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Abstract

We discuss solvability of a nonlinear Riemann-Liouville integral equa-
tion in Lebesgue spaces. We treat the Volterra equations of the first and the
second types by applying boundedness criteria for the Riemann-Liouville
integral operator. The existence of a solution to integral equations will
follow from the Leray-Schauder Nonlinear Alternative.
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1. Introduction

The present paper is a study of Volterra convolution-type integral equa-
tions motivated by [3, 4]. Integral equations arising in this paper are
associated with initial value problems for Riemann-Liouville equations of
fractional order. Solvability of a boundary and initial value problems of
fractional order in Lebesgue spaces are are discussed in [1] and [8, 9], re-
spectively. In this paper we obtain new existence criteria of Lp-integrable
solutions. In this section we introduce the auxiliaries on fractional differen-
tiation and integration and other techniques involved in this work. For the
theory and applications of fractional derivatives and integrals, we refer the
reader to the monographs [11, 12, 15, 16, 17] and also mention [3, 4, 5, 9, 14]
devoted to integral equations of fractional order as a part of the field of in-
tegral equations represented in the bibliography by well-known treatments
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[2, 6, 10]. The existence results are based on applications of a variant of
the Leray-Schauder Nonlinear Alternative [18]:

Theorem 1.1. Let B be a Banach space, C ⊂ B be a convex set and
U be open in C with 0 ∈ U . Let T : U → C be a continuous, compact
mapping. Then either

(i) the mapping T has a fixed point, or,
(ii) there exists v ∈ ∂U and λ ∈ (0, 1) with v = λTv.

The following theorem describing the properties of the Nemytzkii map
can found in [13].

Theorem 1.2. Let f : [0, 1] × Rn → R satisfy the Carathéodory
conditions and assume that f(·, v) ∈ Lp1 [0, 1] for every v ∈ Lp[0, 1], 1 ≤
p ≤ ∞ and 1

p+
1
p1

= 1. Then the Nemytzkii operator F : Lp[0, 1] → Lp1 [0, 1]

defined by v �→ f(·, v) is continuous and bounded.

The compactness criterion of Riesz shall be used in proving the com-
pactness of mappings.

Theorem 1.3. Let K ⊂ Lp[0, 1], 1 ≤ p < ∞. Then K is relatively
compact if and only if the following hold:

(i) K is bounded in Lp[0, 1];

(ii)
∫ 1
0 |v(t+ h)− v(t)|p dt → 0 as h → 0 uniformly in K.

The Riemann-Liouville fractional integral of order 0 < α < 1 of a
function v ∈ Lp(0, 1), 1 ≤ p < ∞, is the integral

Iα
0+v(t) =

1

Γ(α)

∫ t

0
(t− s)α−1v(s) ds. (1.1)

The Riemann-Liouville fractional derivative of order 0 < α < 1 is defined
by Dα

0+v(t) =
d

dt
I1−α
0+ v(t) =

1

Γ(1− α)

d

dt

∫ t

0
(t− s)−αv(s) ds. (1.2)

The relationships between (1.1) and (1.2) are stated in the next theorem
(see [11, 17]).

Theorem 1.4. The following hold:

(a) The equality Dα
0+Iα

0+f = f holds for every f ∈ L1(0, 1);

(b) For v ∈ L1(0, 1), 0 < α < 1, if I1−α
0+ v ∈ AC[0, 1], then

Iα
0+Dα

0+v(t) = v(t)−
(I1−α

0+ v
)
(0)

Γ(α)
tα−1.
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Our attention turns now to sufficient conditions for solvability of the
Volterra integral equation

v(t) = φ(t) + Iα
0+f(t, v(t)), φ(t) =

η

Γ(α)
tα−1. (1.3)

A solution will be sought in Lebesgue spaces Lp(0, 1) with p > 1. The inte-
gral equation above is related to the Riemann-Liouville differential equation

Dα
0+v(t) = f(t, v(t)), a. e. t ∈ (0, 1), (1.4)

of fractional order 0 < α < 1 satisfying the nonhomogeneous initial condi-
tion

I1−α
0+ v(0) = η. (1.5)

The next result is well known (see, e.g., [7]).

