
SURVEY PAPER

FRACTIONAL INTEGRALS AND DERIVATIVES:

MAPPING PROPERTIES

Humberto Rafeiro 1, Stefan Samko 2

Abstract

This survey is aimed at the audience of readers interested in the infor-
mation on mapping properties of various forms of fractional integration op-
erators, including multidimensional ones, in a large scale of various known
function spaces.

As is well known, the fractional integrals defined in this or other forms
improve in some sense the properties of the functions, at least locally, while
fractional derivatives to the contrary worsen them. With the development
of functional analysis this simple fact led to a number of important results
on the mapping properties of fractional integrals in various function spaces.

In the one-dimensional case we consider both Riemann-Liouville and
Liouville forms of fractional integrals and derivatives. In the multidimen-
sional case we consider in particular mixed Liouville fractional integrals,
Riesz fractional integrals of elliptic and hyperbolic type and hypersingular
integrals. Among the function spaces considered in this survey, the reader
can find Hölder spaces, Lebesgue spaces, Morrey spaces, Grand spaces and
also weighted and/or variable exponent versions.
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1. Introduction: Pre-history

This survey is aimed at the audience of readers interested in the infor-
mation on the mapping properties of various forms of fractional integra-
tion operators, including multidimensional ones, in a large scale of various
known function spaces.

As is well known, the fractional integrals defined in this or other forms
improve in some sense the properties of the functions, at least locally, while
fractional derivatives to the contrary worsen them. With the development
of functional analysis this simple fact led to a number of important results
on the mapping properties of fractional integrals in various function spaces.
By mapping properties we mean the following: given a certain space of
functions X, how can we characterize a possible choice of another space of
functions Y so that the fractional integral Iα is bounded from X to Y ? An
ideal situation would be to choose such a space Y which coincides with the
range of Iα(X). The first results in this directions are due to G.H. Hardy
and J.E. Littlewood. They proved the following two important results for
the integral

Iαa+f(x) =
1

Γ(α)

x∫
a

f(t)

(x− t)1−α
dt.

The first concerns integrability properties of functions and the second is
related to continuity properties of functions. The first result states that Iαa+
is bounded from Lp(a, b) to Lq(a, b), where −∞ ≤ a < b ≤ ∞, 0 < α < 1/p
and 1/q = 1/p − α (obviously one can take 1/q ≥ 1/p − α when both a
and b are finite and only 1/q = 1/p − α when one of them is infinite; the
“pre-limiting case” 1/q > 1/p−α was treated by them earlier, see [30, 31]).
The second result concerns fractional integrals of functions in Hölder space

Hλ
0 (a, b) =

{
f ∈ Hλ(a, b) : f(a) = 0

}
,

where

Hλ(a, b) =
{
f : |f(x+ h)− f(x)| ≤ chλ

}
with −∞ < a < b < ∞ and 0 < λ < 1. They proved that Iαa+ is a bounded

operator from Hλ
0 to Hλ+α

0 provided that λ+ α < 1.

These two basic results had an extremely important impact on the
development of various fields in mathematical analysis in general, and led
to many generalizations in applications.

Note that a typical difference between the mapping properties of frac-
tional integration with respect to spaces of integrable or continuous func-
tions is the following. Let Xγ be a set of function spaces depending on the
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parameter γ (Lebesgue spaces Lp, γ = p, being a standard example). Then
the mapping property

Iα(Xγ) ⊂ Xν ,

holds with some ν = ν(γ, α), but usually Iα(Xγ) 	= Xν whatever ν one
takes. In the case Xγ is a space of continuous functions the situation when
Iα(Xγ) = Xν , to the contrary is very typical, see for instance (2.7), (2.8)
and Theorem 2.3.

During almost a century after that, dozens of functions spaces were
introduced and studied, influenced by various applications. Of course in
the related development of the fractional calculus, there naturally appeared
a inter-mixture of both of the results of Hardy and Littlewood, when both
the integrability and continuity properties are involved (in the case of, e.g.,
Nikolsky and Besov spaces).

In this brief survey it is impossible to overview all the known mapping
properties of fractional integrals in a big variety of spaces, specially in the
case of many variables where there is a big number of various notions of
fractional integrals and the branch theory of function spaces, but we will
survey the more important results, at least from our point of view. We will
pay a special attention to the mapping properties of fractional integrals in
the spaces with variable exponents, such as Lp(·), Hλ(·) and others. For the
variable exponents, the theory of which was extensively developed during
the last two decades, we refer for instance to the books [8, 11, 53, 54]. We
overview results in the real analysis and do not touch fractional integrals
in complex analysis, in particular fractional integrals in spaces of analytic
functions. For some results in complex analysis case, we refer to the book
[46] and [96, §23.2]. In the sequel we use the notation adopted in the book
[96].

2. Constant exponent case

Everywhere in the sequel the weighted Lebesgue space Lp(Ω, w) is used
in form

Lp(Ω, w) =

⎧⎪⎨⎪⎩f :

∫
Ω

|f(x)|pw(x)dx < ∞

⎫⎪⎬⎪⎭
with the naturally introduced norm.
2.1. On improving integrability properties of functions.

2.1.1. One-dimensional case. The first generalization is due to G.H.
Hardy and J.E. Littlewood themselves. It concerns integrability properties
of functions with power weights and reads as follows, where ρμ := (x−a)μ.
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Theorem 2.1 ([30]). Let α > 0, −∞ < a < b ≤ ∞, p ≥ 1, μ < p − 1,
0 < α < m + 1/p, q = p/[1 − (α − m)p]; and 0 ≤ m ≤ α if p 	= 1 and
0 < m ≤ α if p = 1. Then the operator Iαa+ is bounded from Lp([a, b], ρμ)

into Lq
(
[a, b], ρ(μ/ρ−m)q

)
.

