=0

− (−1)m
df(x)

dx

∣∣∣∣∣
x=−L

. (2.10)

3. Statement of the problem

Consider the time-fractional heat conduction equations in a two-layer
composed slab:

∂αT1

∂tα
= a1

∂2T1

∂x2
, 0 < x < L, 0 < α ≤ 2, (3.1)

∂βT2

∂tβ
= a2

∂2T2

∂x2
, −L < x < 0, 0 < β ≤ 2, (3.2)

under zero initial conditions

t = 0 : T1 = 0, 0 < α ≤ 2, 0 < x < L, (3.3)

t = 0 :
∂T1

∂t
= 0, 1 < α ≤ 2, 0 < x < L, (3.4)

t = 0 : T2 = 0, 0 < β ≤ 2, −L < x < 0, (3.5)

t = 0 :
∂T2

∂t
= 0, 1 < β ≤ 2, −L < x < 0, (3.6)

and the boundary conditions

x = L : k1D
1−α
RL

∂T1

∂x
= q(t), 0 < α ≤ 2, (3.7)

x = −L :
∂T2

∂x
= 0. (3.8)

At the contact surface, the boundary conditions of the perfect contact are
fulfilled:

x = 0 : T1 = T2, (3.9)

x = 0 : k1D
1−α
RL

∂T1

∂x
= k2D

1−β
RL

∂T2

∂x
, 0 < α ≤ 2, 0 < β ≤ 2. (3.10)
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4. Solution of the problem

We introduce the unknown function

ϕ(t) = k1D
1−α
RL

∂T1

∂x

∣∣∣∣∣
x=0

= k2D
1−β
RL

∂T2

∂x

∣∣∣∣∣
x=0

(4.1)

and apply to the initial-boundary-value problem (3.1)-(3.8) the Laplace
transform with respect to time t and the cos-Fourier transform with respect
to the spatial coordinate x in the corresponding region. In such a way we
get the solution in the transform domain:

T̃ ∗1 (ξm, s) =
a1
k1

[
(−1)mq∗(s)− ϕ∗(s)

] sα−1

sα + a1ξ2m
, 0 ≤ x ≤ L, (4.2)

T̃ ∗2 (ξm, s) =
a2
k2

ϕ∗(s)
sβ−1

sβ + a2ξ2m
, −L ≤ x ≤ 0. (4.3)

The inverse cos-Fourier transforms give

T ∗1 (x, s) =
2a1
Lk1

∞∑
m=0

′
[
(−1)mq∗(s)− ϕ∗(s)

] sα−1

sα + a1ξ2m
cos(xξm),

0 ≤ x ≤ L,

(4.4)

T ∗2 (x, s) =
2a2
Lk2

∞∑
m=0

′ ϕ∗(s)
sβ−1

sβ + a2ξ2m
cos(xξm), −L ≤ x ≤ 0. (4.5)

Inverting the Laplace transform with the use of the convolution theo-
rem, we have

T1(x, t) =
2a1
Lk1

∞∑
m=0

′ cos(xξm)

∫ t

0

[
(−1)mq(t− τ)− ϕ(t− τ)

]
×Eα

(−a1ξ
2
mτα

)
dτ, 0 ≤ x ≤ L,

(4.6)

T2(x, t) =
2a2
Lk2

∞∑
m=0

′ cos(xξm)

∫ t

0
ϕ(t− τ)Eβ

(
−a2ξ

2
mτβ

)
dτ,

−L ≤ x ≤ 0.

(4.7)

where Eα,β(z) is the Mittag-Leffler function [3], [6], [9], [20],

Eα,β(z) =

∞∑
m=0

zm

Γ(αm+ β)
, α > 0, β > 0, z ∈ C, (4.8)

and the following formula

L−1
{

sα−β

sα + b

}
= tβ−1Eα,β(−btα) (4.9)

has been used. As usually, Eα,1(z) ≡ Eα(z).
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To determine the unknown function ϕ(t) we use the trigonometric series
presented in [32],

∞∑
m=0

′ 1

m2 + a2
cos(mx) =

π

2a
cosh [(π − x)a] csch (πa), 0 ≤ x ≤ 2π, (4.10)

