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Abstract

We first study the existence results and properties of the solution set of a
control system described by fractional differential equations with nonconvex
control constraint. Then a problem of minimizing an integral functional
over the solution set of the control system is considered. Along with the
original minimizing problem, we also consider the problem of minimizing
the integral functional whose integrand is the bipolar (with respect to the
control variable) of the original integrand over the solution set of the same
system but with the convexified control constraint. We prove that the
relaxed problem has an optimal solution and obtain some relationships
between these two minimizing problems. Finally, an example is given to
illustrate the results.
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1. Introduction

Fractional calculus and differential equations have proved to be valuable
tools in the modeling of many phenomena in engineering and sciences such
as physics, mechanics, chemistry, economics and biology, etc., [4, 26]. As a
consequence, there was an intensive development of the theory of differential
equations of fractional order. One can see the monographs of Kilbas et al.
[16] and Miller et al. [25], the papers [15, 5, 1, 7, 19, 17, 21, 35, 37] and the
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references therein. For control theory of fractional differential systems, we
can refer to [20, 2, 28, 11, 3, 8, 39, 38, 36, 18] and the references therein.

In the article [6] dating back to 1930, Bogolyubov proved the following

Theorem ([6, 30]). Let T = [0, 1], f : T×R
n×R

n → R be a continuous
function. Then for any function x ∈ W∞,1(T,R

n) there is a sequence of
functions xk ∈ C1(T,Rn), k ≥ 1, such that xk(0) = x(0), xk(1) = x(1),
xk → x uniformly on T as k →∞ and, moreover,

lim inf
k→∞

∫
T
f(t, xk(t), ẋk(t))dt ≤

∫
T
f∗∗(t, x(t), ẋ(t))dt.

Here f∗∗(t, x, u) is the bipolar (second conjugate) of the function f with re-
spect to the last argument and W∞,1(T,R

n) is the space of absolutely contin-
uous functions from T to R

n whose derivatives are elements of L∞(T,Rn).

Since then this theorem has been extended in several directions by many
authors including Macshane [22], Ekeland and Temam [12]. Among more
recent generalizations are the works by Suslov [27], De Blasi, Pianigiani
and Tolstonogov [9], Tolstonogov [30, 31], Timoshin and Tolstonogov [29].

In this paper we give an analogue of Bogolyubov’s theorem with con-
straints induced by a fractional control system.

Let X = R
n, Y = R

m and R = (−∞,+∞], J = [0, b] (b > 0 a real
number) with Lebesgue measure μ and σ-algebra Σ of μ-measurable subsets
of J . For a function l : J ×X × Y → R, we consider problem (P):

I(x, u) =

∫
J
l(t, x(t), u(t))dt → inf (P)

on the solution set of a control system described by fractional differential
equations of the following form{

CDαx(t) = f(t, x(t)) +B(t)u(t), a.e. t ∈ J, 0 < α < 1,
x(0) = x0,

(1.1)

with the mixed nonconvex constraint

u(t) ∈ U(t, x(t)) a.e. on J. (1.2)

Here CDα is the Caputo fractional derivative of order α, f : J × X → X
is a nonlinear function, B : J → L(Y,X) (the space of continuous linear
operators acting from Y to X), U : J ×X → 2Y is a multivalued map with
closed values. The space Y models the control space.

Let lU : J ×X × Y → R be defined by

lU (t, x, u) =

{
l(t, x, u), u ∈ U(t, x),
+∞, u /∈ U(t, x),

and l∗∗U (t, x, u) be the bipolar of the function u→ lU (t, x, u) [12].
Along with problem (P), we also consider its convex relaxation, i.e. the

following problem (RP):
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I∗∗(x, u) =
∫
J
l∗∗U (t, x(t), u(t))dt → min (RP)

on the solution set of control system (1.1) with the convexified control
constraint

u(t) ∈ coU(t, x(t)) a.e. on J. (1.3)

Here, co stands for the closed convex hull of a set.

Let us define what we mean by a solution of control system (1.1), (1.2)
in this paper.

Definition 1.1 (cf. [5]). A pair of functions (x, u), x ∈ C(J,X),
u ∈ L1(J, Y ) is a solution of control system (1.1), (1.2), if x(0) = x0 and
u(t) ∈ U(t, x(t)) for a.e. t ∈ J , such that

x(t) = x0 +
1

Γ(α)

∫ t

0
(t− s)α−1

(
f(s, x(s)) +B(s)u(s)

)
ds. (1.4)

A solution of control system (1.1), (1.3) is defined similarly. We de-
note by RU , T rU (RcoU , T rcoU ) the sets of all solutions, all admissible
trajectories of control system (1.1), (1.2) (control system (1.1), (1.3)).