The case of power weight ρ(x) = |x− d|μ with a < d ≤ b, important for
some applications, can be found in [96].

The corresponding mapping results, non-weighted and also with power
weights, for the Erdélyi-Kober fractional integrals (see [96, p. 322]) maybe
found in [14, 47]. Note that within the frameworks of power weights the
Lp → Lq-mapping properties of Erdélyi-Kober operators are immediately
reduced to such properties of the usual fractional integrals by means of
the obvious change of variables. We do not touch here generalizations of
fractional integrals where the kernel (x− y)α−1 is replaced by some special
function. In particular, when it is the Gauss hypergeometric function, some
results of such a kind can be found in [96, §9.2 and §23.2], and for the case
with a G- orH-function in the kernel, there are analogous ones in Kiryakova
[46] (for example, Th.5.1.3), based on the Hardy-Littlewood general result
([96, Th.1.5]).

The above results concern the case p < 1/α. When 0 < α − 1/p < 1,

and a and b are finite, then Iαa+ : Lp(a, b) −→ H
α− 1

p (a, b) which was known
to Hardy and Littlewood, see [30]. A generalization of such a fact to the
case of power weights was obtained in Karapetyants and Rubin [37] and
can be also found in the book [96, Th.3.8].

In the intermediate case p = 1/α the fractional integral of Lp-functions
in general do not belong to L∞ but are known to belong to the space BMO
of functions of bounded mean oscillation. This fact is well-known and in
the multidimensional case for the Riesz fractional integrals over R

n was
noted in [108]. For a direct proof in the one-dimensional case on a finite
interval we refer to [76]. Certainly, Iα(Lp) 	= BMO. In [38, 36, 39] there
were found spaces more narrow than BMO. Namely, for λ > 0 let

Xγ =
{
f :‖f‖Xγ

< ∞
}
, ‖f‖Xγ

= sup
r≤1

r−γ‖f‖Lr ,

then Iα : Lp → Xγ is bounded for γ ≥ 1/p′, and is not bounded if γ < 1/p′.
Note that Xγ � BMO and BMO � Xγ when 0 < γ < 1. In [38, 39] more
narrow spaces of such a kind maybe also found.

Note also the famous result of G.H. Hardy and J.E. Littlewood [30] for
the operator

Aαf(x) :=
1

xα
1

Γ(α)

x∫
0

f(t)

(x− t)1−α
dt, 0 < α < 1,
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stating that ‖Aαf‖Lp(R+) ≤ K‖f‖Lp(R+), 1 < p < ∞. This is a partic-

ular case of the Schur theorem for integral operators with a kernel ho-
mogeneous of degree -1 (see references in the sequel for the multidimen-
sional case). Observe that the above inequality holds with sharp constant
K = (Γ(1/p′)/Γ(α + 1/p′))p.
2.2. On improving integrability properties: the multidimensional
case.

2.2.1. The case of Riesz fractional integral. A direct extension of the
Hardy-Littlewood theorem concerns the iterated fractional integral

I ᾱ++f(x) =
1

Γ(α1)Γ(α2)

x1∫
−∞

x2∫
−∞

f(y1, y2) dy1 dy2
(x1 − y1)1−α1(x2 − y2)1−α2

, x = (x1, x2),

(2.1)
where ᾱ = (α1, α2), αi > 0, i = 1, 2. It is natural to study such integrals
in the mix norm spaces Lp̄(R2) defined by the norm

‖f‖p̄ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫
R

⎛⎜⎝∫
R

|f(y1, y2)|p2 dy2

⎞⎟⎠
p1
p2

dy1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
1
p1

.

The following theorem is valid, see [96, Theorem 24.1].

Theorem 2.2. Let 1 ≤ pi < ∞, 1 ≤ qi < ∞. The operator I ᾱ++ is

bounded from Lp̄(R2) into Lq̄(R2) if and only if

1 < pi < 1/αi, 1/qi = 1/pi − αi, i = 1, 2.

Let

Iαf(x) =

∫
Rn

f(y)

|x− y|n−α dy, 0 < α < n, (2.2)

be the Riesz fractional integral (we do not write the standard normalizing
constant). As a generalization of the one-dimensional Hardy-Littlewood
result, we have

‖Iaf‖q ≤ C‖f‖ , 1 < p < n/α, 1/q = 1/p − α/n, (2.3)

which was proved by S.L. Sobolev [105] and is known as the Sobolev in-
equality and the exponent q defined in (2.3) is known as the Sobolev ex-
ponent. The proof may be found in various books, see for instance [106].
Observe that this n-dimensional result may be derived (see [72]) from the
one-dimensional result of G.H. Hardy and J.E. Littlewood, since |x−y|n ≥
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n
n
2
∏n

i=1 |xi−yi| which is nothing else but the statement that the geometric
mean is dominated by the arithmetic mean. The weighted version of the
Sobolev inequality with power weights of the form |x|β (or (1 + |x|)β) is
due to E. Stein and G. Weiss [107]. We mention also the boundedness∥∥∥∥∥∥∥

1

|x|α
∫
Rn

f(y)

|x− y|n−α dy

∥∥∥∥∥∥∥
Lp(Rn)

≤ c‖f‖Lp(Rn) , α > 0, 1 < p < ∞

which is a particular case of Lp → Lp-boundedness for multidimensional
integral operators with a kernel homogeneous of degree −n. For the latter
we refer to [41], see also its presentation in the book [42]. Note also that
the sharp constant for the last inequality is known, see [91].