Lemma 1.1. Let the mapping T be defined by

Tw(t) =

∫ 1

0
K(t, s)w(s) ds, t ∈ (0, 1),

for w ∈ Lp1(0, 1). Then T : Lp1(0, 1) → Lp(0, 1), 1 < p1 < ∞, 1
p + 1

p1
= 1,

is a bounded map provided

‖K(·, ·)‖pp,(0,1)×(0,1) =
∫ 1

0

∫ 1

0
|K(t, s)|p ds dt < ∞.

Moreover,

‖Tw‖p ≤ ‖K(·, ·)‖p,(0,1)×(0,1)‖w‖p1 .

In the integral operators occurring in this paper, we encounter a kernel
K : (0, 1) × (0, 1) → R in the form

K(t, s) =

{
1

Γ(α) (t− s)α−1, 0 < s < t < 1,

0, 0 < t ≤ s < 1,
(1.6)

where 0 < α < 1. For 1 < p < 1
1−α , we introduce

C1(α; p) = ‖K(·, ·)‖p,(0,1)×(0,1)
=

1

Γ(α)
(1− (1− α)p)−1/p(2− (1− α)p)−1/p. (1.7)

If (α− 1)p+ 1 > 0 and 1
p +

1
p1

= 1, then, by Lemma 1.1, Iα
0+ : Lp1(0, 1) →

Lp(0, 1), is a bounded mapping with

‖Iα
0+w‖p ≤ C1(α; p)‖w‖p1 (1.8)

in view of (1.6) and (1.7).
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It is also a well-known fact [17] that Iα
0+ : Lp(0, 1) → Lp(0, 1), p ≥ 1, is

a bounded mapping with

‖Iα
0+w‖p ≤ 1

Γ(α+ 1)
‖w‖p. (1.9)

Of course, Lp1(0, 1) ⊂ Lp(0, 1) for p ≤ p1 with ‖w‖p ≤ ‖w‖p1 .
Finally, we state a boundedness criterion (Theorem 3.5, [17]) for the

Riemann-Liouville fractional integral, which will be used for the Volterra
equation of the first kind.

Lemma 1.2. If 0 < α < 1 and 1 < p1 < 1
α , then Iα

0+ : Lp1(0, 1) →
Lp(0, 1) is a bounded mapping for 1 < p < p1

1−αp1 .

In particular, following [17], one can show that

‖Iα
0+v‖p ≤ C0(α; p1, p)‖v‖p1 , (1.10)

where

1

C0(α; p1, p)
= Γ(α)

[
1

2

(
1

p
− 1

p1
+ α

)]1+ 1
p
− 1

p1

(
p1

p1 − 1

) p1−1
p1

p1/p.

If, in addition, 1
p + 1

p1
= 1, then 1 < (1 − α)p < 2 and with a little effort

we can show that

C2(α; p) = C(α; p, p1) =
1

Γ(α)

(
2

2− p(1− α)

) 2
p

. (1.11)

2. The existence theorems

We now impose conditions which stand throughout the paper:

(H1) f : [0, 1]×R → R satisfies the Carathéodory conditions and f(·, v) ∈
Lp1 [0, 1] for every v ∈ Lp(0, 1), 1 < p1 < ∞ and 1

p1
+ 1

p = 1, and

(H2) there exist a nonnegative function a ∈ Lp1(0, 1) and a constant
b > 0 such that |f(t, z)| ≤ a(t) + b|z|p−1 a. e. in (0, 1) and for all
z ∈ R.

It is convenient to introduce a technical lemma.

Lemma 2.1. Assume that 1 < p < 1
1−α ,

1
p1

+ 1
p = 1, and let

F : Lp(0, 1) → Lp1(0, 1) satisfy (H1) and (H2). Then Iα
0+F : Lp(0, 1) →

Lp(0, 1) with

‖Iα
0+Fv‖p ≤ D(‖a‖p1 + b‖v‖p−1p ), (2.1)

where

D =

{
min

{
1

Γ(α+1) , C1(α; p)
}
, p ≤ 2,

C1(α; p), p > 2.
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P r o o f. It is clear that

‖Fv‖p1 ≤ ‖a‖p1 + b‖v‖p−1p . (2.2)

By (1.8), we have the inequality ‖Iα
0+Fv‖p ≤ C1(α; p)‖Fv‖p1 for all p > 1.