The main results (see Theorems 4.1 and 4.2 in Section 4) obtained
in this paper are that: problem (RP) has at least one solution and for
any solution (x∗, u∗) ∈ RcoU of problem (RP), there exists a minimizing
sequence (xn, un) ∈ RU , n ≥ 1, of problem (P) such that

xn → x∗ in C(J,X),∫
J
l(t, xn(t), un(t))dt→

∫
J
l∗∗U (t, x∗(t), u∗(t))dt.

This property is usually called the relaxation ([12]) and the above two rela-
tions are an analogue of Bogolyubov’s theorem with constraints generated
by the solution sets of control systems (1.1), (1.2) and (1.1), (1.3). There
are many papers dealing with the verification of the relaxation property for
various classes of control systems, see, for instance, [9, 30, 23, 24, 32] and
the references therein.

The rest of the paper is organized as follows: in Section 2 we present
the notations, definitions and the preliminary results to be used in what
follows, and the existence results of the control systems are given in Section
3. In Section 4 we prove our main results, in Section 5 we give an example
to illustrate our results.
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2. Preliminaries

The norm of the space X (or Y ) will be denoted by ‖ · ‖X (or ‖ · ‖Y ).
We denote by C(J,X) the space of all continuous functions from J into X
with the supnorm given by ‖x‖C = supt∈J ‖x(t)‖X for x ∈ C(J,X). For
any Banach space V , the symbol ω-V stands for V equipped with the weak
σ(V, V ∗) topology. The same notation will be used for subsets of V . In all
other cases we assume that V and its subsets are equipped with the strong
(normed) topology.

Let us recall the following definitions from fractional differential theory.
For more details, please see [16, 25].

Definition 2.1. The fractional integral of order α with the lower limit
zero for a function f is defined as

Iαf(t) =
1

Γ(α)

∫ t

0

f(s)

(t− s)1−α
ds, t > 0, α > 0,

provided the right side is point-wise defined on [0,∞), where Γ(·) is the
gamma function.

Definition 2.2. The Riemann-Liouville derivative of order α with
the lower limit zero for a function f is defined as

LDαf(t) =
1

Γ(n− α)

dn

dtn

∫ t

0

f(s)

(t− s)α+1−n
ds, t > 0, n− 1 < α < n.

Definition 2.3. The Caputo derivative of order α with the lower limit
zero for a function f is defined as

CDαf(t) = LDα
(
f(t)−

n−1∑
k=0

tk

k!
f (k)(0)

)
, t > 0, n− 1 < α < n.

Suppose V , Z are two Hausdorff topological spaces and F : V →
2Z\{∅}. We say that F is lower semicontinuous in the sense of Vietoris (l.s.c.
for short) at a point x0 ∈ V , if for any open set W ⊆ Z, F (x0) ∩W 
= ∅,
there is a neighborhood O(x0) of x0 such that F (x) ∩ W 
= ∅ for all
x ∈ O(x0). F is said to be upper semicontinuous in the sense of Vietoris
(u.s.c. for short) at a point x0 ∈ V , if for any open set W ⊆ Z, F (x0) ⊆W ,
there is a neighborhood O(x0) of x0 such that F (x) ⊆W for all x ∈ O(x0).
For the properties of l.s.c and u.s.c, we can see the book [13].

Let (X, d) be a metric space. We recall that the Pompeiu-Hausdorff
distance of the closed subsets A, B ⊆ X is defined by
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h(A,B) = max{sup
a∈A

d(a,B), sup
b∈B

d(b,A)}.

Let (X, d) be a separable metric space. We say that a multivalued
map F : J → Pf (X) (all nonempty closed subsets of X) is measurable if
F−1(E) = {t ∈ J : F (t)∩E 
= ∅} ∈ Σ for every closed set E ⊆ X (cf. [13]).

Besides the standard norm on Lq(J, Y ) (here Y is a separable, reflexive
Banach space), 1 < q <∞, we also consider the so-called weak norm,

‖u(·)‖ω = sup
0≤t1≤t2≤b

∥∥∥ ∫ t2

t1

u(s)ds
∥∥∥
Y
, for u ∈ Lq(J, Y ). (2.1)

The space Lq(J, Y ) furnished with this norm will be denoted by Lq
ω(J, Y ).

The following result establishes a relation between convergence in ω-Lq(J, Y )
and convergence in Lq

ω(J, Y ).

Lemma 2.1 (see [32]). If a sequence {un}n≥1 ⊆ Lq(J, Y ), is bounded
and converges to u in Lq

ω(J, Y ), then it converges to u in ω-Lq(J, Y ).