In the limiting case where αp = n, the Riesz potential Iα maps Lp(Rn)
into the space BMO of functions of finite mean oscillations

‖Iaf‖BMO ≤ C‖f‖p , (2.4)

where

‖f‖BMO = sup
B

1

|B|
∫
B

|f(x)− fB|dx, fB =
1

|B|
∫
B

f(x) dx

is the integral average of the function f , and the operator Iα on functions
f ∈ Lp is treated as a continuation from a dense set in Lp.

There is also known the complete characterization of weights w(x) such
that

‖wIαf‖q ≤ c‖wf‖p (2.5)

known as the Muckenhoupt-Wheeden condition obtained in [66], denoted
by Ap,q and defined by the condition

sup
B⊂Rn

⎛⎜⎝ 1

|B|
∫
B

w(x)q dx

⎞⎟⎠
1
q
⎛⎜⎝ 1

|B|
∫
B

w(x)−p
′
dx

⎞⎟⎠
1
p′

.

It is known that

w ∈ Apq ≡ w−p
′ ∈ A

1+ p′
q

,

where Ap is a more widely known Muckenhoupt class defined by the con-
dition

sup
B⊂Rn

⎛⎜⎝ 1

|B|
∫
B

w(t) dt

⎞⎟⎠
⎛⎜⎝ 1

|B|
∫
B

w(t)−
1

p−1 dt

⎞⎟⎠
p−1

≤ c.
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In the applications the case of radial weights w = w(|x − x0|), x ∈ R
n

is important. Note that for such weights the Muckenhoupt condition is
reduced to the easily checkable condition⎛⎜⎝ r∫

0

tn−1w(t) dt

⎞⎟⎠
⎛⎜⎝ r∫

0

tn−1w(t)−
1

p−1 dt

⎞⎟⎠
p−1

≤ Crnp.

Note also that the Ap condition is guaranteed by the assumptions

r∫
0

tn−1w(t) dt ≤ crnw(r),

r∫
0

tn−1w(t)−
1

p−1 dt ≤ Crnw(r)
− 1

p−1 ,

known as Zygmund-type conditions. The power weight w = |x|γ is in Apq

with 1
q = 1

p − α
n if and only if

α− n

p
< γ <

n

p′
.

The Sobolev theorem with such a weight was proved by E. Stein and G.
Weiss [107]. For the so-called two-weight estimates

‖wIαf‖q ≤ C‖vf‖p , (2.6)

we refer to [103, 104].
The first generalization for Orlicz spaces is due to R. O’Neil [69], for

more general and more precise result we refer to [6].
We do not touch in detail results for fractional integrals in Lorentz

spaces, the reader can find them for instance in [3, 7, 28, 49, 48, 57], see
also references therein.

2.2.2. Other forms of multidimensional fractional integration: hy-
perbolic and parabolic fractional integrals. The hyperbolic potential
is defined by

Iα�ϕ =
1

Hn(α)

∫
K+

+

ϕ(x− y)

rn−α(y)
dy, α > n− 2,

where K+
+ =

{
x : x21 ≥ x22 + · · ·+ x2n, x1 ≥ 0

}
, r(y) is the so-called Lorentz

distance r(y) =
√

x21 + · · ·+2
p −x2p+1 − · · · − x2n and the normalizing con-

stant Hn(α) is given by Hn(α) = 2α−1π−1+n/2Γ
(
α
2

)
Γ
(
α+2−n

2

)
. Like the

Riesz fractional integral, these operators also have a semigroup property

Iα�I
β
�ϕ = Iα+β

� ϕ. The result on the Lp → Lq boundedness of the operator

Iα� in the case n = 2, with 1
q = 1

p − α
2 may be found in [96, p. 562], see also

[44, 45].
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The parabolic fractional integral, known also as the heat fractional in-
tegral is defined by

(Hαϕ)(x, t) =
1

Γ(α/2)

∞∫
0

τ
α
2
−1(Wτϕ)(x, t− τ) dτ,

where Wτϕ is the Gauss–Weierstrass operator

(Wτϕ)(x, t) = (4πτ)−n/2
∫
Rn

exp
(
−|ξ|2/(4τ)

)
ϕ(x− ξ, t) dξ,

and it also enjoys the semigroup property. The operator Hα is Lp(Rn+1) →
Lq(Rn+1) bounded when 1 < p < (n + 2)/α and 1/q = 1/p − α/n + 2, see
[16]. Mapping properties in Lebesgue spaces were obtained in [79, 58], and
for Morrey type spaces – in [23, 24, 25, 20, 26, 21].

2.3. On improving continuity properties of functions.

2.3.1. One-dimensional case. As mentioned in Introduction,∥∥Iα0+f∥∥Hλ+α ≤ C‖f‖Hλ , λ > 0, λ+ α < 1

for all f ∈ Hλ
0 ([0, a]), 0 < a < ∞ which was proved in [30]. Moreover, it

proves to be that

Iα(Hλ
0 ) = Hλ+α

0 , (2.7)

see also details of the proof in [96, Th.13.13]. Even more, it holds with
power type weights where

Hλ
0 (�) =

{
f : �f ∈ Hλ

0

}
and � =

∏n
k=1 |x− xk|μk , 0 = x1 < x2 < · · · < xn = a and 0 ≤ μ1 < λ+ 1,

α < μ < λ + 1, k = 2, · · · , n as proved in [78] and presented in [96, Th.
13.13] (for a shorter proof see [43]). Note also that for the case λ = 0 the
following is true:

Iα : C([0, a]) −→ Hα([0, a])

but the inverse statement for the fractional derivative does not hold. There
holds also the corresponding statements for Hölder spaces on (0,∞) if these
spaces are considered with a weight fixed to infinity. We will mention to
such a kind of statements in a more general multidimensional case, but
refer to [96, §5.2] for some one-dimensional results.

