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Abstract

In this paper we study a new class of Riemann-Liouville fractional dif-
ferential equations subject to nonlocal Erdélyi-Kober fractional integral
boundary conditions. Existence and uniqueness results are obtained by us-
ing a variety of fixed point theorems, such as Banach fixed point theorem,
Nonlinear Contractions, Krasnoselskii fixed point theorem, Leray-Schauder
Nonlinear Alternative and Leray-Schauder degree theory. Examples illus-
trating the obtained results are also presented.
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1. Introduction

The aim of this paper is to establish the existence of solutions for the
following nonlinear Riemann-Liouville fractional differential equation sub-
ject to nonlocal Erdélyi-Kober fractional integral conditions
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⎧⎪⎨⎪⎩
Dqx(t) = f(t, x(t)), t ∈ (0, T ),

x(0) = 0, αx(T ) =

m∑
i=1

βiI
γi,δi
ηi x(ξi),

(1.1)

where 1 < q ≤ 2, Dq is the standard Riemann-Liouville fractional derivative

of order q, Iγi,δiηi is the Erdélyi-Kober fractional integral of order δi > 0
with ηi > 0 and γi ∈ R, i = 1, 2, . . . ,m, f : [0, T ] × R → R is a continuous
function and α, βi ∈ R, ξi ∈ (0, T ), i = 1, 2, . . . ,m are given constants.

In recent years, considerable interest in fractional differential equations
has been stimulated due to their numerous applications in many fields of
science and engineering. Important phenomena in finance, electromagnet-
ics, acoustics, viscoelasticity, electrochemistry and material science are well
described by differential equations of fractional order. For examples and
recent development of the topic, see [1, 2, 3, 4, 5, 7, 6, 8, 9, 10, 13, 17, 18,
19, 23] and the references cited therein. However, it has been observed that
most of the work on the topic involves either Riemann-Liouville or Caputo
type fractional derivative. Besides these derivatives, the so called Erdélyi-
Kober fractional derivative, as a generalization of the Riemann-Liouville
fractional derivative, is often used, too. An Erdélyi-Kober operator is a
fractional integration operation introduced by Arthur Erdélyi and Hermann
Kober in 1940. These operators have been used by many authors, in par-
ticular, to obtain solutions of the single, dual and triple integral equations
possessing special functions of mathematical physics as their kernels. For
the theory and applications of the Erdélyi-Kober fractional integrals see
e.g. [13, 14, 15, 20, 21, 22] and references cited therein.

In the present paper we initiate the study of boundary value problems
like (1.1), in which we combine Riemann-Liouville fractional differential
equations subject to the Erdélyi-Kober fractional integral boundary condi-
tions. To the best of the author’s knowledge this is the first paper dealing
with Riemann-Liouville fractional differential equation subject to Erdélyi-
Kober type integral boundary conditions.

Several new existence and uniqueness results are obtained by using a
variety of fixed point theorems. Thus, in Theorem 4.1 we present an exis-
tence and uniqueness result via Banach’s fixed point theorem, while in 4.2
we give another existence and uniqueness result nonlinear contractions. In
the sequel existence results are obtained in Theorem 4.3, via Krasnosel-
skii’s fixed point theorem, in Theorem 4.4 via Leray-Schauder’s nonlinear
alternative and finally in Theorem 4.5 via Leray-Schauder’s degree theory.
Examples illustrating the obtained results are also presented.

The rest of the paper is organized as follows: In Section 2 we recall
some some notations and definitions and lemmas from fractional calculus.
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Some auxiliary lemmas, useful for the sequel, are presented in Section 3.
The main existence and uniqueness results are given in Section 4, while
the paper close with Section 5, where enlighten examples are discussed
illustrating our obtained results.

2. Preliminaries

In this section, we introduce some notations and definitions of fractional
calculus and present preliminary results needed in our proofs later. For
more details we refer to the books [20, 14, 19, 13], etc.

Definition 2.1. The Riemann-Liouville fractional derivative of order
q > 0 of a continuous function f : (0,∞)→ R is defined by

Dqf(t) =
1

Γ(n− q)

(
d

dt

)n ∫ t

0
(t− s)n−q−1f(s)ds, n− 1 < q < n,

where n = [q] + 1, [q] denotes the integer part of a real number q. Here Γ
is the Gamma function defined by Γ(q) =

∫∞
0 e−ssq−1ds.

Definition 2.2. The Riemann-Liouville fractional integral of order
q > 0 of a continuous function f : (0,∞)→ R is defined by

Jqf(t) =
1

Γ(q)

∫ t

0
(t− s)q−1f(s)ds,

provided the integral exists.

Definition 2.3. The Erdélyi-Kober fractional integral of order δ > 0
with η > 0 and γ ∈ R of a continuous function f : (0,∞) → R is defined
by

Iγ,δη f(t) =
ηt−η(δ+γ)

Γ(δ)

∫ t

0

sηγ+η−1f(s)

(tη − sη)1−δ
ds

provided the right side is pointwise defined on R+.