3. Existence results of the control systems

In this section we deal with the existence results for the control systems.
We assume the following assumptions on the data of our problems:

H(f): the function f : J ×X → X of Carathéodory type is such that

‖f(t, x)‖X ≤ af (t) + cf‖x‖X
with cf ≥ 0 and af ∈ L

1
β (J,R+) (the number β ∈ (0, α)).

H(B): B ∈ L∞(J,L(Y,X)) such that ‖B‖L∞(J,L(Y,X)) = K < +∞.

H(U): the multivalued map U : J ×X → 2Y \{∅} with closed values is
such that:
(1) for all x ∈ X, t→ U(t, x) is measurable;
(2) h(U(t, x), U(t, y)) ≤ ku‖x− y‖X a.e. on J with ku > 0;
(3) for a.e. t ∈ J , sup{‖v‖Y : v ∈ U(t, x)} ≤ au + cu‖x‖X ,
where au > 0 and cu ≥ 0.

H(L): l : J ×X × Y → R is a function such that:
(1) the function t→ l(t, x, u) is measurable;
(2) for a.e. t ∈ J , (x, u)→ l(t, x, u) is continuous;
(3) there exist functions k1, k2, k3 ∈ L1(J,R+) such that

|l(t, x, u)| ≤ k1(t) + k2(t)‖x‖X + k3(t)‖u‖Y
for a.e. t ∈ J , x ∈ X and u ∈ Y .

We begin with a prior estimation of the trajectory of the control sys-
tems.
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Lemma 3.1. Suppose x is an admissible trajectory of control system
(1.1), (1.3), i.e. x ∈ T rcoU , then there is a constant L such that

‖x‖C ≤ L. (3.1)

P r o o f. Let x ∈ T rcoU , from Definition 1.1, there exists a function
u(t) ∈ coU(t, x(t)) for a.e. t ∈ J , such that (1.4) holds. By H(f), H(B) and
H(U)(3), we have

‖x(t)‖X ≤‖x0‖X +
1

Γ(α)

∫ t

0
(t− s)α−1‖f(s, x(s)) +B(s)u(s)‖Xds

≤‖x0‖X +
1

Γ(α)

∫ t

0
(t− s)α−1

(
af (s) +Kau

)
ds

+
1

Γ(α)

∫ t

0
(t− s)α−1

(
cf +Kcu

)‖x(s)‖Xds

≤‖x0‖X +
bα−β

Γ(α)

( 1− β

α− β

)1−β‖af‖
L

1
β (J)

+
Kaub

α

Γ(α+ 1)

+
cf +Kcu
Γ(α)

∫ t

0
(t− s)α−1‖x(s)‖Xds.

From the above inequality, using the well-known singular version Gron-
wall inequality (see Theorem 3.1, [10]), we can deduce that there exists a
constant L > 0 such that ‖x‖C ≤ L. �

Let prL : X → X be the L-radial retraction, i.e.,

prL(x) =

{
x, ‖x‖X ≤ L,

Lx
‖x‖X , ‖x‖X > L.

This map is Lipschitz continuous. We define U1(t, x) = U(t,prL x). Ob-
viously, U1 satisfies H(U)(1) and H(U)(2). Moreover, by the properties of
prL, we have, for a.e. t ∈ J , all x ∈ X, and all v ∈ U1(t, x) the estimates

‖v‖Y ≤ au + cuL, and ‖v‖Y ≤ au + cu‖x‖X .

Hence, Lemma 3.1 is still valid with U(t, x) substituted by U1(t, x). Con-
sequently, we assume without any loss of generality that, for a.e. t ∈ J and
all x ∈ X,

sup{‖v‖Y : v ∈ U(t, x)} ≤ ϕ = au + cuL, with ϕ > 0 (3.2)

and

‖f(t, x)‖X ≤ λ(t) = af (t) + cfL, with λ ∈ L
1
β (J,R+). (3.3)

From H(f) and H(B), for any x ∈ C(J,X) and u ∈ L
1
β (J, Y ), the

function t → f(t, x(t)) + B(t)u(t) is an element of the space L
1
β (J,X).
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Now we consider the operator A : C(J,X)×L
1
β (J, Y )→ L

1
β (J,X) defined

by

A(x, u)(t) = f(t, x(t)) +B(t)u(t). (3.4)

Lemma 3.2. The map (x, u)→ A(x, u) is sequentially continuous from

C(J,X)× ω-L
1
β (J, Y ) into ω-L

1
β (J,X).

P r o o f. Suppose that xn → x in C(J,X) and un → u in ω-L
1
β (J, Y ).

Then from H(f) and H(B), we have the following facts

f(t, xn(t))→ f(t, x(t)) a.e. t ∈ J in X, (3.5)

B(t)un(t)→ B(t)u(t) in ω-L
1
β (J,X). (3.6)

From (3.3), (3.5) and Lebesgue’s theorem on dominated convergence, we
obtain

f(t, xn(t))→ f(t, x(t)) in L
1
β (J,X).