First note that the function z : (1− 1/p, 1) → R defined by

z(α) =
1/Γ(α + 1)

C1(α; p)
=

1

α
((α− 1)p + 1)1/p((α− 1)p + 2)1/p

is continuous in (1− 1/p, 1). Moreover,

lim
α→(1−1/p)+

z(α) = 0 and lim
α→1−

z(α) =
21/p

α
> 1.

If, in addition, p ≤ 2 ≤ p1, we apply (1.9) to obtain ‖Iα
0+Fv‖p ≤

1
Γ(α+1)‖Fv‖p ≤ 1

Γ(α+1)‖Fv‖p1 . Then the inequality (2.1) follows from (2.2).
�

Remark. We present numerical illustrations that the constants 1/Γ(α+
1) and C1(α; p) indeed “compete”. For example, for α = 1/4, C1(α; 1.09) <

1
Γ(α+1) < C1(α; 1.08). Also, for p = 1.9 and α = 0.6, D = 1

Γ(1.6) < C1(0.6; p)

while, for p = 1.9 and α = 0.7, D = C1(0.7; p) <
1

Γ(1.7) .

The main results are divided into two subsections by the type of the
Volterra equation.

2.1. The Volterra equations of the second kind (η 	= 0)

Theorem 2.1. Assume that (H1) and (H2) hold and 1 < p < 1
1−α

and p ≤ 2. Then the integral equation (1.3) has a solution v0 ∈ Lp(0, 1)
with ‖v0‖p < R provided

‖φ‖p +min

{
1

Γ(α+ 1)
, C1(α; p)

}(‖a‖p1 + bRp−1) ≤ R. (2.3)

P r o o f. Let v ∈ Lp(0, 1) and define

Tv(t) = φ(t) + Iα
0+f(t, v(t)), t ∈ (0, 1). (2.4)

Let K ⊂ Lp(0, 1) be bounded. Define F : Lp(0, 1) → Lp1(0, 1) by
Fv(t) = f(t, v(t)), t ∈ (0, 1). Then F (K) is a bounded subset of Lp1(0, 1),
that is, say, ‖Fv‖p1 ≤ B, v ∈ K. Note that Iα

0+F : Lp(0, 1) → Lp(0, 1)
is a continuous mapping by Theorem 1.2 and Lemma 2.1. An inequality
similar to (2.1) shows that T (K) ⊂ Lp(0, 1) is bounded. So, it remains to
check that the condition (ii) of Theorem 1.3 holds, which would imply that
(2.4) is compact.

Constant factors depending only on the parameters p, α, and the con-
stant B and varying from step to step will be replaced in the estimates
below by a generic constant c > 0 whose exact value is unimportant to us.
We rewrite (2.4) as
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Tv(t) = φ(t) + c

∫ t

0
(t− s)α−1Fv(s) ds.

Let h > 0 (the case h < 0 is treated similarly), so that∫ 1

0
|Tv(t+ h)− Tv(t)|p dt

=

∫ 1

0

∣∣∣φ(t+ h)− φ(t)

+ c

∫ t+h

0
(t+ h− s)α−1f(s, v(s)) ds − c

∫ t

0
(t− s)α−1Fv(s) ds

∣∣∣p dt
=

∫ 1

0

∣∣∣φ(t+ h)− φ(t) + c

∫ t+h

t
(t+ h− s)α−1Fv(s) ds

+ c

∫ t

0

(
(t+ h− s)α−1 − (t− s)α−1

)
Fv(s) ds

∣∣∣p dt
≤ c4p−1

[∫ 1

0
|φ(t+ h)− φ(t)|p dt

+

∫ 1

0

(∫ t+h

t
(t+ h− s)α−1|Fv(s)| ds

)p

dt

+

∫ 1

0

(∫ t

0

∣∣(t+ h− s)α−1 − (t− s)α−1
∣∣ |Fv(s)| ds

)p

dt

]
,

where we applied the inequality (a+ b+ c)p≤4p−1(ap + bp + cp), a, b, c≥0.

