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Abstract

One of the effective methods to find explicit solutions of differential
equations is the method based on the operator representation of solutions.
The essence of this method is to construct a series, whose members are the
relevant iteration operators acting to some classes of sufficiently smooth
functions. This method is widely used in the works of B. Bondarenko for
construction of solutions of differential equations of integer order. In this
paper, the operator method is applied to construct solutions of linear dif-
ferential equations with constant coefficients and with Caputo fractional
derivatives. Then the fundamental solutions are used to obtain the unique
solution of the Cauchy problem, where the initial conditions are given in
terms of the unknown function and its derivatives of integer order. Com-
parison is made with the use of Mikusinski operational calculus for solving
similar problems.
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1. Introduction

The fractional differential equations have achieved in recent years a
considerable interest both in mathematics and in applications. They have
been used in modeling of many physical and chemical processes and in
engineering (see, for example, [1] -[3], [5], [9]-[11], [23], [27],[29]. In its turn,
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mathematical aspects of fractional differential equations and methods of
their solution have been discussed by many authors, including [1],[7],[8],[9],
[15]-[17], [24],[26] and [28].

Let m be a positive integer and m−1 < α ≤ m. The Caputo fractional
derivative of order α is defined, for f a Cm function on its interval of
definition, as (see [24], [17])

Dαf(t) := Im−α dm

dtm
f(t), t > 0,

where

Iβf(t) :=
1

Γ(β)

∫ t

0
(t− τ)β−1f(τ)dτ, t > 0, β > 0,

is the Riemann-Liouville fractional integral of order β.

If β → 0, it is easy to verify that Iβf(t) → f(t) almost everywhere
[28]. Therefore we may define I0f(t) := f(t), which leads for α = m to the
equality

Dmf(t) =
dm

dtm
f(t).

Consider a homogenous linear fractional differential equation

Dαy(t)− a1D
α−1y(t)− ...− am−1D

α−(m−1)y(t)− amy(t) = 0, t > 0 (1.1)

with constant real coefficients aj, j = 1, ...,m and m > 1.
We look for solutions y ∈ Cm([0,∞)).
If m = 1, i.e. 0 < α ≤ 1, then we have the equation Dαy(t)−a1y(t) = 0

and y ∈ C1([0,∞)).
When α = m equation (1.1) coincides with integer order linear differen-

tial equation and in this case the construction of the fundamental solutions
and of the solution of the Cauchy problem with the initial data

y(n)(0) :=
dn

dtn
y(0) = bn, n = 0, 1, ...,m − 1, (1.2)

is well known. This fundamental theory, based on the characteristic equa-
tion

λm − a1λ
m−1 − . . . − am−1λ− am = 0,

can be found in any textbook on differential equations. The main goal of
the present paper is to construct the solution of the Cauchy problem (1.1),
(1.2) and to obtain the fundamental solutions of equation (1.1). For this
purpose we modify and use the technique based on the method of operator
algorithms introduced by B.A. Bondarenko in [4] and then developed by
V.V. Karachik [14] for ordinary differential equations.

There are different methods of solving Cauchy problems for differential
equations of fractional order. A detailed survey of these methods can be
found in [17]. In the paper of M.M. Dzerbashyan and A.B. Nersesyan [8]
it was investigated the Cauchy problem for the special class of differential
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equations of fractional order. To solve this problem the authors reduced it
to an equivalent integral equation. One of the common methods of solving
differential equations of fractional order is the method of integral transfor-
mations. A detailed description of this method can be found in the paper
[15] and books by [17], [24], etc. An effective method for constructing ex-
plicit solutions and solving the Cauchy problem for differential equations
of fractional order is based on the Mikusinski operational calculus. In the
papers of Yu. Luchko et al. [12],[19]-[22] this method has been applied for
solving linear differential equations of fractional order with constant coeffi-
cients and with derivatives of type Riemann-Liouville, Caputo and Hilfer.
After that, this method has been applied for a general equation with the
operator of R. Hilfer [18]. In the paper A. Pskhu [25] it has been formulated
and solved the initial problem for linear ordinary differential equations of
fractional order with Riemann-Liouville derivatives. He reduced the prob-
lem to an integral equation and constructed the explicit solution in terms
of the Wright function. We also note that in papers [6] and [13] the Cauchy
problem for differential equations of fractional order has been studied by
the Adomian decomposition method.

The main idea of the method used in the present paper is based on the
properties of the normed system of functions and consists on the following:

Let us introduce the notations

L1 = Dα, L2 = a1D
α−1 + ...+ am−1D

α−(m−1) + am,

and R+ = (0,+∞). Then equation (1.1) can be written as L1y(t) = L2y(t),
t ∈ R+.

A system of functions {fk(t)}∞k=0 is called to be f -normed with respect
to operator L1 in the domain R+, if the equations L1f0(t) = f(t), and
L1fk(t) = fk−1(t) hold everywhere in R+ (see [14]). In the case f(t) ≡ 0,
the system {fk(t)} is called 0-normed with respect to L1.

Now let the system {fk(t)}∞k=0 be 0-normed with respect to L1 in the
domain R+ satisfying the following two conditions everywhere in R+:

(i) L1L2fk(t) = L2L1fk(t), k = 1, 2, ...
(ii) the series

y(t) =

∞∑
k=0

Lk
2fk(t) (1.3)

converges and allows term-wise application of L1.
Then it is easy to verify that the function defined in (1.3) is a solution

of (1.1). Indeed,

L1y(t) =

∞∑
k=1

Lk
2L1fk(t) =

∞∑
k=1

Lk
2fk−1(t) = L2

∞∑
k=0

Lk
2fk(t) = L2y(t).
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If we consider, instead of a 0-normed system, a f -normed system, then we
may construct solutions of non-homogeneous equations.