This together with (3.6) implies

A(xn, un)→ A(x, u) in ω-L
1
β (J,X).

The lemma is proved. �

Let ϕ, λ be defined in (3.2) and (3.3), we put

YL = {u ∈ L
1
β (J, Y ) : ‖u(t)‖Y ≤ ϕ a.e. t ∈ J}, (3.7)

XL = {h ∈ L
1
β (J,X) : ‖h(t)‖X ≤ Kϕ+ λ(t) a.e. t ∈ J}. (3.8)

Now we define an operator S : L
1
β (J,X)→ C(J,X) by:

S(h)(t) = x0 +
1

Γ(α)

∫ t

0
(t− s)α−1h(s)ds, h ∈ L

1
β (J,X). (3.9)

The following lemma which concerns with the continuity property of the
operator S is important in the rest of the paper.

Lemma 3.3. The operator S is continuous from ω-XL into C(J,X).

P r o o f. Consider the operator H : L
1
β (J,X)→ C(J,X) defined by

H(h)(t) =
1

Γ(α)

∫ t

0
(t− s)α−1h(s)ds.

We know that H is linear. From simple calculation,

‖H(h)‖C ≤ bα−β

Γ(α)

( 1− β

α− β

)1−β‖h‖
L

1
β (J,X)

, (3.10)
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we get that the operatorH is continuous from L
1
β (J,X) into C(J,X), hence

H is also continuous from ω-L
1
β (J,X) into ω-C(J,X).

Firstly, in view of (3.10), we know that for any bounded subset B of

the space L
1
β (J,X), ‖H(h)(t)‖X is uniformly bounded for any h ∈ B and

each t ∈ J .
Secondly, we show that H is equicontinuous on any bounded subset B

of the space L
1
β (J,X). Assume that ‖h‖

L
1
β (J,X)

≤ R for each h ∈ B. Let

0 ≤ t1 < t2 ≤ b and h ∈ B, we have

‖H(h)(t2)−H(h)(t1)‖X
=
∥∥∥ ∫ t2

0

(t2 − s)α−1

Γ(α)
h(s)ds −

∫ t1

0

(t1 − s)α−1

Γ(α)
h(s)ds

∥∥∥
X

≤
∥∥∥ ∫ t2

t1

(t2 − s)α−1

Γ(α)
h(s)ds

∥∥∥
X
+
∥∥∥ ∫ t1

0

(t2 − s)α−1 − (t1 − s)α−1

Γ(α)
h(s)ds

∥∥∥
X

≤ R

Γ(α)

( 1− β

α− β

)1−β
(t2 − t1)

α−β

+
R

Γ(α)

(∫ t1

0

(
(t1 − s)

α−1
1−β − (t2 − s)

α−1
1−β

)
ds
)1−β

≤ (1 + 21−β)
R

Γ(α)

( 1− β

α− β

)1−β
(t2 − t1)

α−β.

This implies that H is equicontinuous on B. Since X = R
n is finite di-

mensional, it follows from Ascoli-Arzelá theorem that H(B) is relatively
compact in C(J,X).

SinceXL is a metrizable convex compact set of ω-L
1
β (J,X), it suffices to

show that the map h→ S(h) is sequentially continuous. Now let hn ∈ XL,
n ≥ 1, and assume

hn → h in ω-L
1
β (J,X).

We have h ∈ XL,

H(hn)→ H(h) in ω-C(J,X), (3.11)

and there is a subsequence hnk
, k ≥ 1, of the sequence hn, n ≥ 1, such that

H(hnk
)→ z in C(J,X) with some z ∈ C(J,X). (3.12)

From (3.11) and (3.12), we obtain that z = H(h) and

H(hn)→ H(h) in C(J,X).

Now it is obviously that

S(hn) = x0 +H(hn)→ x0 +H(h) = S(h) in C(J,X),
when hn → h in ω-XL. This completes the proof of the lemma. �
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Now we are in a position to present the existence results of control
systems (1.1), (1.2) and (1.1), (1.3).

Theorem 3.1. The set RU is nonempty and the set RcoU is a compact

subset of the space C(J,X)× ω-L
1
β (J, Y ).

P r o o f. Let Λ = S(XL), from Lemma 3.3, we have Λ is a compact
subset of C(J,X). It follows from (3.2), (3.3) and (3.8) that T rU ⊆ T rcoU ⊆
Λ. Let U : C(J,X)→ 2L

1
β (J,Y ) defined by

U(x) = {h : J → Y measurable : h(t) ∈ U(t, x(t)) a.e.}, x ∈ C(J,X).
(3.13)

By the hypotheses H(U)(1) and H(U)(2), we have that, for any continuous
function x : J → X, the map t → U(t, x(t)) is measurable (Proposition
2.7.9 [13]) and has closed values. Therefore it has measurable selections
(Theorem 2.2.1 [13]) and the operator U is well defined. It is clear that the

values of U are closed and decomposable subsets of L
1
β (J, Y ).