Remark 2.1. For η = 1 the above operator is reduced to the Kober
operator

Iγ,δ1 f(t) =
t−(δ+γ)

Γ(δ)

∫ t

0

sγf(s)

(t− s)1−δ
ds, γ, δ > 0,

that was introduced for the first time by Kober in [15]. For γ = 0, the
Kober operator is reduced to the Riemann-Liouville fractional integral with
a power weight:

I0,δ1 f(t) =
t−δ

Γ(δ)

∫ t

0

f(s)

(t− s)1−δ
ds, δ > 0.
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From the definition of the Riemann-Liouville fractional derivative and
integral, we can obtain the following lemmas.

Lemma 2.1. (See [13]) Let q > 0 and y ∈ C(0, T )∩L(0, T ). Then the
fractional differential equation Dqy(t) = 0 has a unique solution

y(t) = c1t
q−1 + c2t

q−2 + · · ·+ cnt
q−n,

where ci ∈ R, i = 1, 2, . . . , n and n− 1 < q < n.

Lemma 2.2. (see [13]) Let q > 0. Then for y ∈ C(0, T ) ∩ L(0, T ) it
holds

JqDqy(t) = y(t) + c1t
q−1 + c2t

q−2 + · · ·+ cnt
q−n,

where ci ∈ R, i = 1, 2, . . . , n and n− 1 < q < n.

3. Some auxiliary lemmas

For easy reference we include the following well known formula as a
lemma (see for example, [14]).

Lemma 3.1. Let δ, η > 0 and γ, q ∈ R. Then we have

Iγ,δη tq =
tqΓ(γ + (q/η) + 1)

Γ(γ + (q/η) + δ + 1)
. (3.1)

Lemma 3.2. Let 1 < q ≤ 2, δi, ηi > 0, α, γi, βi ∈ R, ξi ∈ (0, T ),
i = 1, 2, . . . ,m and h ∈ C([0, T ],R). Then x ∈ C2([0, T ],R) is a solution of
the linear Riemann-Liouville fractional differential equation subject to the
Erdélyi-Kober fractional integral boundary conditions⎧⎪⎨⎪⎩

Dqx(t) = h(t), t ∈ (0, T ),

x(0) = 0, αx(T ) =

m∑
i=1

βiI
γi,δi
ηi x(ξi),

(3.2)

if and only if

x(t) = Jqh(t)− tq−1

Λ

(
αJqh(T )−

m∑
i=1

βiI
γi,δi
ηi Jqh(ξi)

)
, (3.3)

where

Λ := αT q−1 −
m∑
i=1

βiξi
q−1Γ(γi + (q − 1)/ηi + 1)

Γ(γi + (q − 1)/ηi + δi + 1)
�= 0. (3.4)

P r o o f. Using Lemmas 2.1-2.2, the equation (3.2) can be expressed
as an equivalent integral equation

x(t) = Jqh(t)− c1t
q−1 − c2t

q−2, (3.5)
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for c1, c2 ∈ R. The first condition of (3.2) implies that c2 = 0. Taking the
Erdélyi-Kober fractional integral of order δi > 0 with ηi > 0 and γi ∈ R for
(3.5) and using Lemma 3.1, we have

Iγi,δiηi x(t) = Iγi,δiηi Jqh(t)− c1
tq−1Γ(γi + (q − 1)/ηi + 1)

Γ(γi + (q − 1)/ηi + δi + 1)
.

The second condition of (3.2) yields

αJqh(T )− c1αT
q−1 =

m∑
i=1

βiI
γi,δi
ηi Jqh(ξi)

−c1
m∑
i=1

βiξ
q−1
i Γ(γi + (q − 1)/ηi + 1)

Γ(γi + (q − 1)/ηi + δi + 1)
,

which implies

c1 =
1

Λ

(
αJqh(T )−

m∑
i=1

βiI
γi,δi
ηi Jqh(ξi)

)
.

Substituting the values of c1 and c2 in (3.5), we obtain the desired solution
(3.3). The converse follows by direct computation. �

4. Main Results

Throughout this paper, for convenience, we use the following expres-
sions, based on Definitions 2.2 and 2.3:

Jqf(s, x(s))(z) =
1

Γ(q)

∫ z

0
(z − s)q−1f(s, x(s))ds, z ∈ {t, T},

for t ∈ [0, T ] and

Iγi,δiηi Jqf(s, x(s))(ξi)

=
ηiξ

−ηi(δi+γi)
i

Γ(q)Γ(δi)

∫ ξi

0

∫ r

0

rηiγi+ηi−1(r − s)q−1

(ξηii − rηi)1−δi
f(s, x(s))ds dr,

where ξi ∈ (0, T ) for i = 1, 2, . . . ,m.