We note also that a similar method was used to solve the Cauchy prob-
lem for the equation (Dα,β − λ)Ny(t) = f(t) in [30], where Dα,β is the
generalized Riemann-Liouville fractional derivative introduced by R. Hilfer
(see [12]).

2. Homogenous equations

In this section we consider equation (1.1) and construct a 0-normed
system of functions with respect to operator L1. Based on this system of
functions we find the fundamental system of solutions of equation (1.1).

For s = 0, 1, ...,m − 1, we introduce the following system of functions

fs,k(t) =
tαk+s

Γ(αk + s+ 1)
, k = 0, 1, 2, ... (2.1)

First we show that for any s the system {fs,k(t)}∞k=0 is 0-normed with
respect to L1 and, from Section 1, it satisfies conditions (i) and (ii).

Lemma 2.1. For any s = 0, 1, ...,m − 1 the system of functions
{fs,k(t)}∞k=0 is 0-normed with respect to L1 in the domain R+, i.e. for
all t ∈ R+

Dαfs,0(t) = 0, Dαfs,k(t) = fs,k−1(t), k ≥ 1,

P r o o f. Obviously Dαts = 0 for all s = 0, 1, ...,m − 1. Therefore
Dαfs,0(t) = 0 for these s.

Let k ≥ 1. Then by the definition of derivatives Dα one has

Dαtαk+s =
1

Γ(m− α)

∫ t

0
(t− τ)m−α−1 dm

dτm
ταk+sdτ

=
(αk + s) · · · (αk + s− (m− 1))

Γ(m− α)

∫ t

0
(t− τ)m−α−1ταk+s−mdτ

=
(αk + s) · · · (αk + s− (m− 1))

Γ(m− α)

× Γ(m− α)Γ(αk + s+ 1−m)

Γ(αk + s+ 1− α)
tαk+s−α

=
Γ(αk + s+ 1)

Γ(α(k − 1) + s+ 1)
tα(k−1)+s.

Thus

Dαtαk+s =
Γ(αk + s+ 1)

Γ(α(k − 1) + s+ 1)
tα(k−1)+s. (2.2)
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Therefore,

Dαfs,k(t) =
1

Γ(αk + s+ 1)

Γ(αk + s+ 1)

Γ(α(k − 1) + s+ 1)
tα(k−1)+s = fs,k−1(t).

�

Lemma 2.2. For any s = 0, 1, ..,m − 1, k ≥ 1 and all t ∈ R+, it is
satisfied that L1L2fs,k(t) = L2L1fs,k(t), i.e.

DαDα−jfs,k(t) = Dα−jDαfs,k(t), j = 1, ...,m − 1. (2.3)

P r o o f. Since m − 1 − j < α − j ≤ m − j then, by the definition of
the Caputo derivatives, we have

Dα−jtαk+s = Im−j−(α−j) d
m−j

dtm−j
tαk+s = Im−α dm−j

dtm−j
tαk+s

=
1

Γ(m− α)

∫ t

0
(t− τ)m−α−1 dm−j

dτm−j
ταk+sdτ

=
(αk + s) · · · (αk + s− (m− j − 1))

Γ(m− α)

∫ t

0
(t− τ)m−α−1ταk+s−(m−j)dτ

=
(αk + s) · · · (αk + s− (m− j − 1))

Γ(m− α)

Γ(m− α)Γ(αk + s+ 1− (m− j))

Γ(αk + s+ 1− (α − j))

× tαk+s−(α−j) =
Γ(αk + s+ 1)

Γ(αk + s+ 1− (α− j))
tαk+s−(α−j).

Thus

Dα−jfs,k(t) =
1

Γ(αk + s+ 1− (α− j))
tαk+s−(α−j).

Therefore

DαDα−jfs,k(t) =
1

Γ(αk + s+ 1− (α− j))

1

Γ(m− α)

×
∫ t

0
(t− τ)m−α−1 dm

dτm
ταk+s−(α−j)dτ.

If the number αk + s − (α − j) ≤ m− 1 and it is integer, i.e. if k = 1
and s ∈ {0, 1, ...,m − j − 1}, then

DαDα−jfs,k(t) = 0. (2.4)

Otherwise one has

DαDα−jfs,k(t) =
(αk + s− (α − j)) · · · (αk + s− (α− j)− (m− 1))

Γ(αk + s+ 1− (α− j))Γ(m− α)

×
∫ t

0
(t− τ)m−α−1ταk+s−(α−j)−mdτ,
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and the integral can be written as

Γ(m− α)Γ(αk + s+ 1− (α− j)−m)

Γ(αk + s+ 1− (α− j)− α)
tαk+s−(α−j)−α.

Therefore, if k ≥ 1 and s /∈ {0, 1, ...,m − j − 1}, then

DαDα−jfs,k(t) =
1

Γ(αk + s+ 1− (α− j)− α)
tαk+s−(α−j)−α. (2.5)

On the other hand, from (2.2) we have

Dα−jDαfs,k(t) =
1

Γ(α(k − 1) + s+ 1)
Dα−jtα(k−1)+s.

Obviously, if k = 1 and s ∈ {0, 1, ...,m − j − 1}, then
Dα−jDαfs,k(t) = 0. (2.6)

Otherwise one has

Dα−jDαfs,k(t) =
1

Γ(α(k − 1) + s+ 1)Γ(m− α)

×
∫ t

0
(t− τ)m−α−1 dm−j

dτm−j
τα(k−1)+sdτ

=
(αk − α+ s) · · · (αk − α+ s− (m− j − 1)

Γ(α(k − 1) + s+ 1)Γ(m− α)

×
∫ t

0
(t− τ)m−α−1ταk−α+s−(m−j)dτ.