We claim that the map x→ U(x) is l.s.c. Let x∗ ∈ C(J,X), h∗ ∈ U(x∗)
and let {xn}n≥1 ⊆ C(J,X) be a sequence converging to x∗. It follows the

Lemma 3.2 in [40] that there is a sequence hn ∈ U(xn), n ≥ 1, such that

‖h∗(t)− hn(t)‖Y ≤ dY (h∗(t), U(t, xn(t))) +
1

n
, a.e. t ∈ J. (3.14)

Since the map y → U(t, y) is h-continuous for a.e. t ∈ J (H(U)(2)), then
for a.e. t ∈ J , the map y → U(t, y) is l.s.c. (Proposition 1.2.66 [13]). Hence
by Proposition 1.2.26 in [13], the function y → dY (h∗(t), U(t, y)) is u.s.c.
for a.e. t ∈ J . Then it follows from (3.14) that, for a.e. t ∈ J ,

lim
n→∞ ‖h∗(t)− hn(t)‖Y ≤ lim sup

n→∞
dY (h∗(t), U(t, xn(t)))

≤dY (h∗(t), U(t, x∗(t))) = 0.

This together with (3.2) implies that hn → h∗ in L
1
β (J, Y ). Therefore the

map x → U(x) is l.s.c. By Proposition 2.2 in [33], there is a continuous

function m : Λ→ L
1
β (J, Y ) such that

m(x) ∈ U(x), for all x ∈ Λ. (3.15)

Consider the map P : L
1
β (J,X)→ L

1
β (J, Y ) defined by P(f) = m(S(f)).

Thanks to Lemma 3.3 and the continuity of m, the map P is continuous

from ω-XL into L
1
β (J, Y ). Then by Lemma 3.2, we deduce that the map

f → A(S(f),P(f)) is continuous from ω-XL into ω-L
1
β (J,X). It follows

from (3.2), (3.3), (3.4) and (3.8) thatA(S(f),P(f)) ∈ XL for every f ∈ XL.
Therefore, the map f → A(S(f),P(f)) is continuous from ω-XL into ω-XL.



BOGOLYUBOV-TYPE THEOREM WITH CONSTRAINTS. . . 103

Since ω-XL is a convex metrizable compact set in ω-L
1
β (J,X), Schauder’s

fixed point theorem implies that this map has a fixed point f∗ ∈ XL, i.e.
f∗ = A(S(f∗),P(f∗)). Let u∗ = P(f∗) and x∗ = S(f∗), then we have
u∗ = m(x∗) and f∗ = A(x∗, u∗). That is to say, we have

x∗(t) = S(f∗)(t) = x0 +
1

Γ(α)

∫ t

0
(t− s)α−1

(
f(s, x∗(s)) +B(s)u∗(s)

)
ds

and

u∗(t) ∈ U(t, x∗(t)) a.e. t ∈ J.

These imply that (x∗, u∗) is a solution of control system (1.1), (1.2). Hence
RU is nonempty.

Since RcoU ⊆ Λ × YL, Λ is compact in C(J,X) and YL is metrizable

convex compact in ω-L
1
β (J, Y ), we know that RcoU is relatively compact in

C(J,X) × ω-L
1
β (J, Y ). Hence to complete the proof of this theorem, it is

sufficient to prove that RcoU is sequentially closed in C(J,X)×ω-L
1
β (J, Y ).

Let {(xn, un)}n≥1 ⊆ RcoU be a sequence converging to (x, u) in C(J,X)×
ω-L

1
β (J, Y ). Denote

gn(t) = f(t, xn(t)) +B(t)un(t),

g(t) = f(t, x(t)) +B(t)u(t).

According to Lemma 3.2, we have gn → g in ω-L
1
β (J,X). Since gn ∈ XL,

g ∈ XL and xn = S(gn), n ≥ 1, Lemma 3.3 implies that

x = S(g).
Hence, to prove that (x, u) ∈ RcoU , we only need to verify that u(t) ∈
coU(t, x(t)) a.e. t ∈ J .