Let C = C([0, T ],R) denote the Banach space of all continuous functions
from [0, T ] to R endowed with the norm defined by ‖x‖ = sup

t∈[0,T ]
|x(t)|. Using

Lemma 3.2, we can define an operator G : C → C by

Gx(t) = Jqf(s, x(s))(t)

− tq−1

Λ

(
αJqf(s, x(s))(T )−

m∑
i=1

βiI
γi,δi
ηi Jqf(s, x(s))(ξi)

)
.

(4.1)

It should be noticed that problem (1.1) has solution if and only if the
operator G has fixed points.



NONLINEAR RIEMANN-LIOUVILLE FRACTIONAL . . . 485

In the following, for the sake of convenience, we set a constant

Ψ :=
T q

Γ(q + 1)
+

|α|T 2q−1

|Λ|Γ(q + 1)
+

T q−1

|Λ|Γ(q + 1)

m∑
i=1

|βi|ξqi Γ(γi + (q/ηi) + 1)

Γ(γi + (q/ηi) + δi + 1)
.

(4.2)
In the following subsections we prove existence, as well as existence and

uniqueness results, for the boundary value problem (1.1) by using a variety
of fixed point theorems.

4.1. Existence and uniqueness result via
Banach’s fixed point theorem

Theorem 4.1. Assume that:

(H1) there exists a positive constant L such that |f(t, x) − f(t, y)| ≤
L|x− y|, for each t ∈ [0, T ] and x, y ∈ R.

If

LΨ < 1, (4.3)

where Ψ is defined by (4.2), then the boundary value problem (1.1) has a
unique solution on [0, T ].

P r o o f. We transform the problem (1.1) into a fixed point problem,
x = Gx, where the operator G is defined as in (4.1). Observe that the
fixed points of the operator G are solutions of problem (1.1). Applying the
Banach contraction mapping principle, we shall show that G has a unique
fixed point.

We let supt∈[0,T ] |f(t, 0)| = M <∞, and choose

r ≥ MΨ

1− LΨ
. (4.4)

To show that GBr ⊂ Br, where Br = {x ∈ C : ‖x‖ ≤ r}, we have for
any x ∈ Br that

|(Gx)(t)| ≤ sup
t∈[0,T ]

{
Jq|f(s, x(s))|(t) + |α|tq−1

|Λ| Jq|f(s, x(s))|(T )

+
tq−1

|Λ|
m∑
i=1

|βi|Iγi,δiηi Jq|f(s, x(s))|(ξi)
}

≤ Jq(|f(s, x(s))− f(s, 0)|+ |f(s, 0)|)(T )
+
|α|T q−1

|Λ| Jq(|f(s, x(s))− f(s, 0)|+ |f(s, 0)|)(T )

+
T q−1

|Λ|
m∑
i=1

|βi|Iγi,δiηi Jq(|f(s, x(s))− f(s, 0)|+ |f(s, 0)|)(ξi)



486 N. Thongsalee, S.K. Ntouyas, J. Tariboon

≤ (L‖x‖ +M)Jq(1)(T ) + (L‖x‖+M)
|α|T q−1

|Λ| Jq(1)(T )

+(L‖x‖+M)
T q−1

|Λ|
m∑
i=1

|βi|Iγi,δiηi Jq(1)(ξi)

≤ (Lr +M)Ψ ≤ r,

which implies that GBr ⊂ Br.

Next, we let x, y ∈ C. Then for t ∈ [0, T ], we have

|Gx(t)− Gy(t)|

≤ sup
t∈[0,T ]

{
Jq|f(s, x(s))− f(s, y(s))|(t)

+
|α|tq−1
|Λ| Jq|f(s, x(s))− f(s, y(s))|(T )

+
tq−1

|Λ|
m∑
i=1

|βi|Iγi,δiηi Jq|f(s, x(s))− f(s, y(s))|(ξi)
}

≤ L‖x− y‖Jq(1)(T ) + L‖x− y‖|α|T
q−1

|Λ| Jq(1)(T )

+L‖x− y‖T
q−1

|Λ|
m∑
i=1

|βi|Iγi,δiηi Jq(1)(ξi)

= LΨ‖x− y‖,
which leads to ‖Gx − Gy‖ ≤ LΨ‖x − y‖. As LΨ < 1, G is a contraction.
Therefore, we deduce, by the Banach’s contraction mapping principle, that
G has a fixed point which is the unique solution of the problem (1.1). The
proof is completed. �

4.2. Existence and uniqueness result via nonlinear contractions

Definition 4.1. Let E be a Banach space and let F : E → E be a
mapping. F is said to be a nonlinear contraction if there exists a continuous
nondecreasing function Θ : R+ → R+ such that Θ(0) = 0 and Θ(ε) < ε for
all ε > 0 with the property:

‖Fx−Fy‖ ≤ Θ(‖x− y‖), ∀x, y ∈ E.
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Lemma 4.1. (Boyd and Wong, [11]) Let E be a Banach space and let
F : E → E be a nonlinear contraction. Then F has a unique fixed point
in E.