Within the frameworks of continuous functions, more precise results
are also known in terms of modulus of continuity. Let Hω

0 = Hω
0 ([0, a]) be

a generalized Hölder space of functions f(x) with a given non-decreasing
positive dominant ω(h), h > 0 of their modulus of continuity:

ω(f, h) ≤ Cω(h),
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where ω(f, h) = sup|x−y|<h |f(x)− f(y)| and such that f(0) = 0. This is a
Banach space with respect to the norm

‖f‖Hω
0
= sup

h>0

ω(f, h)

ω(h)
.

The following statements are valid:

Theorem 2.3. Let 0 < α < 1 and ω(t) satisfy the conditions
h∫
0

ω(t)
t dt ≤

Cω(h) and
a∫
h

ω(t)
2−α dt ≤ C ω(h)

h1−α . Then the operator Iαa+ maps the space Hω
0

isomorphically onto the space Hwα
0 where wα(h) = hαw(h).

The proof is given originally in [67] and presented in [96, §13.6]. Similar
results hold also for generalized Hölder spaces Hω

0 (�) with power weights:

Iα0+
(
Hω

0 (�)
)
= Hω

0 (�), (2.8)

see [96, §13.6].
We refer also to [40], where the assumptions on ω and � for the validity

of (2.8) are given in easy to check numerical inequalities in terms of the
so-called Matuzsewska-Orlicz indices.

2.3.2. Multidimensional case. In the multidimensional case similar state-
ments for the fractional type integrals

IαΩf(x) =

∫
Ω

f(y)

|x− y|n−α dy

over an open set Ω ⊆ R
n, with a characterization of the range IαΩ(H

ω
0 ),

where the index 0 means that one considers functions vanishing on the
boundary ∂Ω of Ω, seem to be studied only in the case Ω = R

n, in the
weighted setting. This is due to the fact that R

n may be mapped onto a
unit sphere S

n in R
n+1 by means of the so-called stereographic projection,

see [90, §6.2] on this projection (check also p. 596 on this survey). Moreover,
under this projection the Riesz potential operator Iα over R

n is reduced,
up to some weights, to potential operator over S

n. In other words, the
study of Hölder type behavior of functions on R

n is reduced to the case of
functions on a compact set. This approach was used in a number of papers.
We do not enter into the analysis of the results obtained there, but refer
to [115, 116, 85, 84, 113, 110], see also references therein. For an arbitrary
bounded set Ω there are only known mapping properties of the type:

IαΩ : Hω
0 (Ω) −→ Hωα(Ω)
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as proved in [12] under some additional assumptions on the geometry of Ω
and in [93] in the general case. Note also that in [93] such a statement was
proved in a general setting of quasi-metric measure spaces instead of Rn.

3. Fractional integrals in non-standard function spaces

In this section we mainly consider mapping properties of integrable
functions, but also touch mapping properties of continuous functions in
§ 3.3.

Studies of various operators of harmonic analysis, including fractional
order operators, are nowadays well-known in the “variable exponent set-
ting”. The latter means that the parameters defining the operator and/or
the space (which usually are constant), may vary from point to point.
Nowadays there exists a vast field of research known as Variable Exponent
Analysis, we refer to the books [8, 11, 53, 54]. In this survey we concentrate
ourselves on mapping properties of fractional integrals.

Note that in this section we will mainly deal with mapping properties
of a fractional operator from a given space X to some other space Y , but
not onto Y . The results of the type “onto” are known only in the case
where α is constant.

3.1. Variable Exponent Lebesgue Spaces.

3.1.1. One-dimensional Case. We will define variable exponent Lebesgue
spaces in general in the multidimensional case, but in this section we deal
with one-dimensional results which have some specific one-dimensional na-
ture.

Let Ω ⊂ R
n be an open set and let p : Ω → R+ be a measurable function

such that p− := infx∈Ω p(x) ≥ 1 and p+ := supx∈Ω p(x) < ∞ . The space

Lp(·)(Ω) is defined as the space of functions with the finite norm

‖f‖Lp(·)(Ω) := inf

⎧⎪⎨⎪⎩λ > 0 :

∫
Ω

∣∣∣∣f(x)λ

∣∣∣∣p(x) dx ≤ 1

⎫⎪⎬⎪⎭ . (3.1)

We will often refer to the conditions

|p(x)− p(y)| ≤ A

ln 1
|x−y|

, x, y ∈ Ω, |x− y| ≤ 1

2
(3.2)

and to

|p(x)− p(∞)| ≤ A

ln(e+ |x|) , x ∈ Ω,

known as the local log-condition and decay condition, respectively. The
latter is imposed when Ω is unbounded.
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First we note that the case of constant p but variable α(x) was stud-
ied in [87], where under some assumptions on α(x) and p the continuous
embedding

D
α(·)
+ I

α(·)
+ (Lp(R)) ↪→ Lp(R)

was obtained. Here,

I
α(·)
+ f(x) =

1

Γ(α(x))

x∫
−∞

f(t)

(t− x)1−α(x)
dt

and

D
α(·)
+ f(x) =

α(x)

Γ(1− α(x))

x∫
−∞

f(x)− f(t)

(x− t)1+α(x)
dt

and 0 < inf α(x), supα(x) < 1.