The last integral has the form

Γ(m− α)Γ(αk + s+ 1− α− (m− j))

Γ(αk + s+ 1− (α− j)− α)
tαk+s−(α−j)−α.

Therefore, if k ≥ 1 and s /∈ {0, 1, ...,m − j − 1}, then
Dα−jDαfs,k(t) =

1

Γ(αk + s+ 1− (α− j)− α)
tαk+s−(α−j)−α. (2.7)

Comparing equalities (2.4) with (2.6) and (2.5) with (2.7) we deduce the
equality (2.3). �

According to equation (1.3) we introduce the following m functions

ys(t) =

∞∑
k=0

Lk
2fs,k(t)

=

∞∑
k=0

(a1D
α−1 + · · ·+ am−1D

α−(m−1) + am)k
tαk+s

Γ(αk + s+ 1)
, t ≥ 0, (2.8)

where s = 0, 1, ...,m − 1.
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Note that it is well known (see [25], page 12), that for the Gamma
function the asymptotic estimation

Γ(x+ 1) =
√
2πx

(x
e

)x{
1 +O

(
1

x

)}
,

holds as x→∞.

Theorem 2.1. Series (2.8) converges uniformly on any segment [0, T ].
Moreover it can be differentiated term-wise for all t ∈ R+ and at any natural
order, and operator L1 may be applied term-wise.

P r o o f. If m = 1, i.e. 0 < α ≤ 1, then the statement of theorem
follows from the asymptotic estimation of the Gamma function.

Let us assumem>1 and denote ε = α−(m−1) and a = max{|a1|, ..., |am|}.
Then it is not hard to verify that∣∣(a1Dm−2+ε + · · ·+ am−1D

ε + am)k
tαk+s

Γ(αk + s+ 1)

∣∣
≤ ak(Dm−2+ε + · · ·+Dε + 1)k

tαk+s

Γ(αk + s+ 1)
.

Note that
∑

i1+···+im=k

(
k

i1...im

)
= mk.

Therefore

(Dm−2+ε + · · ·+Dε + 1)kfs,k(t)

=
∑

i1+···+im=k

(
k

i1...im

)
D(m−2+ε)i1 · · ·Dεim−1fs,k(t)

=

(m−2)k∑
n=0

∑
(m−2)i1+(m−3)i2···+im−2=n

(
k

i1...im

)
DnDε(i1+···+im−1)fs,k(t)

≤ mk

(m−2)k∑
n=0

Dn
k∑

j=0

Dεjfs,k(t),

since the corresponding derivatives of fs,k(t) are positive and

Dj+εfs,k(t) = DjDεfs,k(t).

Let (D − 1)gs,k(t) = fs,k(t) and (Dε − 1)hs,k(t) = gs,k(t), i.e.

gs,k(t) =

∫ t

0
eτfs,k(t− τ)dτ

and

hs,k(t) =

∫ t

0
τ ε−1Eε,ε(τ

ε)gs,k(t− τ)dτ,
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where

Eε,μ(z) =

∞∑
k=0

zk

Γ(εk + μ)
(2.9)

is the Mittag-Leffler function (see [28]).

Then fs,k(t) = (D − 1)(Dε − 1)hs,k(t), and therefore

mk

(m−2)k∑
n=0

Dn
k∑

j=0

Dεjfs,k(t) = mk(D(m−2)k+1 − 1)(Dε(k+1) − 1)hs,k(t)

= mk(D(α−1)k+1+ε −D(m−2)k+1

= −Dε(k+1) + 1)hs,k(t).

After some routine calculation as below, we have the following estimate
for hs,k(t):

hs,k(t) ≤ Eε,ε(t
ε)et

Γ(αk + s+ 1)

∫ t

0
τ ε−1

∫ t−τ

0
(t− τ − p)αk+sdpdτ

=
Eε,ε(τ

ε)et

Γ(αk + s+ 2)

∫ t

0
τ ε−1(t− τ)αk+s+1dτ

=
Eε,ε(τ

ε)et

Γ(αk + s+ 2)

Γ(ε)Γ(αk + s+ 2)

Γ(αk + s+ 2 + ε)
tαk+s+1+ε

=
G(t)tαk+s+1+ε

Γ(αk + s+ 2 + ε)
,

where G(t) := Γ(ε)Eε,ε(τ
ε)et is a bounded function in any segment [0, T ].

Let N − 1 < β ≤ N , and 0 < N ≤ (m− 1)k + 2 be an integer number.
Let the integer k0 be such that k0 ε > 1. From here on, in this section it is
assumed that k ≥ k0.

We apply the operator Dβ to the function hs,k(t). First, since all the
corresponding derivatives of fs,k(t), up to order N−1, are zero at the origin,
we conclude that

dN

dtN
gs,k(t) =

∫ t

0
eτ

dN

dtN
fs,k(t− τ)dτ.

In the same way one has that

dN

dtN
hs,k(t) =

∫ t

0
τ ε−1Eε,ε(τ

ε)
dN

dtN
gs,k(t− τ)dτ.

Therefore,

Dβhs,k(t) = IN−β dN

dtN
hs,k(t) =

1

Γ(N − β)

∫ t

0
(t− x)N−β−1 dN

dxN
hs,k(x)dx
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=

∫ t

0
τ ε−1Eε,ε(τ

ε)
[ 1

Γ(N − β)

∫ t

τ
(t− x)N−β−1 dN

dxN
gs,k(x− τ)dx

]
dτ

=

∫ t

0
τ ε−1Eε,ε(τ

ε)
[ 1

Γ(N − β)

∫ t−τ

0
(t− τ − p)N−β−1 dN

dpN
gs,k(p)dp

]
dτ.