∞∑
m=0

′ (−1)m

m2 + a2
cos(mx) =

π

2a
cosh (xa) csch (πa), −π ≤ x ≤ π, (4.11)

which allow us to obtain from (4.4) and (4.5):

T ∗1 (x, s) =

√
a1s

α/2−1

k1

{
q∗(s) cosh

(
xsα/2√

a1

)
− ϕ∗(s) cosh

[
(L− x)sα/2√

a1

]}

× csch

(
Lsα/2√

a1

)
, 0 ≤ x ≤ L, (4.12)

T ∗2 (x, s) =

√
a2 s

β/2−1

k2
ϕ∗(s) cosh

[
(L− |x|) sβ/2√

a2

]
csch

(
Lsβ/2√

a2

)
,

−L ≤ x ≤ 0.

(4.13)

From the condition of perfect thermal contact (3.9), stating the equality
of temperatures at the contact surface, it follows that

T ∗1 (0, s) = T ∗2 (0, s), (4.14)

and Eqs. (4.12)–(4.14) give

ϕ∗(s) = q∗(s) csch

(
Lsα/2√

a1

)
Δ−1(s), (4.15)

where

Δ(s) = coth

(
Lsα/2√

a1

)
+ γsβ/2−α/2 coth

(
Lsβ/2√

a2

)
(4.16)

with

γ =
k1
√
a2

k2
√
a1

.

5. Approximate solution

To avoid very complicated mathematical expressions and to obtain the
analytical solution amenable for numerical treatment we will study the
approximate solution of the considered problem valid for small values of
time. In the case of classical heat conduction this method was described in
[12], [18]. Based on the Tauberian theorems for the Laplace transform, for
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small values of time t (the large values of the transform variable s) we can
neglect the exponential term in comparison with 1:

1± exp

(
−2Lsα/2√

a1

)
� 1, 1± exp

(
−2Lsβ/2√

a2

)
� 1. (5.1)

Hence, the approximate expressions for temperatures take the form

T ∗1 (x, s) �
√
a1s

α/2−1

k1

〈
q∗(s)

{
exp

[
−(L− x)sα/2√

a1

]

+exp

[
−(L+ x)sα/2√

a1

]}
− ϕ∗(s) exp

(
−xsα/2√

a1

)〉
, 0 ≤ x ≤ L, (5.2)

T ∗2 (x, s) �
√
a2s

β/2−1

k2
ϕ∗(s) exp

(
−|x|sβ/2√

a2

)
, −L ≤ x ≤ 0, (5.3)

where

ϕ∗(s) � 2 q∗(s) exp

(
−Lsα/2√

a1

)
1

1 + γsβ/2−α/2
. (5.4)

The solution simplifies significantly for α = β. In this case

T ∗1 (x, s) �
√
a1s

α/2−1

k1
q∗(s)

{
exp

[
−(L− x)sα/2√

a1

]

+
γ − 1

γ + 1
exp

[
−(L+ x)sα/2√

a1

]}
, 0 ≤ x ≤ L, (5.5)

T ∗2 (x, s) �
2
√
a2s

α/2−1

(γ + 1)k2
q∗(s) exp

(
−Lsα/2√

a1
− |x|sα/2√

a2

)
, −L ≤ x ≤ 0.

(5.6)
Using the following formula for the inverse Laplace transform [14], [15]

L−1 {sα−1 exp (−λsα)
}
=

1

tα
M

(
α;λt−α

)
, 0 < α < 1, λ > 0, (5.7)

we get

T1(x, t) �
√
a1
k1

∫ t

0
q(t− τ)

1

τα/2

[
M

(
α

2
;

L− x√
a1τα/2

)

+
γ − 1

γ + 1
M

(
α

2
;

L+ x√
a1τα/2

)]
dτ, 0 ≤ x ≤ L, (5.8)
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T2(x, t) � 2
√
a2

(γ + 1)k2

∫ t

0
q(t− τ)

1

τα/2
M

(
α

2
;

|x|√
a2τα/2

+
L√

a1τα/2

)
dτ,

−L ≤ x ≤ 0.
(5.9)