In [75], under the assumption of log-continuity of the variable expo-
nent, it was obtained a characterization of the range of the one-dimensional
Riemann-Liouville fractional integral operators (0 < α < 1)

Iαa+ϕ(x) =
1

Γ(α)

x∫
a

ϕ(t)

(x− t)1−α
dt, Iαb−ϕ(x) =

1

Γ(α)

b∫
x

ϕ(t)

(t− x)1−α
dt (3.3)

over weighted Lebesgue spaces Lp(·)[(a, b), ρ] in terms of convergence of the
corresponding hypersingular integrals Dα

a+f defined by

D
α
a+f(x) =

f(x)

Γ(1− α)(x− a)α
+

α

Γ(1− α)

x∫
a

f(x)− f(t)

(x− t)1+α
dt.

It was shown that the ranges of the operators (3.3) coincide under some
natural assumptions. Necessary and sufficient conditions for a function f
to belong to this range are also given. It was also proved that the range
coincide with a Sobolev type space Lα,p(·)[(a, b), ρ], defined as the space of
restrictions onto Ω of functions in the space of Bessel potentials, viz.

Lα,p(·)[(a, b), ρ] = Bα
[
Lp̃(·)(R, ρ̃)

] ∣∣∣∣∣
(a,b)

,

where p̃ and ρ̃ are appropriate extensions of p and ρ respectively, see the
details in [75].

Due to the one-sided nature of the Riemann-Liouville integrals (vari-
able limit of integration), in contrast to the case of constant limits like in
the case of potential type fractional integrals, it is possible to use weaker
assumptions in the variable exponent p(x).
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We say that an exponent p belongs to the class P log
− (I) if there exists

a positive constant c1 such that for a.e. x ∈ I and a.e. y ∈ I with
0 < x− y ≤ 1/2, the inequality

p(x) ≤ p(y) +
c1

ln(1/(x − y))
(3.4)

holds. Further, we say that p belongs to P log
+ (I) if there exists a positive

constant c2 such that for a.e. x ∈ I and a.e. y ∈ I with 0 < y − x ≤ 1/2,
the inequality

p(x) ≤ p(y) +
c2

ln(1/(y − x))
(3.5)

holds.
We assume that I = [0, b), where 0 < b ≤ ∞. Let

I
α(·)
0+ f(x) =

x∫
0

f(t)(x− t)α(x)−1dt, x ∈ (0, b),

I
α(·)
b− f(x) =

b∫
x

f(t)(t− x)α(x)−1dt, x ∈ (0, b),

where 0 < α(x) < 1.
The following results regarding, see [62, 102], the aforementioned oper-

ators were obtained when I = R+.

Theorem 3.1. Let I = R+ and let 1 < p−(I) ≤ p+(I) < ∞.

(a) Let p ∈ P log
+ (I). Suppose that there exists a positive constant a such

that p ∈ P∞((a,∞)). Suppose that α is a constant on I, 0 < α < 1
p+(I)

and q(x) = p(x)
1−αp(x) . Then I

α(·)
− is bounded from Lp(·)(I) to Lq(·)(I).

(b) Suppose that p ∈ P log
− (I). Let α be a constant on I, 0 < α < 1

p+(I)

and let q(x) = p(x)
1−αp(x) . Suppose that p ∈ P∞((a,∞)) for some positive

number a. Then I
α(·)
0+ is bounded from Lp(·)(I) to Lq(·)(I).

Similar results for finite bounded intervals are also known, viz.

Theorem 3.2. Let I := [0, b] be a bounded interval and 1 < p−(I) ≤
p+(I) < ∞.

(a) Assume that p ∈ P log
+ (I), 0 < α−(I) and that (αp)+(I) < 1. Suppose

that q(x) = p(x)
1−α(x)p(x) . Then I

α(·)
b− is bounded from Lp(·)(I) to Lq(·)(I).

(b) Let p ∈ P log
− (I). Suppose that 0 < α−(I). Assume also that (αp)+(I) <

1 and q(x) = p(x)
1−α(x)p(x) . Then I

α(·)
0+ is bounded from Lp(·)(I) to Lq(·)(I).
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The conditions P log
− and P log

+ are really weaker: in [102] the reader
can find examples of the exponents satisfying these conditions for which
the fractional integral with constant limits of integration is not bounded in
Lp(·)([0, b]).

3.1.2. Multidimensional Case. In this subsection and in the following,
we use the following notation:

Iα(·)f(x) =
1

γn(α(x))

∫
Rn

f(y)

|x− y|n−α(x) dy, α(x) > 0, (3.6)

for the Riesz potential of variable order preassuming that α(x) nowhere
vanishes. If inf α(x) > 0 and supα(x) < n, the factor 1

γn(α(x))
is inessential

for the study of the mapping properties of the operator; recall that in the
case of constant α the presence of this factor was important for the validity
of the semigroup property IαIβ = Iα+β), which is no more expected for
variable orders.

An interesting question relates to the admission of the order α(x) which
may be degenerate at some points. Then we have to study mapping prop-
erties of Iα(·) in these or other function spaces, taking into account the
degeneracy of the order α(x). Note that 1

γn(α)
→ 0 as α → 0, so that the

presence of normalizing factor 1
γn(α(x))

equivalent to α(x)
|Sn−1| as α(x) → 0, is

of importance when we admit a possibility for α(x) to degenerate. Then
we expect that the operator with this normalizing factor will behave as the
identity operator at the points of degeneracy.

Similarly, the corresponding variable order hypersingular integral (writ-
ten for the case 0 < α(x) < 1) is:

D
α(·)f(x) =

∫
Rn

f(x)− f(x− y)

|y|n+α(x)
dy,

where for simplicity we omit the normalizing factor.

Fractional integrals in variable exponent Lebesgue spaces. The
first known result for the fractional integral concerns bounded sets (see
[89, 88]) in R

n and reads as follows:

Theorem 3.3. Let Ω ⊂ R
n be an open bounded set and p satisfy (3.1).