Theorem 4.2. Let f : [0, T ] × R → R be a continuous function
satisfying the assumption:

(H2) |f(t, x)− f(t, y)| ≤ z(t)
|x− y|

A∗ + |x− y| , for t ∈ [0, T ], x, y ≥ 0, where

z : [0, T ]→ R+ is continuous and A∗ the constant defined by

A∗ :=

(
Jqz(T ) +

|α|T q−1

|Λ| Jqz(T ) +
T q−1

|Λ|
m∑
i=1

|βi|Iγi,δiηi Jqz(ξi)

)
.

Then the problem (1.1) has a unique solution on [0, T ].

P r o o f. We define the operator G : C → C as in (4.1) and the contin-
uous nondecreasing function Θ : R+ → R+ by

Θ(ε) =
A∗ε

A∗ + ε
, ∀ε ≥ 0.

Note that the function Θ satisfies Θ(0) = 0 and Θ(ε) < ε for all ε > 0.

For any x, y ∈ C and for each t ∈ [0, T ], we have

|Gx(t)− Gy(t)|
≤ Jq|f(s, x(s))− f(s, y(s))|(T ) + |α|T q−1

|Λ| Jq|f(s, x(s))− f(s, y(s))|(T )

+
T q−1

|Λ|
m∑
i=1

|βi|Iγi,δiηi Jq|f(s, x(s))− f(s, y(s))|(ξi)

≤ Jq

(
z(s)

|x− y|
A∗ + |x− y|

)
(T ) +

|α|T q−1

|Λ| Jq

(
z(s)

|x− y|
A∗ + |x− y|

)
(T )

+
T q−1

|Λ|
n∑

i=1

|βi|Iγi,δiηi Jq

(
z(s)

|x− y|
A∗ + |x− y|

)
(ξi)

≤ Θ(‖x− y‖)
A∗

(
Jqz(T ) +

|α|T q−1

|Λ| Jqz(T ) +
T q−1

|Λ|
m∑
i=1

|βi|Iγi,δiηi Jqz(ξi)

)
= Θ(‖x− y‖).

This implies that ‖Gx − Gy‖ ≤ Θ(‖x − y‖). Therefore G is a nonlinear
contraction. Hence, by Lemma 4.1 the operator G has a unique fixed point
which is the unique solution of the problem (1.1). This completes the proof.

�
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4.3. Existence result via Krasnoselskii’s fixed point theorem

Lemma 4.2. (Krasnoselskii’s fixed point theorem, [16]) Let M be a
closed, bounded, convex and nonempty subset of a Banach space X. Let
A,B be the operators such that (a) Ax+Bx ∈M whenever x, y ∈M ; (b)
A is compact and continuous; (c) B is a contraction mapping. Then there
exists z ∈M such that z = Az +Bz.

Theorem 4.3. Let f : [0, T ] × R → R be a continuous function
satisfying (H1). In addition we assume that:

(H3) |f(t, x)| ≤ ϕ(t), ∀(t, x) ∈ [0, T ] × R, and ϕ ∈ C([0, T ],R+).

Then the problem (1.1) has at least one solution on [0, T ] provided

L

(
T q−1

|Λ|Γ(q + 1)

m∑
i=1

|βi|ξqi Γ(γi + (q/ηi) + 1)

Γ(γi + (q/ηi) + δi + 1)

)
< 1. (4.5)

P r o o f. We define the operators G1 and G2 by

G1x(t) = Jqf(s, x(s))(t)− α tq−1

Λ
Jqf(s, x(s))(T ), t ∈ [0, T ],

G2x(t) =
tq−1

Λ

m∑
i=1

βi(I
γi,δi
ηi Jqf(s, x(s)))(ξi), t ∈ [0, T ].

Setting supt∈[0,T ] ϕ(t) = ‖ϕ‖ and choosing

ρ ≥ ‖ϕ‖Ψ,

where Ψ is defined by (4.2), we consider Bρ = {x ∈ C : ‖x‖ ≤ ρ}. For any
x, y ∈ Bρ, we have

|G1x(t) + G2y(t)|

≤ sup
t∈[0,T ]

{
Jq|f(s, x(s))|(t) + |α|tq−1

|Λ| Jq|f(s, x(s))|(T )

+
tq−1

|Λ|
m∑
i=1

|βi|Iγi,δiηi Jq|f(s, x(s))|(ξi)
}

≤ ‖ϕ‖
(

T q

Γ(q + 1)
+
|α|T 2q−1

|Λ|Γ(q + 1)
+

T q−1

|Λ|Γ(q + 1)

m∑
i=1

|βi|ξqi Γ(γi + (q/ηi) + 1)

Γ(γi + (q/ηi) + δi + 1)

)
= ‖ϕ‖Ψ ≤ ρ.

This shows that G1x + G2y ∈ Bρ. It is easy to see using (4.5) that G2 is a
contraction mapping.
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Continuity of f implies that the operator G1 is continuous. Also, G1 is
uniformly bounded on Bρ as

‖G1x‖ ≤
(

T q

Γ(q + 1)
+

|α|T 2q−1

|Λ|Γ(q + 1)

)
‖ϕ‖.