Since un → u in ω-L
1
β (J, Y ), by Mazur’s theorem, we have

u(t) ∈
∞⋂
n=1

co
( ∞⋃
k=n

uk(t)
)
, a.e. t ∈ J. (3.16)

By H(U)(2) and the fact that h(coA, coB) ≤ h(A,B) for sets A,B, the
map x → coU(t, x) is h-continuous a.e. t ∈ J . Then from Proposition
1.2.86 in [13], the map x→ coU(t, x) has property Q a.e. t ∈ J . Therefore
we have

∞⋂
n=1

co
( ∞⋃

k=n

coU(t, xk(t))
)
⊆ coU(t, x(t)), a.e. t ∈ J. (3.17)

By virtue of (3.16) and (3.17), we obtain that u(t) ∈ coU(t, x(t)) a.e. t ∈ J .

This means that RcoU is compact in C(J,X) × ω-L
1
β (J, Y ). The proof is

complete. �
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4. Analogue of Bogolyubov’s theorem

In this section, we shall prove the Bogolyubov’s type theorem. To get
our results, we shall need another assumption on the nonlinear function
f : J × X → X: for a.e. t ∈ J and any x1, x2 ∈ X, there is a function
Lf (t) ∈ L∞(J,R+) such that

‖f(t, x1)− f(t, x2)‖X ≤ Lf (t)‖x1 − x2‖X . (4.1)

Let Ỹ = Y ×R and its elements be denoted as ũ = (u, ξ), u ∈ Y , ξ ∈ R.

We equip Ỹ with the norm ‖ũ‖
˜Y
= max{‖u‖Y , |ξ|}. It is obvious that Ỹ is

a separable reflexive Banach space. From (2.1), we infer that the norm on

space Lq
w(J, Ỹ ) is

‖ũ(·)‖ω = sup
0≤t1≤t2≤b

{
max

(∥∥∥ ∫ t2

t1

u(s)ds
∥∥∥
Y
,
∣∣∣ ∫ t2

t1

ξ(s)ds
∣∣∣)}.

Consider a multivalued map F : J ×X → 2
˜Y defined as

F (t, x) = {(u, ξ) ∈ Ỹ : u ∈ U(t, x), ξ = l(t, x, u)}. (4.2)

Denote by dom l∗∗U (t, x) the effective domain of the function u→ l∗∗U (t, x, u),
i.e.,

dom l∗∗U (t, x) = {u ∈ Y : l∗∗U (t, x, u) < +∞}.

Lemma 4.1. The multivalued map F : J × X → 2
˜Y has bounded,

closed values and satisfies:

(1) the map t→ F (t, x) is measurable for all x ∈ X;
(2) for a.e. t ∈ J , x→ F (t, x) is Hausdorff continuous;
(3) for any (u, ξ) ∈ F (t, x),

‖u‖Y ≤ au + cu‖x‖X , |ξ| ≤ k1(t) + k2(t)‖x‖X + k3(t)(au + cu‖x‖X ).

One can refer to Lemma 3.3 in [30] (or Lemma 3.1 in [32]) for the proof
of this lemma.

Lemma 4.2. For a.e. t ∈ J , we have that:

(1) dom l∗∗U (t, x) = coU(t, x);
(2) for any u ∈ dom l∗∗U (t, x),

l∗∗U (t, x, u) = min{a ∈ R : (u, a) ∈ coF (t, x)}; (4.3)

(3) for any ε > 0, there is a closed set Jε ⊆ J , μ(J\Jε) ≤ ε, such that
the function (t, x, u)→ l∗∗U (t, x, u) is lower semicontinuous on Jε ×X × Y .
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For the proof of this lemma, please see Lemma 3.4 in [30].
Now we are in a position to obtain our main results.

Theorem 4.1. For any (x∗, u∗) ∈ RcoU , there exists a sequence
(xn, un) ∈ RU , n ≥ 1, such that

xn → x∗ in C(J,X), (4.4)

un → u∗ in L
1
β
ω (J, Y ) and ω-L

1
β (J, Y ), (4.5)

lim
n→∞ sup

0≤t1≤t2≤b

∣∣∣ ∫ t2

t1

(
l∗∗U (s, x∗(s), u∗(s))− l(s, xn(s), un(s))

)
ds
∣∣∣ = 0. (4.6)

P r o o f. From Lemma 4.2, we know that the function t→ l∗∗U (t, x∗(t),
u∗(t)) is measurable and the function ũ∗(t) = (u∗(t), l∗∗U (t, x∗(t), u∗(t))) is
a measurable selection of the map t → coF (t, x∗(t)). By Lemma 4.1, we
can apply Theorem 2.2 of [34] and obtain that, for each n ≥ 1, there exists
a measurable selector ṽn(t) of the map t→ F (t, x∗(t)) such that

sup
0≤t1≤t2≤b

∥∥∥∫ t2

t1

(
ũ∗(s)− ṽn(s)

)
ds
∥∥∥
˜Y
≤ 1

n
. (4.7)