Let also infx∈Ω α(x) > 0 and supx∈Ω α(x)p(x) < n. Then the operator Iα(·)

is bounded from the space Lp(·)(Ω) to Lq(·)(Ω) with 1
q(x) =

1
p(x) − α(x)

n .

The proof of this theorem in the above stated form may be found in
[53, Theorem 2.50].
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It is known that such a mapping property is no more valid for variable
α(x) when Ω is unbounded (as explicitly shown in [32]), but remains valid
when α is constant under the additional decay condition (3.2) on p(x) as
proved in [5].

However, Sobolev type theorem on R
n with variable α(x) holds in a

modified form, either with additional weight related to infinity∥∥∥(1 + |x|)−γ(x)Iα(·)f
∥∥∥
Lq(·)(Rn)

≤ C‖f‖Lp(·)(Rn) ,

where γ(x) = A∞α(x)
[
1− α(x)

n

]
and A∞ comes from the decay condition,

or in terms of algebraic sum of spaces:∥∥∥Iα(·)f∥∥∥
Lq(·)(Rn)+Lq∞(·)(Rn)

≤ C‖f‖Lp(·)(Rn) ,

where 1/q∞(x) = 1/p(∞)− α(x)/n. The first can be found in [55] and the
second in [54, Theorem 13.46] where it was given in a more general form.

In the limiting case where α(x)p(x) = n, there holds a generalization
of (2.4) to the case of bounded domains, we refer for details to [94, 95].

The weighted case. For various goals in applications, similar weighted
estimates are of importance. As an extension of Theorem 3.3, the following
result is valid, see [53, Corollary 2.66].

Theorem 3.4. Let Ω be bounded, p satisfy (3.1), infx∈Ω α(x) >
0, supx∈Ω α(x)p(x) < n. The operator Iα(·) is bounded from the space

Lp(·) (Ω, �) to the space Lq(·) (Ω, �) with the weight

�(x) = |x− x0|γ lnβ D

|x− x0| ,
where 1/q(x) = 1/p(x) − α(x)/n, D > diamΩ, x0 ∈ Ω and β ∈ R, if

α(x0)− n

p(x0)
< γ <

n

p′(x0)
.

Such a weighted mapping property holds not only for power logarithmic
weights, but for a more general class of weights. We do not go into details,
but refer the reader to [83, 97, 101] and [53, Theorem 2.64].

3.2. Morrey Spaces. The Morrey spaces Lp,α are known to be defined by
the norm

‖f‖Lp,λ = sup
x∈Rn,r>0

⎛⎜⎜⎝ 1

rλ

∫
B(x,r)

|f(y)|p dy

⎞⎟⎟⎠
1
p

, 1 ≤ p < ∞, 0 < λ < n,
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where B(x, r) :=
{
y ∈ R

n : |y − x| < r
}
. We do not touch the so-called

Campanato spaces which are extensions of the Morrey spaces to the case
when λ ≥ n. Correspondingly, there are known mapping properties for
fractional integrals separately for λ < n and λ > n. A unifying approach
for the Campanato spaces is natural in the variable exponent setting, this is
an open problem. For such spaces we refer to the books [15, 56, 117], see also
the survey [74]. The mapping properties for the Riesz fractional integral
within the frameworks of Lp,λ-spaces were first obtained by S. Spanne with
the Sobolev exponent 1/q = 1/p−n/α, this result was published in J. Peetre
[70]. A stronger result with a better exponent 1/q = 1/p − n/(α − λ) in
the range 1 < p < (n− λ)/α is due to D.R. Adams [1].

Let 1 < p < ∞, 0 < λ < n. By dilation arguments it is easy to show
that if ‖Iαf‖Lq,μ(Rn) ≤ C‖f‖Lp,λ(Rn) for some q ∈ (1,∞) and μ ∈ (0, n),

then 1 < p < (n−λ)/α, μ < n/p′+λ/p+α and α+(n−μ)/q = (n−λ)/p.
The choice μ = λ corresponds to the Adams result.

There are also known Spanne type results on mapping properties of
the Riesz potential operator in the so-called generalized Morrey spaces, see
[22, 29] and reference therein. We touch such generalized Morrey spaces
in Section 3.2.1 in a more general setting of variable exponents. Weighted
estimates for potential operators in Morrey spaces are less studied even in
the case of classical Morrey spaces Lp,λ.

There are results on weighted estimates of potential operators in Mor-
rey type spaces, where it was initially supposed that the weight is in the
Muckenhoupt class. Such an assumption on the weight is unnatural for the
Morrey spaces because the class Ap contains weights such that the maxi-

mal operator is certainly not bounded in Lp,λ, for every λ > 0. Indeed, in
N. Samko [80] in the one-dimensional case it was shown that the Hilbert
transform is bounded in Lp,λ if and only if

λ− 1

p
< λ <

1

p′
+

λ

p
,

which is the Muckenhoupt interval (−1p , 1p) shifted to the right by λ
p . This

clearly shows that the class of weights of Muckenhoupt-Wheeden type for
Morrey spaces should essentially depend on λ and of course must be differ-
ent from Apq class.

For weighted estimates of the Riesz potential in Morrey spaces, free of
the assumption of w ∈ Ap, we refer to N. Samko [71, 81, 82].

Finally, we refer to [13] and [4, Chapter 6] with respect to fractional
integrals in Besov spaces.
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3.2.1. Variable Exponent Case. One of the possible definition of vari-
able exponent Morrey spaces is given by the norm

‖f‖p(·),λ(·) = sup
x∈Ω, r>0

∥∥∥∥r−λ(x)
p(·) f χB̃(x,r)

∥∥∥∥
p(·)

.