Here M(α; z) is the Mainardi function [14], [15], [20]

M(α; z) =

∞∑
k=0

(−1)kzk

k! Γ[−αk + (1− α)]
, 0 < α < 1, z ∈ C. (5.10)

5.1. Dirac’s delta heat flux

For Dirac’s delta heat flux at the boundary

q(t) = Q0 δ(t), (5.11)

we have

T1(x, t) � Q0
√
a1

k1tα/2

[
M

(
α

2
;

L− x√
a1tα/2

)

+
γ − 1

γ + 1
M

(
α

2
;

L+ x√
a1tα/2

)]
, 0 ≤ x ≤ L, (5.12)

T2(x, t) � 2Q0
√
a2

(γ + 1)k2tα/2
M

(
α

2
;

|x|√
a2tα/2

+
L√

a1tα/2

)
,

−L ≤ x ≤ 0.

(5.13)

5.2. Constant heat flux at the boundary

In this case
q(t) = q 0 = const, (5.14)

and to invert the Laplace transform we will use the following formula [34]

L−1
{
sβ exp (−λsα)

}
= tβ−1W

(−α, β;−λt−α
)
, 0 < α < 1, λ > 0,

(5.15)
where W (α, β; z) is the Wright function [1], [5]

W (α, β; z) =

∞∑
m=0

zm

m! Γ(αm+ β)
, α > −1, z ∈ C. (5.16)
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Fig. 5.1: Dependence of temperature on distance (Dirac’s delta heat flux
at the boundary; γ = 1.5, κ = 0.75, ε = 0.85).

The solution reads

T1(x, t) � q0
√
a1

k1tα/2−1

[
W

(
−α

2
, 2− α

2
;− L− x√

a1tα/2

)

+
γ − 1

γ + 1
W

(
−α

2
, 2− α

2
;− L+ x√

a1tα/2

)]
, 0 ≤ x ≤ L, (5.17)

T2(x, t) �
2q0

√
a2

(γ + 1)k2tα/2−1
W

(
−α

2
, 2 − α

2
;− |x|√

a2tα/2
− L√

a1tα/2

)
,

−L ≤ x ≤ 0.
(5.18)

The results of numerical calculations are shown in Figs. 5.1–5.3. In the
calculations we use the following nondimensional quantities:

x̄ =
x

L
, ε =

√
a1
a2

, κ =

√
a1t

α/2

L
,

for Dirac’s delta boundary flux

T =
Lk1
a1Q0

T,

for constant boundary flux

T =
Lk1
a1q0t

T.
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To evaluate the Mainardi function and the Wright function, we have used
the relations between these functions and the Mittag-Leffler function [31]:

M
(α
2
;x
)
=

2

π

∫ ∞

0
Eα

(
ξ2
)
cos(xξ) dξ, 0 < α < 2, (5.19)

W
(
−α

2
, 2− α

2
;−x

)
=

2

π

∫ ∞

0
Eα,2

(
ξ2
)
cos(xξ) dξ, 0 < α < 2. (5.20)

For calculation of the Mittag-Leffler function we have applied the algorithm
suggested in [4]. The interested reader is also referred to algorithms for
evaluating the Wright function [11].

Fig. 5.2: Dependence of temperature on distance (Dirac’s delta heat flux
at the boundary; γ = 0.5, κ = 0.75, ε = 0.85).
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Fig. 5.3: Dependence of temperature on distance (constant heat flux at
the boundary; α = 0.5, κ = 0.75, ε = 0.85).

6. Concluding remarks

In this work, we have obtained the solution of the time-fractional heat
conduction equations in a composite two-layer slab under conditions of
perfect thermal contact. It should be emphasized that for fractional heat
conduction equation the proper boundary conditions should be formulated
in terms of the corresponding heat flux (1.8), not in terms of the normal
derivative of temperature alone as in the case of the standard heat conduc-
tion equation and the classical Fourier law (1.1). The Laplace transform
with respect to time and the finite cos-Fourier transform with respect to
the spatial coordinate have been used. Based on the Tauberian theorems
for the Laplace transform, the approximate solution valid for small values
of time has been obtained and analyzed in detail.
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