Now we prove the compactness of the operator G1.
We define sup(t,x)∈[0,T ]×Bρ

|f(t, x)| = f̄ < ∞, and consequently, for

t1, t2 ∈ [0, T ], t1 < t2, we have

|G1x(t2)− G1x(t1)| =

∣∣∣∣∣Jqf(s, x(s))(t2)− α tq−12

Λ
Jqf(s, x(s))(T )

− Jqf(s, x(s))(t1) +
α tq−11

Λ
Jqf(s, x(s))(T )

∣∣∣∣∣
≤ f̄

Γ(q + 1)
|tq2 − tq1|+

f̄ |α|T q

|Λ|Γ(q + 1)

∣∣∣tq−12 − tq−11

∣∣∣ ,
which is independent of x and tend to zero as t2 − t1 → 0. Thus, G1 is
equicontinuous. So G1 is relatively compact on Bρ. Hence, by the Arzelá-
Ascoli theorem, G1 is compact on Bρ. Thus all the assumptions of Lemma
4.2 are satisfied. So the conclusion of Lemma 4.2 implies that the problem
(1.1) has at least one solution on [0, T ] �

4.4. Existence result via Leray-Schauder’s Nonlinear Alternative

Lemma 4.3. (Nonlinear alternative for single valued maps, [12]) Let
E be a Banach space, C a closed, convex subset of E, U an open subset of
C and 0 ∈ U. Suppose that A : Ū → C is a continuous, compact (that is,
A(Ū) is a relatively compact subset of C) map. Then either

(i) A has a fixed point in Ū , or
(ii) there is a x ∈ ∂U (the boundary of U in C) and λ ∈ (0, 1) with

x = λA(x).

Theorem 4.4. Assume that:

(H4) there exists a continuous nondecreasing function Φ : [0,∞) →
(0,∞) and a function p ∈ C([0, T ],R+) such that

|f(t, x)| ≤ p(t)Φ(‖x‖) for each (t, x) ∈ [0, T ]× R;

(H5) there exists a constant N > 0 such that

N

Φ(N)‖p‖Ψ > 1,

where Ψ is defined by (4.2).

Then the problem (1.1) has at least one solution on [0, T ].



490 N. Thongsalee, S.K. Ntouyas, J. Tariboon

P r o o f. Let the operator G be defined by (4.1). We first show that G
maps bounded sets (balls) into bounded sets in C([0, T ],R). For a positive
constant r, let Br = {x ∈ C([0, T ],R) : ‖x‖ ≤ r} be a bounded ball in
C([0, T ],R). Then for t ∈ [0, T ] we have

|Gx(t)| ≤ Jq|f(s, x(s))|(T ) + |α|T q−1

|Λ| Jq|f(s, x(s))|(T )

+
T q−1

|Λ|
m∑
i=1

|βi|Iγi,δiηi Jq|f(s, x(s))|(ξi)

≤ Φ(‖x‖)Jqp(s)(T ) + Φ(‖x‖) |α|T
q−1

|Λ| Jqp(s)(T )

+Φ(‖x‖)T
q−1

|Λ|
m∑
i=1

|βi|Iγi,δiηi Jqp(s)(ξi)

≤ Φ(‖x‖)‖p‖
(

T q

Γ(q + 1)
+

|α|T 2q−1

|Λ|Γ(q + 1)

+
T q−1

|Λ|Γ(q + 1)

m∑
i=1

|βi|ξqi Γ(γi + (q/ηi) + 1)

Γ(γi + (q/ηi) + δi + 1)

)
and consequently,

‖Gx‖ ≤ Φ(r)||p||Ψ.

Next we will show that the operator G maps bounded sets into equicon-
tinuous sets of C([0, T ],R). Let τ1, τ2 ∈ [0, T ] with τ1 < τ2 and x ∈ Br.
Then we have

|Gx(τ2)− Gx(τ1)|
≤ |Jqf(s, x(s))(τ2)− Jqf(s, x(s))(τ1)|

+
|α||τ q−12 − τ q−11 |

|Λ| Jq|f(s, x(s))|(T )

+
|τ q−12 − τ q−11 |

|Λ|
m∑
i=1

|βi|Iγi,δiηi Jq|f(s, x(s))|(ξi)

≤ Φ(r)

Γ(q)

∣∣∣∣∫ τ1

0
[(τ2 − s)q−1 − (τ1 − s)q−1]p(s)ds +

∫ τ2

τ1

(τ2 − s)q−1p(s)ds

∣∣∣∣
+
|τ q−12 − τ q−11 |Φ(r)

|Λ|

(
|α|Jqp(s)(T ) +

m∑
i=1

|βi|Iγi,δiηi Jqp(s)(ξi)

)
.