Thus

Dβhs,k(t) =

∫ t

0
τ ε−1Eε,ε(τ

ε)(Dβgs,k)(t− τ)dτ,

or, by using the same argument,

Dβhs,k(t) =

∫ t

0
τ ε−1Eε,ε(τ

ε)

∫ t−τ

0
ep(Dβfs,k)(t− τ − p)dpdτ.

To prove this result, we estimate Dβhs,k(t). First, by direct calculation
(see proof of Lemma 2.1), one has

Dβfs,k(t) = Dβ tαk+s

Γ(αk + s+ 1)
=

tαk+s−β

Γ(αk + s+ 1− β)
.

Therefore, in a similar manner as we estimated hs,k(t), we have

Dβhs,k(t) ≤ G(t)tαk+s+1+ε−β

Γ(αk + s+ 2 + ε− β)
.

Making use of this estimate and the one of hs,k(t), we easily obtain∣∣(D(α−1)k+1+ε−D(m−2)k+1−Dε(k+1)+1)hs,k(t)
∣∣≤(D(α−1)k+1+ε+1)hs,k(t)

≤ G(t)tk+s

Γ(k + s+ 1)
+

G(t)tαk+s+1+ε

Γ(αk + s+ 2 + ε)
.

Therefore the asymptotic estimation of the Gamma function implies:
∞∑

k=k0

∣∣(a1Dm−2+ε + · · ·+ am−1D
ε + am)k

tαk+s

Γ(αk + s+ 1)

∣∣
≤ G(t)

⎧⎨⎩ts
∞∑

k=k0

(amt)k

Γ(k + s+ 1)
+ ts+1+ε

∞∑
k=k0

(am)ktαk

Γ(αk + s+ 2 + ε)

⎫⎬⎭ <∞.

Thus series (2.8) converges uniformly on any segment [0, T ].

Moreover, if t ∈ R+, then it is not hard to verify that
∞∑

k=k0+n

∣∣ dn
dtn

[(
a1D

m−2+ε + · · ·+ am−1D
ε + am

)k tαk+s

Γ(αk + s+ 1)

]∣∣
≤ G(t)

dn

dtn

⎧⎨⎩ts
∞∑

k=k0+n

(amt)k

Γ(k + s+ 1)
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+ ts+1+ε
∞∑

k=k0+n

(am)ktαk

Γ(αk + s+ 2 + ε)

⎫⎬⎭ <∞,

which implies the convergence of the series on the left hand side.
Hence, when t ∈ R+ one may differentiate series (2.8) term-wise at any

natural order.

Similarly, for any t ∈ R+ one obtains
∞∑

k=k0+m

∣∣L1

(
a1D

m−2+ε + · · ·+ am−1D
ε + am

)k tαk+s

Γ(αk + s+ 1)

∣∣
≤ G(t)

⎧⎨⎩
∞∑

k=k0+m

ts−α(amt)k

Γ(k + s− α+ 1)
+

∞∑
k=k0+m

ts−α+1+ε(am)ktαk

Γ(αk + s− α+ 2 + ε)

⎫⎬⎭ <∞,

i.e. the series on the left hand side converges. Hence, when t ∈ R+ we can
apply operator L1 term-wise to (2.8) and the result holds. �

As consequence of the previous assertions, we conclude that for each
value of s = 0, 1, ...,m − 1 functions (2.8) are solutions of equation (1.1).

Theorem 2.2. The functions ys(t), s = 0, 1, ...,m−1 are linearly
independent on any segment [t1, t2] ⊂ R+.

P r o o f. The result holds by contradiction. Let us assume that func-
tions ys(t), s = 0, 1, ...,m−1 are not linearly independent on some segment
[t1, t2] ⊂ R+, i.e. there exist constants Cs, not all of them are equal to zero,
such that

ϕ(t) :=

m−1∑
s=0

Csys(t) = 0, t ∈ [t1, t2].

According to Theorem 2.1, the functions ys(t) are power series, converging
in R+. Hence the function ϕ(t) is a power series too, converging in R+.
Therefore ϕ(t) = 0, t ∈ [t1, t2] implies the equality ϕ(t) = 0, t ∈ R+ and,
in particular, ϕ(0) = 0.

Now it is easy to verify that 0 =
∑m−1

s=0 Csys(0) = C0. Hence,
m−1∑
s=1

Csys(t) = 0, t ∈ R+.

If we differentiate this equality, taking into account that y
(1)
s (t) =

ys−1(t), we have that
m−1∑
s=1

Csys−1(t) =
m−2∑
s=0

Cs+1ys(t) = 0.
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Using the same arguments as above, we deduce that Cs = 0 for all s =
0, 1, ...,m−1. Thus we arrive to a contradiction and we deduce the linear
independence of functions ys(t), s = 0, 1, ...,m−1, on [t1, t2]. �

Remark 2.1. The function ys(t) can be written in terms of multivari-
ate Mittag-Leffler function (see, for example, [20]):

E(b1,b2,...,bm),b(z1, z2, . . . , zm) :=

∞∑
k=0

∑
i1+···+im=k

Ck,i1...im

∏m
j=1 z

ij
j

Γ(b+
∑m

j=1 bj ij)
,

(2.10)
where Ck,i1...im = k!

i1!···im−1!im! , i1, i2, . . . , im ≥ 0, are the multinomial coeffi-

cients.
Indeed, let αj = α− j, j = 1, 2, ...,m − 1. Then

Lk
2fs,k(t) = (a1D

α1 + a2D
α2 + ...+ am−1D

αm−1 + am)kfs,k(t)

=
∑

i1+...+im−1+im=k

Ck,i1...ima
i1
1 ...a

im−1

m−1a
im
m

Dα1i1...Dαm−1im−1tα(i1+...+im−1+im)+s

Γ(α(i1 + ...+ im−1 + im) + s+ 1)

=
∑

i1+...+im−1+im=k

Ck,i1...ima
i1
1 ...a

im−1

m−1a
im
m

t(α−α1)i1 ...t(α−αm−1)im−1tαim

Γ
(
s+ 1 +

∑m−1
j=1 (α− αj)ij + αim

) .