An extension of the Adams result (obtained in [2]) on fractional integrals in
Morrey spaces to the variable exponent case, for bounded domains Ω ⊂ R

n

has the form ∥∥∥Iα(·)f∥∥∥
q(·),λ(·)

≤ C‖f‖p(·),λ(·) ,

where Iα(·)f(x) =
∫
Ω

f(y)

|x−y|n−α(x)dy, 1/q(x) = 1/p(x)−α(x)/(n−λ(x)), under

the assumption that inf α(x) > 0 and inf[n− λ(x)−α(x)p(x)] > 0 and the
usual log conditions on the α(x) and p(x). Similar result in a more general
setting of quasimetric measure spaces was proved in [50].

The generalized Morrey spaces with variable exponents are known in
the literature in two forms: the spaces Lp(·),ϕ(·) and Mp(·),ω(·) defined re-
spectively by

‖f‖Lp(·),ϕ(·) = sup
x∈Ω,r>0

1

ϕ(x, r)
‖f‖Lp(·)(B̃(x,r))

and

‖f‖Mp(·),ω(·) = sup
x∈Ω,r>0

r
− n

p(x)

ω(x, r)
‖f‖

Lp(·)(B̃(x,r))
.

For Morrey spaces with constant p but a general function ω(x, r) defin-
ing the Morrey space, such results under these or those assumptions were
obtained in [18, 19, 64, 68].

Mapping properties of fractional integrals in generalized Morrey spaces
Mp(·),ω(·) in the general case may be found in [27].

For mapping properties in the so-called Musielak-Orlicz spaces we refer
to [65]. In the case of Orlicz-Morrey spaces more general results were
obtained in [9], including weak-type statements, and in [10] for vanishing
Orlicz-Morrey spaces.

3.3. Hölder Type Spaces.

3.3.1. One-dimensional case. Let

I
α(·)
0+ f(x) =

1

Γ(α(x))

x∫
0

f(y)(x− y)α(x)−1 dy, α(x) > 0,

where 0 < x < a and Hλ(·) = Hλ(·)([0, a]) be the variable exponent Hölder
space defined by the semi-norm
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[f ]Hλ(·) = sup
x,x+h∈[0,a],h>0

|f(x+ h)− f(x)|
hλ(x)

. (3.7)

Let also H
λ(·)
0 = {f : f ∈ Hλ(·) and f(0) = 0}. As a partial generalization

of (2.7) the following is valid. Let α ∈ H1
(
[0, a]

)
, infx∈[0,a] λ(x) > 0 and

supx∈[0,a] λ(x)+α(x) < 1. Then the operator I
α(·)
0+ maps the space H

λ(·)
0 to

H
λ(·)+α(·)
0 . This statement is contained in the main theorem of the paper

[77, p. 782]. In the case where α = const but λ(x) remains variable, such

a generalization holds in a full form, i.e. Iα0+(H
λ(·)
0 ) = H

λ(·)+α(·)
0 as proved

in [34, 35].

3.3.2. Multidimensional case. Spherical fractional integration in
Hölder spaces with variable exponent. In the presentation in this
section we partially follow [92]. Let x, σ ∈ S

n−1 and f(σ) be a function
defined on S

n−1. To introduce the spherical fractional integral of Riesz
type, we may try just to copy the construction (3.6) and introduce the
spherical potential operator of variable order of the function f directly as

Iα(·)f(x) =
1

γn−1(α(x))

∫
Sn−1

f(σ)

|x− σ|n−1−α(x) dσ, x ∈ S
n−1, (3.8)

where dσ stands for the surface measure on S
n−1 and we assume that

0 < α(x) < n− 1.
It is known that the space R

n may be one-to-one transformed onto
the n-dimensional sphere via the stereographic projection. Under this pro-
jection the spatial potential over R

n transforms into exactly the spherical
potential over S

n in R
n+1, up to some weight function. The stereographic

projection maps the sphere Sn onto the space Rn = {x ∈ R
n+1 : xn+1 = 0}

via the change of variables in R
n+1: ξ = s(x) = {s1(x), s2(x), ..., sn+1(x)},

where

sk(x) =
2xk

1 + |x|2 , k = 1, 2, ..., n and sn+1(x) =
|x|2 − 1

|x|2 + 1
,

x ∈ R
n+1, |x| =

√
x21 + · · ·+ x2n+1 (see [63]). There hold the formulas:

|x− y| = 2|σ−ξ|
|σ−en+1|·|ξ−en+1| , dy = 2n

|σ−en+1|2n dσ, where en+1 = (0, 0, ..., 0, 1),

which imply the relation∫
Rn

ϕ(y) dy

|x− y|n−α(x) = 2α̃(ξ)|ξ − en+1|n−α̃(ξ)
∫
Sn

ϕ∗(σ) dσ
|ξ − σ|n−α̃(ξ) (3.9)

where ϕ∗(σ) =
ϕ[s−1(σ)]

|σ−en+1|n+α̃(ξ) and α̃(ξ) = α[s−1(ξ)].
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Therefore, via the stereographic projection we can transfer many prop-
erties of spatial fractional integrals to the case of similar spherical integrals.

Problems arising in the case where α(x) = 0 on some set (of measure
zero), were first resolved for the spherical fractional operator (3.8) in [86]

in the setting of variable exponent Hölder spaces Hλ(·)(Sn−1). The case
of non-vanishing orders α(x) was earlier studied in [111, 112, 114] (where
there was also studied the case of generalized Hölder spaces).