As τ2 − τ1 → 0, the right-hand side of the above inequality tends to zero
independently of x ∈ Br. Therefore by the Arzelá-Ascoli theorem the
operator G : C → C is completely continuous.
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Let x be a solution. Then, for t ∈ [0, T ], and following the similar
computations as in the first step, we have

|x(t)| ≤ Φ(‖x‖)||p||Ψ,

which leads to
‖x‖

Φ(‖x‖)||p||Ψ ≤ 1.

In view of (H5), there exists N such that ‖x‖ �= N. Let us set

U = {x ∈ C([0, T ],R) : ‖x‖ < N}.
We see that the operator G : U → C([0, T ],R) is continuous and completely
continuous. From the choice of U , there is no x ∈ ∂U such that x = θGx
for some θ ∈ (0, 1). Consequently, by the nonlinear alternative of Leray-
Schauder type, we deduce that G has a fixed point x ∈ U which is a solution
of the problem (1.1). This completes the proof. �

4.5. Existence result via Leray-Schauder’s Degree Theory

Theorem 4.5. Let f : [0, T ] × R → R be a continuous function.
Suppose that:

(H6) there exist constants 0 ≤ ν < Ψ−1, and M > 0 such that

|f(t, x)| ≤ ν|x|+M for all (t, x) ∈ [0, T ]× R,

where Ψ is defined by (4.2).

Then the problem (1.1) has at least one solution on [0, T ].

P r o o f. We define an operator G : C → C as in (4.1). In view of the
fixed point problem

x = Gx, (4.6)

we are going to prove the existence of at least one solution x ∈ C[0, T ]
satisfying (4.6). Set a ball BR ⊂ C[0, T ], as

BR = {x ∈ C : max
t∈[0,T ]

|x(t)| < R},

where a constant radius R > 0. Hence, we will show that the operator
G : BR → C[0, T ] satisfies a condition

x �= θGx, ∀x ∈ ∂BR, ∀θ ∈ [0, 1]. (4.7)

We set

H(θ, x) = θGx, x ∈ C, θ ∈ [0, 1].

As shown in Theorem 4.4 we have that the operator G is continuous, uni-
formly bounded and equicontinuous. Then, by the Arzelá-Ascoli theorem,
a continuous map hθ defined by hθ(x) = x−H(θ, x) = x−θGx is completely
continuous. If (4.7) holds, then the following Leray-Schauder degrees are
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well defined and by the homotopy invariance of topological degree, it follows
that

deg(hθ, BR, 0) = deg(I − θG, BR, 0) = deg(h1, BR, 0)

= deg(h0, BR, 0) = deg(I,BR, 0) = 1 �= 0, 0 ∈ BR,
where I denotes the unit operator. By the nonzero property of Leray-
Schauder degree, we have h1(x) = x− Gx = 0 for at least one x ∈ BR. Let
us assume that x = θGx for some θ ∈ [0, 1] and for all t ∈ [0, T ] so that

|x(t)| = |θGx(t)|
≤ Jq|f(s, x(s))|(T ) + |α|T q−1

|Λ| Jq|f(s, x(s))|(T )

+
T q−1

|Λ|
m∑
i=1

|βi|Iγi,δiηi Jq|f(s, x(s))|(ξi)

≤ (ν|x|+M)Jq(1)(T ) + (ν|x|+M)
|α|T q−1

|Λ| Jq(1)(T )

+ (ν|x|+M)
T q−1

|Λ|
m∑
i=1

|βi|Iγi,δiηi Jq(1)(ξi)

= (ν|x|+M)Ψ,

which taking the norm supt∈[0,T ] |x(t)| = ‖x‖ and solving for ‖x‖, yields
‖x‖ ≤ MΨ

1− νΨ
.

If R =
MΨ

1− νΨ
+ 1, inequality (4.7) holds. This completes the proof. �

5. Examples

In this section, we present some examples to illustrate our results.

Example 5.1. Consider the following nonlinear Riemann-Liouville
fractional differential equation with nonlocal Erdélyi-Kober fractional inte-
gral conditions
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
D

3
2x(t) =

sin2(πt)

2(et + 9)2

(
1

|x(t)|+ 1
+ 1

)
|x(t)|+

√
3

4
, t ∈ [0, 5],

x(0) = 0,
2

3
x(5) =

e

2
I

3
7
, 5
3√

3
5

x

(
4

3

)
+

π

3
I

√
3

8
, 2
9√

2
5

x

(
3

2

)
+

√
π

6
I

e2

4
,
√

e
2

e
3

x

(
2

7

)
.