Further, since αj = α− j, j = 1, 2, ...,m − 1, then

ys(t) = ts×
∞∑
k=0

∑
i1+...+im−1+im=k

Ck,i1...ima
i1
1 ...a

im−1

m−1a
im
m

ti1 ...t(m−1)im−1 tαim

Γ
(
s+ 1 +

∑m−1
j=1 jij + αim

)
= tsE(1,...,m−1,α),s+1(a1t, ..., am−1t

m−1, amtα).

Definition 2.1. The linearly independent functions ys(t), s = 0, 1, ...,
m− 1, form the fundamental system of solutions of equation (1.1).

Example 2.1. By means of Remark 4.1, we have that Theorem 2.1
generalizes [17, Theorem 5.12]. Indeed, let m be a positive integer and
m− 1 < α ≤ m. Suppose that aj = 0, j = 1, 2, ...,m − 1, and am = λ 
= 0.
Then equation (1.1) has the form

Dαy(t)− λy(t) = 0,

and according to Theorem 2.1 the following functions
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ys(t) =
∞∑
k=0

Lk
2

tαk+s

Γ(αk + s+ 1)
=

∞∑
k=0

λk tαk+s

Γ(αk + s+ 1)

= ts
∞∑
k=0

(λtα)k

Γ(αk + s+ 1)
= tsEα,s+1(λt

α), s = 0, 1, ...,m − 1, (2.11)

form the fundamental system of solutions, where Eα,s+1(λt
α) is the Mittag-

Leffler function (2.9).

3. The fundamental matrix and the Cauchy problem

In this section we consider the Cauchy problem (1.1), (1.2) and find its
solution. Note that existence and uniqueness of solutions of the Cauchy
problem, even for more general equations than (1.1), were proved by many
authors (see, for example, [20]).

Let ys(t), s = 0, 1, ...,m − 1, be the fundamental system defined in
(2.11).

Definition 3.1. The following matrix

Y (t) =

⎛⎜⎜⎝
y0(t) y1(t) ... ym−1(t)

y
(1)
0 (t) y

(1)
1 (t) ... y

(1)
m−1(t)

... ... ... ...

y
(m−1)
0 (t) y

(m−1)
1 (t) ... y

(m−1)
m−1 (t)

⎞⎟⎟⎠
is called the fundamental matrix of equation (1.1).

Based on this matrix one can easily find the solution of the Cauchy
problem. Indeed, if y(t) =

∑m−1
s=0 Csys(t) is a solution of (1.1), then

y(n)(t) =
∑m−1

s=0 Csy
(n)
s (t) and therefore one has⎛⎜⎜⎝

y(t)

y(1)(t)
...

y(m−1)(t)

⎞⎟⎟⎠ = Y (t)

⎛⎜⎜⎝
C0

C1

...
Cm−1

⎞⎟⎟⎠ .

Thus, if the vector C = (C0, ..., Cm−1)
T satisfies equation Y (0)C = b,

where b = (b0, ..., bm−1)
T , then y(t) is the solution of the Cauchy problem

(1.1), (1.2). In other words, if we choose C = Y −1(0)b, then the solution
of the Cauchy problem has the form

y(t) = (Y −1(0)b,yF (t)), (3.1)
where yF (t) = (y0(t), ..., ym−1(t)).
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Obviously, in order to ensure the existence of the solution defined in
(3.1) one should verify that detY (0) 
= 0.

Proposition 3.1. detY (0) 
= 0.

P r o o f. The proof will be deduced by contradiction. For this let us
assume that detY (0) = 0. In this case there exists a constant vector C =
(C0, ..., Cm−1)

T , such that not all coordinates Cs are zero and Y (0)C = 0,

where 0 is zero vector. This implies that y(t) =
∑m−1

s=0 Csys(t) is the

solution of equation (1.1) with the initial data y(n)(0) = 0, n = 0, 1, ...,m−
1. But the Cauchy problem has the unique solution and therefore

y(t) = C0y0(t) + C1y1(t) + · · ·+ Cm−1ym−1(t) ≡ 0.

Since not all Cs are zero, previous expression implies linear dependence of
the system ys(t). Thus we have a contradiction, which proves the proposi-
tion. �

Next we show that the maximal number of linearly independent solu-
tions of equation (1.1) is m.

Proposition 3.2. Let x(t), t ≥ 0, be any solution of equation (1.1).
Then x(t) is a linear combination of solutions ys(t), s = 0, ...,m − 1.

P r o o f. Let x(t) be a solution of (1.1) and x(n)(0) = xn, n = 0, 1, ...,
m− 1. Obviously, y(t) = (Y −1(0)x0,yF (t)) is a solution of equation (1.1),
where x0 = (x0, ..., xm−1)

T satisfies the same initial conditions. Since the
Cauchy problem has a unique solution, then x(t) = (Y −1(0)x0,yF (t)). �

Thus, formula (3.1) gives the expression of the solution of the Cauchy
problem (1.1), (1.2).

So, we are interested to find the explicit form of the matrix Y −1(0).
To this end, let p ≥ 0 be any real number. Consider the functions

yp(t) =
∞∑
k=0

(a1D
α−1 + · · ·+ am−1D

α−(m−1) + am)k
tαk+p

Γ(αk + p+ 1)
, t ≥ 0.