By Hölder’s inequality,∫ 1

0
|Tv(t+ h)− Tv(t)|p dt

≤ c

∫ 1

0

∣∣(t+ h)α−1 − tα−1
∣∣p dt+ c

∫ 1

0

∫ t+h

t
(t+ h− s)(α−1)p ds dt ‖Fv‖pp1

+ c

∫ 1

0

∫ t

0

∣∣(t+ h− s)α−1 − (t− s)α−1
∣∣p ds dt ‖Fv‖pp1

= c

∫ 1

0

(
tα−1 − (t+ h)α−1

)p
dt+ cBp

∫ 1

0

∫ t+h

t
(t+ h− s)(α−1)p ds dt

+ cBp

∫ 1

0

∫ t

0

(
(t− s)α−1 − (t− s+ h)α−1

)p
ds dt
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≤ c

∫ 1

0

(
t(α−1)p − (t+ h)(α−1)p

)
dt+ c

∫ 1

0

∫ t+h

t
(t+ h− s)(α−1)p ds dt

+ c

∫ 1

0

∫ t

0

(
(t− s)(α−1)p − (t+ h− s)(α−1)p

)
ds dt, (2.5)

where the inequality (2.5) follows from the inequality (1 − x)p ≤ 1 − xp,
x ∈ [0, 1], p > 1. It is easy to see that∫ 1

0

(
t(α−1)p − (t+ h)(α−1)p

)
dt

= c
(
1 + h(α−1)p+1 − (1 + h)(α−1)p+1

)
≤ ch(α−1)p+1,∫ 1

0

∫ t

0

(
(t− s)(α−1)p − (t+ h− s)(α−1)p

)
ds dt

=

∫ 1

0
c
(
t(α−1)p+1 + h(α−1)p+1 − (t+ h)(α−1)p+1

)
dt ≤ ch(α−1)p+1,

and ∫ 1

0

∫ t+h

t
(t+ h− s)(α−1)p ds dt = ch(α−1)p+1.

Combining the above,∫ 1

0
|Tv(t+ h)− Tv(t)|p dt ≤ ch(α−1)p+1

for all v ∈ K (here, again, c is constant whose exact value is insignificant).
The above inequality shows that the second condition of Theorem 1.3 is
verified. Hence, the set T (K) is relatively compact and thus T : Lp(0, 1) →
Lp(0, 1) is a compact mapping.

In the remainder of the proof we note that p ≤ p1 since p ≤ 2 and there
exists (a unique) R∗ > 0 such that the condition (2.3) holds if R ≤ R∗. Let
R ≤ R∗ and U ⊂ C = Lp(0, 1) be defined by

U = {v ∈ Lp(0, 1) : ‖v‖p < R}.
Then, assuming v ∈ ∂U is a solution of v = λTv for λ ∈ (0, 1), we have, by
(2.1),

R = ‖v‖p < ‖Tv‖p ≤ ‖φ‖p +
∥∥Iα

0+Fv
∥∥
p

≤ ‖φ‖p +min

{
1

Γ(α+ 1)
, C1(α; p)

} (‖a‖p1 + b‖v‖p−1p

)
≤ ‖φ‖p +min

{
1

Γ(α+ 1)
, C1(α; p)

} (‖a‖p1 + bRp−1) ,
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which contradicts (2.3). Then u 	∈ ∂U and, by Theorem 1.1, T has a fixed
point v0 ∈ Lp(0, 1) with ‖v0‖p < R. �

Remark. If α > 1/2, it suffices to assume in the theorem above that
p ≤ 2 (see, [1]).

If p > 2, we can follow the previous proof to obtain the next result.

Theorem 2.2. Assume that (H1) and (H2) hold and 2 < p < 1
1−α .

Then the integral equation (1.3) has a solution v0 ∈ Lp(0, 1) with ‖v0‖p < R
provided

‖φ‖p +C1(α; p)
(‖a‖p1 + bRp−1) ≤ R. (2.6)

2.2. The Volterra equations of the first kind (η = 0)

The following results deal with the case of η = 0. In this case, since the
function φ ≡ 0, the equation (1.3) becomes

v(t) = Iα
0+f(t, v(t)). (2.7)

Certainly, Theorems 2.1 and 2.2 apply as well to the present case with
an obvious modification of (2.3) and (2.6) and the same condition on p
(which is initially imposed due to φ ∈ Lp(0, 1), p(1 − α) < 1) to yield
Corollaries 2.1 and 2.2, which are stated here just for the record.

