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PERFECT NONLINEAR OBSERVERS

OF FRACTIONAL DESCRIPTOR CONTINUOUS-TIME

NONLINEAR SYSTEMS

Tadeusz Kaczorek

Abstract

Perfect nonlinear fractional descriptor observers for fractional descrip-
tor continuous-time nonlinear systems are proposed. Necessary and suf-
ficient conditions for the existence of the observers are established. The
design procedure of the nonlinear fractional observers is given. It is based
on the elementary row (column) operations and reducing the singular ma-
trix of the system to upper (lower) triangular form. The effectiveness of
the procedure is demonstrated on a numerical example.

MSC 2010 : Primary 34K37; Secondary: 93C10, 93C35, 93C41

Key Words and Phrases: fractional descriptor nonlinear systems, de-
sign, perfect, descriptor, fractional, observer

1. Introduction

The fractional linear systems have been considered in many papers
and books [8], [10], [15], [18], [25]. Positive linear systems consisting of n
subsystems with different fractional orders have been proposed in [16], [18].
Descriptor (singular) linear systems have been investigated in [1], [2], [4],
[3], [5], [6], [7], [12], [13], [20], [21], [22], [23], [26], [27]. The eigenvalues and
invariants assignment by state and input feedbacks have been addressed in
[5], [12], [20]. The computation of Kronecker’s canonical form of a singular
pencil has been analyzed in [26].
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A new concept of perfect observers for linear continuous-time systems
has been proposed in [11]. Observers for fractional linear systems
have been addressed in [19], [24]. Fractional descriptor full-order observers
for fractional descriptor continuous-time linear systems have been proposed
in [9].

Perfect full-order observers for fractional descriptor continuous-time lin-
ear systems have been proposed in [14] and perfect reduced-order observers
for fractional descriptor linear systems in [17].

In this paper the concept of perfect observers will be extended for non-
linear fractional descriptor continuous-time systems.

The paper is organized as follows. In Section 2 the basic definitions
and theorems of fractional descriptor nonlinear continuous-time systems
are recalled and their perfect observers are introduced. The necessary and
sufficient conditions for the existence of the perfect fractional nonlinear
observers are established and a design procedure of the perfect nonlinear
fractional observer is proposed in Section 3. An illustrating example is
given in Section 4. Concluding remarks are given in Section 5.

2. Fractional descriptor nonlinear systems
and their perfect observers

Consider the fractional descriptor continuous-time linear system

E
dαx

dtα
= Ax+ f(x, u), x0 = x(0), (2.1a)

y = Cx, (2.1b)

where
dαx

dtα
is the fractional α order derivative defined by Caputo [18], [25]:

0D
α
t x(t) =

dαx

dtα
=

1

Γ(n− α)

t∫
0

dnx(τ)
dτn

(t− τ)α−n+1
dτ,

n − 1 < α < n ∈ N = 1, 2, . . ., Γ(x) =
∫∞
0 e−ttx−1dt is the Gamma

function (Re(x) > 0), x = x(t) ∈ R
n, u = u(t) ∈ R

m, y = y(t) ∈ R
p

are the state, input and output vectors, respectively, E,A ∈ R
n×n, C ∈

R
p×n, f(x, u) ∈ R

n is a continuous vector function of x and u.

It is assumed that detE = 0 and

det[Eλ−A] 	= 0 for some λ ∈ C (the field of complex numbers).

Let U be the set of admissible inputs u(t) ∈ U ⊂ R
m and X0 ⊂ R

n

be the set of consistent initial conditions x0 ∈ X0, for which the equa-
tion (2.1) has a solution x for u ∈ U .

Definition 2.1. The fractional descriptor continuous-time linear sys-
tem
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E
dαx̂

dtα
= Fx̂+ f(x, u) +Hy, (2.2)

where x̂ = x̂(t) ∈ R
n is the estimate of x ∈ R

n, u ∈ R
m and f(x, u) ∈ R

n,
y ∈ R

p are the same vectors as in (2.1), E,F ∈ R
n×n, detE = 0, H ∈ R

n×p
is called a (full-order) perfect nonlinear state observer for the system (2.1),
if

x(t) = x̂(t) for t > 0.

3. Design of perfect fractional descriptor nonlinear observers

The following elementary row (column) operations will be used, see [13],
[18]:

(1) Multiplication of the ith row (column) by a real number c. This op-
eration will be denoted by L[i× c] (R[i× c]).

(2) Addition to the ith row (column) of the jth row (column) multiplied
by a real number c. This operation will be denoted by L[i+ j × c]
(R[i+ j × c]).

(3) Interchange of the ith and jth rows (columns). This operation
will be denoted by L[i, j] (R[i, j]).