(5.1)

Here q = 3/2, m = 3, T = 5, α = 2/3, β1 = e/2, β2 = π/3, β3 =√
π/6, η1 =

√
3/5, η2 =

√
2/5, η3 = e/3, γ1 = 3/7, γ2 =

√
3/8, γ3 =

e2/4, δ1 = 5/3, δ2 = 2/9, δ3 =
√
e/2, ξ1 = 4/3, ξ2 = 3/2, ξ3 = 2/7,

and f(t, x) = (sin2(πt)/2(et + 9)2)((|x|/(|x| + 1)) + 1)|x| + (
√
3/4). Since

|f(t, x) − f(t, y)| ≤ (1/100)|x − y|, then, (H1) is satisfied with L = 1/100.
By using the Maple program, we can find that Ψ ≈ 97.24231429. Thus
LΨ ≈ 0.9724231429 < 1. Hence, by Theorem 4.1, the boundary value
problem (5.1) has a unique solution on [0, 5].

Example 5.2. Consider the following nonlinear Riemann-Liouville
fractional differential equation with nonlocal Erdélyi-Kober fractional inte-
gral conditions

D
8
5x(t) =

t2

1 + et

( |x(t)|
|x(t)|+ 1

)
+ 2t+

5

8
, t ∈ [0, 1],

x(0) = 0,
3

8
x(1) = − e√

2
I

3
4
, 1
8

2
5

x

(
1

2

)
+

π

2
I

4
3
, 3
2

1
2

x

(
2

3

)
+

π

4
I

1
3
, 5
4

3
2

x

(
3

4

)
+

e3

6
I

5
7
, 7
3

4
3

x

(
4

5

)
.

(5.2)

Here q = 8/5, m = 4, T = 1, α = 3/8, β1 = −e/√2, β2 = π/2, β3 =
π/4, β4 = e3/6, η1 = 2/5, η2 = 1/2, η3 = 3/2, η4 = 4/3, γ1 = 3/4, γ2 = 4/3,
γ3 = 1/3, γ4 = 5/7, δ1 = 1/8, δ2 = 3/2, δ3 = 5/4, δ4 = 7/3, ξ1 = 1/2, ξ2 =
2/3, ξ3 = 3/4, ξ4 = 4/5, and f(t, x) = (t2/(1+et))(|x|/(|x|+1))+2t+(5/8).
We choose z(t) = t2/2 and that A∗ ≈ 0.3282054040. Clearly, we have

|f(t, x)− f(t, y)| ≤ t2

2

( |x− y|
0.3282054040 + |x− y|

)
.

Hence, by Theorem 4.2, the boundary value problem 5.2 has a unique
solution on [0, 1].

Example 5.3. Consider the following nonlinear Riemann-Liouville
fractional differential equation with nonlocal Erdélyi-Kober fractional inte-
gral conditions
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⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
D

5
4x(t) =

e−t
2
sin2 3t

5(t+ 4)

( |x(t)|
|x(t)| + 1

)
+

2

3t+ 1
, t ∈ [0, 8],

x(0) = 0,
4

9
x(8) =

π

6
I

5
4
, 2
3

7
9

x

(
3

2

)
+

ln 2√
3
I

4
9
, 3
4

2
3

x (6) +
ln 3√
2
I

7
2
, 3
5

5
2

x

(
7

2

)
.

(5.3)

Here q = 5/4, m = 3, T = 8, α = 4/9, β1 = π/6, β2 = ln 2/
√
3,

β3 = ln 3/
√
2, η1 = 7/9, η2 = 2/3, η3 = 5/2, γ1 = 5/4, γ2 = 4/9, γ3 = 7/2,

δ1 = 2/3, δ2 = 3/4, δ3 = 3/5, ξ1 = 3/2, ξ2 = 6, ξ3 = 7/2, and f(t, x) =

((e−t
2
sin2 3t)/5(t+4))(|x|/(|x|+1))+(2/(3t+1)). Since |f(t, x)−f(t, y)| ≤

(1/20)|x − y|, (H1) is satisfied with L = 1/20. By using Maple program,
we show that

L

(
T q−1

|Λ|Γ(q + 1)

m∑
i=1

|βi|ξqi Γ(γi + (q/ηi) + 1)

Γ(γi + (q/ηi) + δi + 1)

)
≈ 0.5830838955 < 1.

Clearly, we have

|f(t, x)| =
∣∣∣∣∣2e−t

2
sin2 3t

t+ 12

( |x|
|x|+ 1

)
+

2

3t+ 1

∣∣∣∣∣ ≤ 2

t+ 12
+

2

3t+ 1
,

with ϕ(t) = (2/(t+12))+ (2/(3t+1)). Therefore, (H3) is satisfied. Hence,
by Theorem 4.3, the boundary value problem (5.3) has at least one solution
on [0, 8].

Example 5.4. Consider the following nonlinear Riemann-Liouville
fractional differential equation with nonlocal Erdélyi-Kober fractional inte-
gral conditions

D
6
5x(t) =

(
t2 + 1

5(1 + 4π2)

)(
x2(t)

|x(t)|+ 1
+

√|x(t)|
2(1 +

√|x(t)|) + 1

2

)
, t ∈ [0, 2π]

x(0) = 0,
5

3
x(2π) =

e3

π
I

3
7
, 4
3

2
5

x
(π
4

)
−
√
2

3
I

5
2
, 7
3

3
8

x
(π
2

)
− 3√

5
I

√
5

8
, 2
3√

3
4

x

(
11π

10

)
− 2√

7
I

3
π
, 2
9

1
2

x

(
3π

2

)
.