By the definition of F (see (4.2)), we have ṽn(t) = (vn(t), l(t, x∗(t), vn(t)))
and vn(t) ∈ U(t, x∗(t)). Then (4.7) implies that

sup
0≤t1≤t2≤b

∥∥∥∫ t2

t1

(
u∗(s)− vn(s)

)
ds
∥∥∥
Y
≤ 1

n
, (4.8)

sup
0≤t1≤t2≤b

∣∣∣ ∫ t2

t1

(
l∗∗U (s, x∗(s), u∗(s))− l(s, x∗(s), vn(s))

)
ds
∣∣∣ ≤ 1

n
. (4.9)

Let us fix an n ≥ 1. From H(U)(2), we infer that, for any x ∈ X, a.e.
t ∈ J , there is a y ∈ U(t, x) such that

‖vn(t)− y‖Y < dY (vn(t), U(t, x)) +
1

n
≤ ku‖x∗(t)− x‖X +

1

n
. (4.10)

Now we define two auxiliary multivalued maps Vn, Un : J ×X → 2Y as:

Vn(t, x) = {y ∈ Y : y satisfies (4.10)}, (4.11)

Un(t, x) = Vn(t, x) ∩ U(t, x). (4.12)

It follows from (4.10) that the maps Vn, Un are well defined for a.e. t ∈ J
and x ∈ X and the values of Vn are open. From H(U)(1), H(U)(2), Scorza-
Dragoni theorem for multivalued maps (Proposition 2.7.16 [13]) and Luzin’s
theorem, we have that, for any ε > 0, there exists a closed set Jε ⊆ J with
μ(J\Jε) ≤ ε, such that the restriction of U(t, x) to Jε×X is continuous and
the restriction of the function vn(t) to Jε is continuous. Then by (4.10) and
(4.11), the graph of the map Vn restricted to Jε×X is open in Jε×X ×Y .
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Therefore Proposition 1.2.47 in [13] implies that the restriction of Un to
Jε × X is Vietoris lower semicontinuous. Then the restriction of the map
Un(t, x) = Un(t, x) (the closure is taken in Y ) to Jε × X is also Vietoris
lower semicontinuous.

Now consider system (1.1) with the control constraints

u(t) ∈ Un(t, x(t)) a.e. on t ∈ J. (4.13)

From Remark 4.1 in [30], we have that the map U defined by (3.13) is also
well defined and l.s.c. when U(t, x(t)) there was replaced by Un(t, x(t)).
Then repeating the proof of Theorem 3.1, we get that there exists a solution
(xn, un) of control system (1.1), (4.13). According to the definition of Un,
it is clear that Un(t, x) ⊆ U(t, x). Hence we have (xn, un) ∈ RU and

‖vn(t)− un(t)‖Y ≤ ku‖x∗(t)− xn(t)‖X +
1

n
, a.e. t ∈ J. (4.14)

Since (x∗, u∗) ∈ RcoU , (xn, un) ∈ RU ⊆ RcoU , n ≥ 1, we have

x∗(t) = x0 +
1

Γ(α)

∫ t

0
(t− s)α−1

(
f(s, x∗(s)) +B(s)u∗(s)

)
ds, (4.15)

xn(t) = x0 +
1

Γ(α)

∫ t

0
(t− s)α−1

(
f(s, xn(s)) +B(s)un(s)

)
ds. (4.16)

By Theorem 3.1, we can assume without loss of generality that the sequence

(xn, un)→ (x̄, ū) ∈ RcoU in C(J,X)×ω-L
1
β (J, Y ). Subtracting (4.16) from

(4.15), we have

‖x∗(t)− xn(t)‖X
≤ 1

Γ(α)

∫ t

0
(t− s)α−1

∥∥f(s, x∗(s))− f(s, xn(s))
∥∥
X
ds denoted as I1

+
1

Γ(α)

∥∥∥ ∫ t

0
(t− s)α−1

(
B(s)u∗(s)−B(s)un(s)

)
ds
∥∥∥
X
. denoted as I2 (4.17)

From (4.1), we have

I1 ≤
‖Lf‖L∞(J)

Γ(α)

∫ t

0
(t− s)α−1

∥∥x∗(s)− xn(s)
∥∥
X
ds.