Lemma 3.1. If

rankE = r < n, (3.1)

then by the use of the elementary row and column operations the matrix E
can be reduced to the following upper triangular form

P1EQ1 =

[
0 E12

0 0

]
, E12 =

⎡⎢⎢⎢⎣
e11 e12 · · · e1r
0 e22 · · · e2r
...

...
. . .

...
0 0 · · · err

⎤⎥⎥⎥⎦ , (3.2a)

or lower triangular form

P2EQ2 =

[
0 0

E21 0

]
, E21 =

⎡⎢⎢⎢⎣
e11 0 · · · 0
e21 e22 · · · 0
...

...
. . .

...
er1 er2 · · · err

⎤⎥⎥⎥⎦ , (3.2b)

where Pk and Qk, k = 1, 2 are the matrices of elementary row and column
operations.

P r o o f. If the condition (3.1) is satisfied, then by elementary row and
column operations the matrix E can be reduced to the form
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[
0 E′12
0 0

]
, E′12 ∈ R

r×r.

Next, applying the elementary column operations we can reduce the matrix
E′12 to the upper triangular form E12. The proof for (3.2b) is similar. �

Definition 3.1. The smallest nonnegative integer q is called the nilpo-
tent index of the nilpotent matrix N if N q = 0 and N q−1 	= 0.

Lemma 3.2. If

detE = r <
n

2
,

then the nilpotent index q of the matrix E is

q = 2 for r = 1, 2, . . . ,
n

2
− 1.

P r o o f. If r < n
2 , then by Definition 3.1 and (3.2a) we have

(P1EQ1)
2 =

[
0 E12

0 0

]2
=

[
0 0
0 0

]
for r = 1, 2, . . . ,

n

2
− 1.

The proof for (3.2b) is similar. �

Lemma 3.3. If the nilpotent matrix N ∈ R
n×n has the index q

(N q = 0) and

D = det[d1, . . . , dn], dk 	= 0, k = 1, 2, . . . , n, (3.3)
then the solution x(t) of the fractional differential equation

N
dαx̂

dtα
= Dx, 0 < α < 1 (3.4)

satisfies the condition

x(t) =

⎧⎪⎨⎪⎩−
q−2∑
k=0

N
(k+1)

δ(k+1)α−1(t)x0 for t = 0

0 for t > 0

, (3.5)

where δ(k)(t) is the k-order derivative of the Dirac function δ(t).

P r o o f. Applying the Laplace transform to (3.4) and taking into ac-
count that

L
[
dαx(t)

dtα

]
=

∞∫
0

dαx(t)

dtα
e−stdt = sαX(s)− sα−1x0,

we obtain

NsαX(s)−Nss−1x0 = DX(s), (3.6)

where X(s) = L[x(t)] = ∫∞0 x(t)e−stdt and x0 = x(0).
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Pre-multiplying (3.6) by the inverse matrix D−1, we obtain

X(s) = − [In −Nsα
]−1

Nsα−1x0, (3.7)

where N = D−1N and N
q
= D−qN q = 0.

Taking into account that[
In −Nsα

]−1
=

q−1∑
k=0

N
k
skα,

from (3.7) we obtain

X(s) = −
q−2∑
k=0

N
k+1

s(k+1)α−1x0. (3.8)

Applying the inverse Laplace transform to (3.8), we obtain (3.5),
since L−1 [skα] = δ(kα)(t). �

Let
e(t) = x(t)− x̂(t).

Then using (2.1) and (2.2), we obtain

E
dαe

dtα
= E

dαx

dtα
− E

dαx̂

dtα
= Ax+ f(x, u)− (Fx̂+ f(x, u) +HCx)

= (A−HC)x− Fx̂
and

E
dαe

dtα
= Fe, (3.9)

if
F = A−HC. (3.10)

By Lemma 3.1 using the elementary row and column operations the sin-
gular matrix E can be reduced to a suitable nilpotent matrix N
and from (3.9) we obtain

E
dαe

dtα
= Fe,

where
N = PEQ, F = PFQ, e(t) = Q−1e

and P , Q are matrices of elementary row and column operations.
If we choose the matrix H so that

F = D, (3.11)
where D is given by (3.3) then by Lemma 3.3 e = 0 for t > 0 and the frac-
tional descriptor observer (2.2) will be a perfect observer for the nonlinear
system (2.1).

Theorem 3.1. There exists the perfect fractional descriptor nonlinear
observer (2.2) of the fractional descriptor nonlinear system (2.1) if and only
if

rank

[
A−D

C

]
= rank[C], (3.12)

where
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A = PAQ, C = CQ (3.13)
and the matrices P , Q satisfy (3.11).