Corollary 2.1. Assume that (H1) and (H2) hold and 1 < p < 1
1−α

and p ≤ 2. Then the integral equation (2.7) has a solution v0 ∈ Lp(0, 1)
with ‖v0‖p < R provided

min

{
1

Γ(α+ 1)
, C1(α; p)

}(‖a‖p1 + bRp−1) ≤ R.

Corollary 2.2. Assume that (H1) and (H2) hold and 2 < p < 1
1−α .

If η = 0, then the integral equation (2.7) has a solution v0 ∈ Lp(0, 1) with
‖v0‖p < R provided

C1(α; p)
(‖a‖p1 + bRp−1) ≤ R.

The constraint of φ ∈ Lp(0, 1) for p < 1
α−1 is now removed, and thus it

is possible to complement the result of Corollaries 2.1 and 2.2 by consid-
ering the case 1

α−1 < p < 2
α−1 . This will be accomplished with the aid of

Lemma 1.2. Now we give the corresponding existence result whose proof
is only sketched with just enough attention to detail to emphasize that it
relies on Lemma 1.2.
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Theorem 2.3. Assume that (H1) and (H2) hold and 1
1−α < p < 2

1−α .
Then the integral equation (2.7) has a solution v0 ∈ Lp(0, 1) with ‖v0‖p < R
provided

C2(α; , p)
(‖a‖p1 + bRp−1) ≤ R.

P r o o f. Let v ∈ Lp(0, 1) and define

Tv(t) = Iα
0+f(t, v(t)), t ∈ (0, 1).

Since 1
p + 1

p1
= 1 and 1

1−α < p < 2
1−α , then 1 < p1 < 1

α and 1 <

p < p1
1−αp1 . Hence Iα

0+ : Lp1(0, 1) → Lp(0, 1) is a bounded mapping by

Lemma 1.2. Furthermore, from (1.10) and (1.11),

‖Iα
0+v‖p ≤ C0(α, p1, p)‖v‖p1 = C2(α; p)‖v‖p1 .

The rest of the proof differs from that of Theorem 2.1 in only minor details.
�

The last result demonstrates the equivalence of the initial value problem
(1.4), (1.5) with η = 0 and the Volterra equation (2.7).

Theorem 2.4. The function v ∈ Lp(0, 1), p(1− α) > 1, is a solution
of the Volterra integral equation (2.7) if and only if v is a solution of the
initial value problem (1.4) and (1.5) with η = 0.

P r o o f. Let v ∈ Lp(0, 1), p(1 − α) > 1, be a solution of the initial
value problem (1.4) and (1.5) with η = 0 and 1

p + 1
p1

= 1. So, 1 < p1 < 1
α .

Let 0 < t1 < t2 < 1. Then,

Γ(1− α)
∣∣∣I1−α

0+ v(t2)− Iα
0+v(t1)

∣∣∣
=

∣∣∣∣∫ t2

0
(t2 − s)−αv(s) ds −

∫ t1

0
(t1 − s)−αv(s) ds

∣∣∣∣
≤
∫ t1

0

(
(t1 − s)−α − (t2 − s)−α

) |v(s)| ds + ∫ t2

t1

(t2 − s)−α|v(s)| ds

≤
(∫ t1

0

(
(t1 − s)−α − (t2 − s)−α

)p1 ds

)1/p1

‖v‖p

+

(∫ t2

t1

(t2 − s)−αp1 ds
)1/p1

‖v‖p
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≤
(∫ t1

0

(
(t1 − s)−αp1 − (t2 − s)−αp1

)
ds

)1/p1

‖v‖p

+

(∫ t2

t1

(t2 − s)−αp1 ds
)1/p1

‖v‖p

= c

[(
t−αp1+1
1 + (t2 − t1)

−αp1+1 − t−αp1+1
2

)1/p1
+ (t2 − t1)

−α+1/p1

]
‖v‖p

≤ 2c(t2 − t1)
−α+1/p1‖v‖p,

where c is a constant, which depends only on α and p1. This shows that
I1−α
0+ v ∈ AC[0, 1]. Thus, by Theorem 1.4 (b), and since I1−α

0+ v(0) = η = 0,

v(t) = Iα
0+Dα

0+v(t) = Iα
0+f(·, v(·))(t),

that is, v is a solution of the integral equation (2.7).

The converse is clear by Theorem 1.4 (a). �
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