(3.2)
Obviously, if p = 0, 1, ...,m − 1, then yp belongs to the set of fundamental
solutions of equation (1.1).

In the sequel we denote y(β)(t) = Dβy(t) for any positive real number
β.
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Theorem 3.1. Let p ≥ 0, n be integer and n < α. Then

y(n)p (t) =

{
yp−n(t), p ≥ n,

a1y
(n−1)
p (t) + ...+ am−1y

(n−1)
p+m−2(t) + amy

(n−1)
p+α−1(t), p+ 1 ≤ n.

P r o o f. If n ≤ p, then

y(n)p (t) =

∞∑
k=0

(a1D
α−1 + · · ·+ am−1D

α−(m−1) + am)k
tαk+p−n

Γ(αk + p+ 1− n)
,

i.e. y
(n)
p (t) = yp−n(t) and the first part of theorem is proved.

If p+ 1 ≤ n < α, then making use of the previous equality, one has

y(n)p (t) = y
(n−p)
0 (t) =

[ ∞∑
k=1

(a1D
α−1 + · · ·+ am)k

tα(k−1)+α−1

Γ(α k)

](n−p−1)

= (a1D
α−1 + · · ·+ am)

[ ∞∑
k=0

(a1D
α−1 + · · ·+ am)k

× tαk+α−1

Γ(αk + (α− 1) + 1)

](n−p−1)

= (a1D
α−1 + · · ·+ am)y

(n−p−1)
α−1 (t)

= (a1D
α−1 + · · ·+ am)y

(n−1)
α−1+p(t)

=

[ ∞∑
k=0

(a1D
α−1+· · ·+am)k

(a1D
α−1+· · ·+am)tαk+α−1+p

Γ(αk + (α− 1) + p+ 1)

](n−1)

= a1y
(n−1)
p (t)+a2y

(n−1)
p+1 (t)+· · ·+am−1y

(n−1)
p+m−2(t)+amy

(n−1)
p+α−1(t).

�

Corollary 3.1. Let n be integer and 1 ≤ n ≤ m− 1. Then

y
(n)
0 (t)− a1y

(n−1)
0 (t)− a2y

(n−1)
1 (t)− ...− am−1y

(n−1)
m−2 (t)− amy

(n−1)
α−1 (t) = 0.

P r o o f. The result holds by taking p = 0 in Theorem 3.1. �

Corollary 3.2. Let n be integer and 1 ≤ n ≤ m− 1. Then

y
(n)
0 (0)− a1y

(n−1)
0 (0) − a2y

(n−2)
0 (0)− ...− an−1y

(1)
0 (0) − an = 0.

P r o o f. Obviously if p > 0, then yp(0) = 0 and y0(0) = 1. Therefore,

if p ≥ n, from Theorem 3.1 we obtain y
(n)
p (0) = δp,n (the Kronecker delta
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function). Using this and first part of Theorem 3.1 we have, from Corollary
3.1,

0 = y
(n)
0 (0)−a1y

(n−1)
0 (0)−a2y

(n−1)
1 (0)− ...−am−1y

(n−1)
m−2 (0)−amy

(n−1)
α−1 (0) =

y
(n)
0 (0) − a1y

(n−1)
0 (0)− a2y

(n−2)
0 (0)− a3y

(n−3)
0 (0) − · · · − an−1y

(1)
0 (0) − an.

�

Now, we are in a position to obtain the expression of the inverse of the
fundamental matrix at t = 0.

Theorem 3.2. The inverse of the fundamental matrix at t = 0 is
given by the following expression

Y −1(0) = A :=

⎛⎜⎜⎜⎜⎝
1 0 0 ... 0
−a1 1 0 ... 0
−a2 −a1 1 ... 0
... ... ... ... ...

−am−1 −am−2 −am−3 ... 1

⎞⎟⎟⎟⎟⎠ .

P r o o f. As it was stated in Theorem 3.1, all above the diagonal ele-

ments of matrix Y (0) are zero, i.e. y
(n)
s (0) = 0 if s > n. Moreover it has

the following form with the diagonal elements y
(s)
s (0) = 1:

Y (0) =

⎛⎜⎜⎜⎜⎜⎝
1 0 0 ... 0

y
(1)
0 (0) 1 0 ... 0

y
(2)
0 (0) y

(1)
0 (0) 1 ... 0

... ... ... ... ...

y
(n−1)
0 (0) y

(n−2)
0 (0) y

(m−3)
0 (0) ... 1

⎞⎟⎟⎟⎟⎟⎠ .

Let us denote by Yi the row of matrix Y (0) with number i and by Aj the
column of matrix A with number j, i.e.

Yi = (y
(i−1)
0 (0), ..., y

(1)
0 (0), 1, 0, ..., 0),

Aj = (0, ..., 0, 1, a1 , ..., am−j)
T .

Then Y (0) ·A = (Yi ·Aj)i,j=1,m.
Note that the last m − i elements of Yi are zero, and the first j − 1

elements of Aj are zero. Therefore, if i = j, then Yi · Aj = 1 and if i < j,
then Yi ·Aj = 0. Finally, if i > j, then

Yi · Aj = 1 · y(i−j)
0 (0)− a1 · y(i−j−1)

0 (0) − ...− 1 · ai−j,

and if we use Corollary 3.2 with n = i − j, then we obtain Yi · Aj = 0.
Thus Yi · Aj = δi,j, which implies that Y (0) ·A is the identity matrix. �
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Example 3.1. Let 3 < α ≤ 4. Consider the Cauchy problem

Dαy(t)− a1D
α−1y(t)− a2D

α−2y(t)− a3D
α−3y(t)− a4y(t) = 0,

y(j)(0) = bj , j = 0, 1, 2, 3.