P r o o f. To design the perfect observer (2.2) for the system (2.1)
with given matrices A, C we have to choose the matrices F , H of the ob-
server so that the conditions (3.10) and (3.11) are met. The conditions (3.10)
and (3.11) are met if and only if

A−HC = D, (3.14)

where H = PH.
The equation (3.14) has a solution H (and H = P−1H) for given C

and D if and only if the condition (3.12) is satisfied. Therefore, there exists
the perfect observer (2.2) for the system (2.1) if and only if the condition
(3.12) is satisfied. �

From the above considerations we have the following procedure for de-
signing of the perfect nonlinear observer (2.2) for the nonlinear system
(2.1).

Procedure 3.1.
Step 1. Find the matrices P and Q of the elementary row and column
operations reducing the matrix E to its nilpotent form N = PEQ.
Step 2. Knowing the matrices P , Q compute A, C defined by (3.13).
Step 3. Choose a diagonal matrix (3.3) and check the condition (3.12).
If the condition is satisfied then there exists the perfect observer (2.2)
for the system (2.1).
Step 4. Knowing the matrices A and C find the solution H of the equation
(3.14).
Step 5. Compute the matrices of the perfect observer (2.2)

F = A−HC, H = P−1H.

4. Example

Consider the fractional descriptor nonlinear system (2.1) with the ma-
trices

E =

⎡⎣1 0 0
0 1 0
0 0 0

⎤⎦ , A =

⎡⎣2 0 1
3 0 2
0 2 0

⎤⎦ ,

C =

[
0 0 1
1 0 0

]
, f(x, u) =

⎡⎣f1(x, u)f2(x, u)
f3(x, u)

⎤⎦ ,

(4.1)

where f(x, u) ∈ R
n is arbitrary continuous vector function of x and u.
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The descriptor system is regular, since

det[Es −A] =

∣∣∣∣∣∣
s− 2 0 −1
−3 s −2
0 −2 0

∣∣∣∣∣∣ = 2(1− 2s) 	= 0.

To design the perfect fractional descriptor nonlinear observer for the sys-
tem we use Procedure 3.1 and we obtain the following:

Step 1. In this case we have

P =

⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦ , Q =

⎡⎣0 1 0
0 0 1
1 0 0

⎤⎦
and

N = PEQ =

⎡⎣0 1 0
0 0 1
0 0 0

⎤⎦ .

Step 2. Using (3.14) and (4.1) we obtain

A = PAQ =

⎡⎣1 2 0
2 3 0
0 0 2

⎤⎦ , C = CQ =

[
1 0 0
0 1 0

]
.

Step 3. In this case we choose

D =

⎡⎣3 0 0
0 2 0
0 0 2

⎤⎦
and the condition (3.12) is satisfied, since

rank

[
A−D

C

]
= rank

⎡⎢⎢⎢⎢⎣
−2 2 0
2 1 0
0 0 0
1 0 0
0 1 0

⎤⎥⎥⎥⎥⎦ = 2 = rank[C] = rank

[
1 0 0
0 1 0

]
.

Therefore, there exists the perfect nonlinear observer (2.2) for the system
(2.1) with (4.1).
Step 4. The equation

HC =

⎡⎣h11 h12
h21 h22
h31 h32

⎤⎦[1 0 0
0 1 0

]
= A−D =

⎡⎣−2 2 0
2 1 0
0 0 0

⎤⎦
has the solution

H =

⎡⎣−2 2
2 1
0 0

⎤⎦ = H, (4.2)
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since P = I3.
Step 5. Using (2.2), (4.1) and (4.2) we obtain

F = A−HC =

⎡⎣2 0 1
3 0 2
0 2 0

⎤⎦−
⎡⎣−2 2

2 1
0 0

⎤⎦[0 0 1
1 0 0

]
=

⎡⎣0 0 3
2 0 0
0 2 0

⎤⎦ .

The perfect observer is described by the equation⎡⎣1 0 0
0 1 0
0 0 0

⎤⎦ dαx̂

dtα
=

⎡⎣0 0 3
2 0 0
0 2 0

⎤⎦ x̂+

⎡⎣f1(x, u)f2(x, u)
f3(x, u)

⎤⎦+

⎡⎣−2 2
2 1
0 0

⎤⎦ y.

5. Concluding remarks

Perfect fractional descriptor nonlinear observers for fractional descrip-
tor continuous-time nonlinear systems have been proposed. Necessary and
sufficient conditions for the existence of perfect observers for the fractional
descriptor nonlinear systems have been established. Designing procedure of
the fractional descriptor observers has been proposed and illustrated on a
numerical example. The considerations can be easily extended to fractional
descriptor discrete-time nonlinear systems. An open problem is an exten-
sion for fractional descriptor 2D continuous-discrete linear and nonlinear
systems.
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