(5.4)

Here q = 6/5, m = 4, T = 2π, α = 5/3, β1 = e3/π, β2 = −√2/3,

β3 = −3/√5, β4 = −2/√7, η1 = 2/5, η2 = 3/8, η3 =
√
3/4, η4 = 1/2,

γ1 = 3/7, γ2 = 5/2, γ3 =
√
5/8, γ4 = 3/π, δ1 = 4/3, δ2 = 7/3, δ3 = 2/3,

δ4 = 2/9, ξ1 = π/4, ξ2 = π/2, ξ3 = 11π/10, ξ4 = 3π/2, and f(t, x) =

((t2+1)/5(1+4π2))((x2/(|x|+1))+(
√|x|/2(1+√|x|))+(1/2)). It is easy

to verify that Ψ ≈ 4.196586197. Clearly, we have



NONLINEAR RIEMANN-LIOUVILLE FRACTIONAL . . . 495

|f(t, x)|=
∣∣∣∣∣
(

t2 + 1

5(1 + 4π2)

)(
x2

|x|+ 1
+

√|x|
2(1 +

√|x|) + 1

2

)∣∣∣∣∣≤ (t2 + 1)(|x|+ 1)

5(1 + 4π2)
.

Choosing p(t) = (t2 + 1)/(5(1 + 4π2)) and Φ(|x|) = |x| + 1, we can show
that

N

Φ(N)‖p‖Ψ > 1,

which implies N > 5.223442990. Hence, by Theorem 4.4, the boundary
value problem (5.4) has at least one solution on [0, 2π].

Example 5.5. Consider the following nonlinear Riemann-Liouville
fractional differential equation with nonlocal Erdélyi-Kober fractional inte-
gral conditions

D
7
6x(t) =

1

2π
sin(π|x(t)|)

( |x|
|x|+ 1

)
+ 1, t ∈ [0, e],

x(0) = 0,

6

13
x(e) =

3

2
I

3
4
, 3
5

3
2

x

(√
3

2

)
+

5

3
I

5√
3
, 8
5

3√
5

x

(
11

5

)
+

7

4
I

3
8
, 6√

7
4
7

x
(e
2

)
.

(5.5)

Here q = 7/6, m = 3, T = e, α = 6/13, β1 = 3/2, β2 = 5/3, β3 = 7/4,

η1 = 3/2, η2 = 3/
√
5, η3 = 4/7, γ1 = 3/4, γ2 = 5/

√
3, γ3 = 3/8, δ1 = 3/5,

δ2 = 8/5, δ3 = 6/
√
7, ξ1 =

√
3/2, ξ2 = 11/5, ξ3 = e/2, and f(t, x) =

(1/2π) sin(π|x|)(|x|/(|x| + 1)) + 1. We can show that Ψ ≈ 1.273554230.
Since

|f(t, x)| =
∣∣∣∣ 12π sin(π|x|)

( |x|
|x|+ 1

)
+ 1

∣∣∣∣ ≤ 1

2
|x|+ 1,

then, (H6) is satisfied with ν = 1/2 and M = 1 such that ν = 1/2 < 1/Ψ ≈
0.7852040977. Hence, by Theorem 4.5, the boundary value problem (5.5)
has at least one solution on [0, e].
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erators and some of their applications. In: Fractional Calculus and Its
Applications, Proc. Internat. Conf. Held in New Haven, Lecture Notes
in Math. 457, Springer, N. York, 1975, 37–79.

[22] S.B. Yakubovich, Yu.F. Luchko, The Hypergeometric Approach to In-
tegral Transforms and Convolutions. Mathematics and its Appl. 287,
Kluwer Acad. Publ., Dordrecht-Boston-London, 1994.

[23] L. Zhang, B. Ahmad, G. Wang, R.P. Agarwal, Nonlinear fractional
integro-differential equations on unbounded domains in a Banach space.
J. Comput. Appl. Math. 249 (2013), 51–56.

1 Nonlinear Dynamic Analysis Research Center
Department of Mathematics, Faculty of Applied Science
King Mongkut’s University of Technology North Bangkok
Bangkok 10800, THAILAND Received: April 05, 2015

e-mails: sansai armzi33@hotmail.com
jessada.t@sci.kmutnb.ac.th Received: January 25, 2016

2 Department of Mathematics, University of Ioannina
451 10 Ioannina, GREECE

3 Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group
Department of Mathematics, Faculty of Science
King Abdulaziz University
P.O. Box 80203, Jeddah 21589, SAUDI ARABIA

e-mail: sntouyas@uoi.gr

Please cite to this paper as published in:
Fract. Calc. Appl. Anal., Vol. 19, No 2 (2016), pp. 480–497,
DOI: 10.1515/fca-2016-0025