According to (3.1), the solution of this problem has the form

y(t) = (Y −1(0) · b, yF (t)), (3.3)

where

Y −1(0) =

⎛⎜⎜⎝
1 0 0 0
−a1 1 0 0
−a2 −a1 1 0
−a3 −a2 −a1 1

⎞⎟⎟⎠ ,

b =

⎛⎜⎜⎝
b0
b1
b2
b3

⎞⎟⎟⎠ , yF (t) =
(
y0 y1 y2 y3

)
,

and

ys(t) =
∞∑
k=0

(a1D
α−1+a2D

α−2+a3D
α−3+a4)

k tαk+s

Γ(αk + s+ 1)
, s = 0, 1, 2, 3.

The initial conditions give us

y(t) = b0y0(t) + (b1 − a1b0)y1(t)

+ (b2 − a2b0 − a1b1)y2(t) + (b3 − a3b0 − a2b1 − a1b2)y3(t).

In particular, if a1 = a2 = a3 = 0, a4 
= 0 and b0 = 1, b1 = b2 = b3 = 0,
then the solution follows the expression

y(t) = b0 y0(t) = b0

∞∑
k=0

ak4
tαk

Γ(αk + 1)
= b0 Eα,1(a4t

α).

Next consider the case when a1 
= 0, a2 = a3 = a4 = 0, and b3 = 1, b0 =
b1 = b2 = 0.

In this case one has

y(t) = (b3 − a3b0 − a2b1 − a1b2)y3(t) = y3(t) =
∞∑
k=0

ak1D
(α−1)k tαk+3

Γ(αk + 4)

=

∞∑
k=0

ak1
tαk+3−(α−1)k

Γ(αk + 4− (α− 1)k)
=

∞∑
k=0

ak1
tk+3

(k + 3)!
= a−3

1

∞∑
k=3

ak1
tk

k!

= a−3
1 [ea1t − 1− a1t− a21

t2

2
].
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Thus the solution of the Cauchy problem

Dαy(t)− a1D
α−1y(t) = 0,

y(j)(0) = 0, j = 0, 1, 2, y(3)(0) = 1,

has the form

y(t) = a−3
1 [ea1t − 1− a1t− a21

t2

2
].

Example 3.2. Let m be a positive integer and m − 1 < α ≤ m.
Consider the Cauchy problem

Dαy(t)− λy(t) = 0,

y(j)(0) = bj , j = 0, 1, · · ·,m− 1.

Obviously, for this equation Y −1(0) = E, i.e. the identity matrix and
the fundamental system of solutions was found in Example 2.1. Therefore
according to (3.1) the solution of the Cauchy problem has the form

y(t) =

m−1∑
s=0

bst
sEα,s+1(λt

α),

i.e. we have the known result from [17].

Example 3.3. Consider the Cauchy problem (1.2), (4.1), with coef-
ficients aj = −1, j = 1, 2, ...,m − 1. Then the solution of the problem has
the expression:

y(t) =

m−1∑
s=0

(
s∑

i=0

bs

)
tsE(1,...,m−1,α),s+1(a1t, ..., am−1t

m−1, amtα).

4. Non-homogeneous equations

Let f(t) be an arbitrary continuous function in [0, T ). In the present
section we consider a non-homogeneous equation

Dαy(t)− a1D
α−1y(t)− ...− am−1D

α−(m−1)y(t)− amy(t) = f(t),

t ∈ (0, T ), (4.1)

and the Cauchy problem (1.2),(4.1).
We look for solutions y ∈ Cm([0, T )).
Again, as in the homogenous case, if m = 1, i.e. 0 < α ≤ 1, then we

have equation Dαy(t)− a1y(t) = f(t) and y ∈ C1([0, T )).
If we consider the initial data

y(n)(0) = 0, n = 0, ...,m − 1, (4.2)
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with equation (4.1), then, as it was noted above, this Cauchy problem has
a unique solution. We denote this solution by yf (t). Let ỹ(t) be the unique
solution of problem (1.1), (1.2), which has the form (3.1). Then, because
of the linearity, function yf (t)+ ỹ(t) will be the unique solution of problem
(4.1), (1.2). Thus, to solve the Cauchy problem (4.1), (1.2) it is sufficient
to find yf (t).

Let yα−1(t) be the function defined in (3.2) and L0 :=
d
dtD

α−1. We first
study some properties of yα−1(t).

Lemma 4.1. The function yα−1(t) is the solution of the Cauchy prob-
lem:

(L0 − L2)y(t) = 0, t > 0,

y(j)(0) = 0, j = 0, 1, ...,m − 2, y(α−1)(0) = 1.

P r o o f. Consider the system of functions

fα−1,k(t) =
tαk+α−1

Γ(αk + α)
, k = 0, 1, 2, ...

By a direct calculation, we can verify that Dα−1fα−1,0(t) = 1 and therefore
L0fα−1,0(t) = 0. Hence in the same way as in Section 2, one can show that
this system is 0-normed with respect to L0 and satisfies conditions (i) and
(ii) from Section 1. Therefore,

yα−1(t) =

∞∑
k=0

Lk
2fα−1,k(t)

is a solution of equation (L0 − L2)y(t) = 0, t > 0. Now it is not difficult to
show that yα−1(t) satisfies the Cauchy conditions. �

Theorem 4.1. The unique solution of the Cauchy problem (4.1), (4.2)
has the form

yf (t) =

∫ t

0
f(τ)yα−1(t− τ)dτ. (4.3)

P r o o f. Since f(t) is a continuous function in [0, T ), using the Cauchy
conditions for yα−1(t) one obtains

dj

dtj
yf (t) =

∫ t

0
f(τ)

dj

dtj
yα−1(t− τ)dτ, j = 1, ...,m − 1, t ∈ [0, T ).