In [86] complex values of α(x) were also admitted. This more general
setting together with degeneracy of α(x) led to a certain exclusion of purely
imaginary orders α(x) = iθ(x):

max
x∈Sn−1

| argα(x)| < π

2
− ε, for some ε > 0. (3.10)

Under this assumption in [86] there was proved, in particular, the statement

given in Theorem 3.5, below. In that theorem, the operator α(x)Iα(·) at

the points x0, where α(x0) = 0, is interpreted as the limit α(x0)I
α(x0) =

limβ→0 βI
β . As is well known, such a limit in the case of spatial fractional

integrals is the identity operator, up to a constant factor. The same holds
in the case of spherical integrals.

Theorem 3.5. Let α ∈ Lip(Sn−1) and the set {x ∈ S
n−1 : �α(x) = 0}

have measure zero. The operator α(x)Iα(·) acts boundedly from the space

Hλ(·)(Sn−1) into the space Hλ(·)+α(·)(Sn−1, α), if supx∈Sn−1 [λ(x)+�α(x)] <
1.

The above mentioned tendency to the identity operator is obviously
reflected in this theorem: at the points where α(x) = 0 there is stated
only the conservation of the smoothness properties of the function f , but
in general when �α(x) → 0, the limiting operator, under condition (3.10),
is a singular integral operator of Calderón-Zygmund type, also preserving
the smoothness properties, in general).

It is worthwhile noticing that for the corresponding spherical fractional
differentiation operator

Dα(·)f(x) = lim
ε→0

∫
Sn−1

|x−σ|≥ε

f(σ)− f(x)

|x− σ|n−1+α(x)
dσ, x ∈ S

n−1, (3.11)

where 0 < �α(x) < 1, a symmetrical statement holds on mapping of

Hλ(·)(Sn−1) into Hλ(·)−α(·)(Sn−1) under the assumption that

min
x∈Sn−1

�α(x) > 0, max
x∈Sn−1

�α(x) < 1, and min
x∈Sn−1

�[λ(x)− α(x)] > 0,

see Theorem 3.13 in [86] (for simplicity, we do not touch the degeneracy
cases in this result).



598 H. Rafeiro, S. Samko

In fact, in [86] there was obtained a more general statement on mapping
properties within the frameworks of generalized Hölder spaces, defined by
a prescribed dominant of the continuity modulus, see details in [86].

From the above statement for spherical fractional integrals, one can
derive corresponding results for spatial fractional operators via relations of
type (3.9).

3.4. Grand Spaces. The grand Lebesgue spaces, also known as Iwaniec-
Sbordonne spaces, are denoted by Lp),θ(Ω) and defined as the set of all
measurable functions in the bounded set Ω for which

‖f‖Lp),θ(Ω) = sup
0<ε<p−1

⎛⎜⎝ εθ

|Ω|
∫
Ω

|f(x)|p−εdx

⎞⎟⎠
1

p−ε

is finite. These spaces were introduced in [33] in the case of θ = 1 and with
general θ was given in [17]. A definition of grand Lebesgue spaces tailored
for unbounded sets was given in [98, 99]. A more general approach to grand
Lebesgue spaces on unbounded sets was suggested in [109].

In [59] it was studied with some detail the mapping properties of the
fractional integral in the one-dimensional case. For example it was shown
the dependence of the boundedness of the operator with the parameter

θ, namely, it was shown that Iα is
(
Lp),θ1([0, 1]) → Lq),θ2([0, 1])

)
-bounded

when θ2 > θ1(1+αq) and q = p/(1−αp). A more general theorem was also
given relating the boundedness of the operator in weighted grand Lebesgue
spaces with Muckenhoupt weights, see [59] for details.

Under the approach of [109] the corresponding
(
Lp)(Rn) → Lq)(Rn)

)
-

boundedness of the Riesz fractional operator was proved in [100], where
there was given an inversion of the operator Iα in vanishing grand Lebesgue
spaces.

It is noteworthy to mention that the idea of grandification was also
applied to the Morrey spaces. In [60, 61] it was introduced the grand
Morrey space on quasi-metric measure spaces with doubling measure and
it was obtained boundedness results for the generalized fractional integral
operator J α defined by

J αf(x) =

∫
X

f(y)

ρ(x, y)γ−α
dμ,

namely, it was shown that J α : Lp),θ1,λ(X,μ) → Lq),θ2,λ(X,μ) is bounded

when θ2 = [1+ αq
(1−λ)γ ]θ1, 0 < α < (1−λ)γ

p , 0 ≤ λ < 1/γ, 1
p − 1

q = α
(1−λ)γ and
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‖f‖Lp),θ,λ = supε,x,r

⎛⎝ εθ

rγλ

∫
B(x,r)

|f |p−ε
⎞⎠

1
p−ε

. In the aforementioned paper

the grandification process was applied only to the integrability parameter,
but in [73] it was already applied to both parameters defining the Morrey

space, the space L
p),λ)
θ,α (Ω) was introduced in the following way

‖f‖
L
p),λ)
θ,α (Ω)

:= sup
0<ε<max{p−1, λ

α
}
ε

θ
p−ε ‖f‖Lp−ε,λ−αε(Ω) .

In [52] it was obtained the boundedness of Riesz type potential operators
both in the framework of homogeneous and also in the nonhomogeneous
cases in generalized grand Morrey spaces, see [52] for details.

A new function space unifying the grand Lebesgue spaces and the vari-
able exponent Lebesgue spaces was introduced in [51] and denoted by grand

variable exponent Lebesgue spaces with the notation Lp(·),θ. The authors
obtain Sobolev type theorem for fractional integrals in a subspace of Lp(·),θ.
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http://www.springer.com/us/book/9783319210148.

[54] V. Kokilashvili, A. Meskhi, H. Rafeiro, S. Samko, Integral Opera-
tors in Non-standard Function Spaces. Volume 2: Variable Exponent
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