Therefore yf (t) satisfies the Cauchy conditions (4.2). On the other hand
(see the proof of Theorem 2.1)
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Dα−jyf (t) =

∫ t

0
f(τ)(Dα−jyα−1)(t− τ)dτ, j = 1, ...,m − 1, t ∈ [0, T ).

(4.4)

Function F (t) := dm−1

dtm−1 yf (t) is absolutely continuous in [0, T ) and F (0) = 0.
Therefore (see [28], p.40)

Im−α d

dt
F (t) =

d

dt
Im−αF (t).

Making use of this equality, we apply the operator d
dt to (4.4) with j = 1.

Since Dα−1yα−1(0) = 1, we deduce

L1yf (t) = Dαyf (t) = f(t) +

∫ t

0
f(τ)(L0yα−1)(t− τ)dτ.

Hence, due to Lemma 4.1, we conclude that

(L1 − L2)yf (t) = f(t) +

∫ t

0
f(τ)((L0 − L2)yα−1)(t− τ)dτ = f(t).

�

Remark 4.1. As in the case of function ys(t), the solution of the
non-homogeneous equation can be written in terms of multivariate Mittag-
Leffler function. Indeed,

yα−1(t) =

∞∑
k=0

Lk
2fα−1,k(t) =

∑
i1+...+im−1+im=k

Ck,i1...ima
i1
1 ...a

im−1

m−1a
im
m

tα−1ti1 ...t(m−1)im−1 tαim

Γ (s+1+i1+...+(m− 1)im−1+αim)

= tα−1E(1,...,m−1,α),s+1(a1t, ..., am−1t
m−1, amtα).

Therefore

yf (t) =

∫ t

0
(t− τ)α−1

×E(1,...,m−1,α),s+1

(
a1(t− τ), ..., am−1(t− τ)m−1, am(t− τ)α

)
f(τ)dτ.

Now, let us see that if f(t) is a real analytic function in (0, T ), i.e.

f(t) =

∞∑
n=0

f (n)(0)
tn

n!
, t ∈ (0, T ), (4.5)

then function yf (t) has a particularly simple form.

Lemma 4.2. If f(t) = tn/n!, for n a non-negative integer, then yf (t) =
yα+n(t).
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P r o o f. Consider the system of functions

fα+n,k(t) =
tαk+α+n

Γ(αk + α+ n+ 1)
, k = 0, 1, 2, ...

By a direct calculation, we can verify that L1fα+n,0(t) = f(t). Therefore in
the same way as in Section 2, one can show that this system is f -normed
with respect to L1 and, from Section 1, it satisfies conditions (i) and (ii).
Hence

yα+n(t) =

∞∑
k=0

Lk
2fα+n,k(t)

is a solution of equation (L1 − L2)y(t) = f(t), t ∈ (0, T ).

Obviously yα+n(t) satisfies the Cauchy conditions (4.2). �

Example 4.1. Let m be a positive integer and m − 1 < α ≤ m.
Consider the Cauchy problem

Dαy(t)− y(t) =
tn

n!
,

y(j)(0) = 0, j = 0, 1, ...,m − 1.

According to Lemma 4.2 the solution of this problem has the form

yf (t) = yα+n(t) =
∞∑
k=0

tαk+α+n

Γ(αk + α+ n)
= tα+nEα,α+n(t

α).

The following statement is an easy corollary of Lemma 4.2.

Theorem 4.2. Let f(t) be a real analytic function in (0, T ), i.e. f(t)
has the form (4.5). Then

yf (t) =

∞∑
n=0

f (n)(0)yα+n(t).

Remark 4.2. Since

yα+n(t) =

∫ t

0

(t− τ)n

n!
yα−1(τ)dτ,

then it is satisfied that

yf (t) =

∞∑
n=0

f (n)(0)yα+n(t)

=

∫ t

0

∞∑
n=0

f (n)(0)
(t− τ)n

n!
yα−1(τ)dτ =

∫ t

0
f(τ)yα−1(t− τ)dτ,

i.e. yf (t) follows the form (4.3).



OPERATOR METHOD FOR CONSTRUCTION OF . . . 249

5. Conclusion

Some 30 years ago a mathematician from Uzbekistan, B.A. Bondarenko,
introduced the Operator Algorithms method to solve partial differential
equations (see [4]). Recently, in 2012, V.V. Karachik [14] adopted this
method to solve ordinary differential equations and the authors of [30] used
the same method for solving some fractional differential equations.

The main purpose of this paper is to show that by using the Bondarenko
method one can construct the fundamental solutions of more general frac-
tional differential equations (1.1) (in fact, we may apply this method for the
general linear differential equation with constant coefficients and the Ca-
puto derivatives considered in [20]). As it was shown in Introduction, this
method is very simple, a solution of the equation has the form (1.3), and
to use this method, unlike to other methods, we do not need to introduce
and explore many new notions (for example, in the modified Mikusinski
method, see [20] and [24], there are introduced new spaces Cα and with the
operations of the Laplace convolution it is obtained a commutative ring,
then this ring is extended to the quotient field). We also note that in the
Bondarenko method the solution of the Cauchy problem has a particularly
simple form (see formula (3.1) and Theorem 3.2).

Acknowledgement

This work has been partially supported by the Ministry of Higher and
Secondary Special Education of Uzbekistan under Research Grant F4-FA-
F010, FEDER and by Ministerio de Ciencia y Tecnoloǵıa, Spain, and
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