And we have

I2 ≤ 1

Γ(α)

∥∥∥ ∫ t

0
(t− s)α−1

(
B(s)u∗(s)−B(s)vn(s)

)
ds
∥∥∥
X

denoted as II1

+
1

Γ(α)

∫ t

0
(t− s)α−1

∥∥B(s)vn(s)−B(s)un(s)
∥∥
X
ds. denoted as II2
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Lemma 2.1 and (4.8) imply that vn → u∗ in ω-L
1
β (J, Y ). Hence B(t)vn(t)→

B(t)u∗(t) in ω-L
1
β (J,X) and from the proof of Lemma 3.3, we obtain

II1 → 0 in C(J,X). (4.18)

By H(B) and (4.14), we get

II2 ≤ K

Γ(α)

∫ t

0
(t− s)α−1

∥∥vn(s)− un(s)
∥∥
Y
ds

≤ K

Γ(α)

∫ t

0
(t− s)α−1

(
ku‖x∗(s)− xn(s)‖X +

1

n

)
ds

≤ Kbα

nαΓ(α)
+

Kku
Γ(α)

∫ t

0
(t− s)α−1

∥∥x∗(s)− xn(s)
∥∥
X
ds.

Combining the estimations of I1, I2, II2 with (4.17), we have

‖x∗(t)− xn(t)‖X
≤ Kku + ‖Lf‖L∞(J)

Γ(α)

∫ t

0
(t− s)α−1

∥∥x∗(s)− xn(s)
∥∥
X
ds

+
Kbα

nαΓ(α)
+

1

Γ(α)

∥∥∥ ∫ t

0
(t− s)α−1

(
B(s)u∗(s)−B(s)vn(s)

)
ds
∥∥∥
X
.

Note (4.18) and let n→∞ in the above inequality, we obtain

‖x∗(t)− x̄(t)‖X ≤
Kku + ‖Lf‖L∞(J)

Γ(α)

∫ t

0
(t− s)α−1

∥∥x∗(s)− x̄(s)
∥∥
X
ds.

Hence xn → x̄ = x∗ in C(J,X). Then by (4.14) and (4.8), we get un → u∗
in L

1
β
ω (J, Y ) and ω-L

1
β (J, Y ), i.e., (4.4), (4.5) hold.

Lemma 3.1 implies that ‖x∗(t)‖X ≤ L, ‖xn(t)‖X ≤ L for n ≥ 1 and all
t ∈ J . From H(U)(3), we have ‖vn(t)‖Y ≤ M , ‖un(t)‖Y ≤ M for n ≥ 1
and a.e. t ∈ J (here M = au + cuL). Hence from H(L)(3), we have

|l(t, xn(t), un(t))| ≤ k1(t) + k2(t)L+ k3(t)M, a.e. t ∈ J, (4.19)

|l(t, x∗(t), vn(t))| ≤ k1(t) + k2(t)L+ k3(t)M, a.e. t ∈ J. (4.20)

Since xn → x∗ in C(J,X), then from (4.14), we have

‖vn(t)− un(t)‖Y → 0, a.e. t ∈ J.

By H(L)(2), for a.e. t ∈ J , the function (x, u) → l(t, x, u) is uniform
continuous on the compact set {x ∈ R

n : ‖x‖X ≤ L} × {u ∈ R
m : ‖u‖Y ≤

au + cuL}. Therefore we obtain

|l(t, x∗(t), vn(t)) − l(t, xn(t), un(t))| → 0, a.e. t ∈ J.

Now according to (4.19) and (4.20), we obtain
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‖l(t, x∗(t), vn(t))− l(t, xn(t), un(t))‖L1(J) → 0, as n→∞. (4.21)

From (4.21) and (4.9), we conclude that (4.6) holds. This is the end of the
proof. �

Finally, we prove the existence results of problem (RP) and give some
relationships between problem (RP) and problem (P).

Theorem 4.2. Problem (RP) has a solution and

min
(x,u)∈RcoU

I∗∗(x, u) = inf
(x,u)∈RU

I(x, u). (4.22)

For any solution (x∗, u∗) of problem (RP), there is a minimizing sequence
(xn, un) ∈ RU , n ≥ 1, of problem (P) such that (4.4), (4.5) and (4.6) hold.

Conversely, if (xn, un) ∈ RU , n ≥ 1, is a minimizing sequence of prob-
lem (P), then there exists a subsequence (xnk

, unk
), k ≥ 1, of the sequence

(xn, un), n ≥ 1, and a solution (x∗, u∗) of problem (RP) such that xnk
→ x∗

in C(J,X), unk
→ u∗ in ω-L

1
β (J, Y ) and (4.6) holds when (xn, un) are re-

placed by (xnk
, unk

).

P r o o f. From H(L)(3), H(U)(3) and the definition of the function lU ,
we have

lU (t, x, u) ≥ ψ(t), for x ∈ BL, u ∈ U(t, x), a.e. t ∈ J,

here ψ(t) = −k1(t) − k2(t)L − k3(t)(au + cuL) ∈ L1(J,R) and BL = {x ∈
X : ‖x‖X ≤ L}. This inequality and the bipolar properties [12] directly
imply

lU (t, x, u) ≥ l∗∗U (t, x, u) ≥ ψ(t), for x ∈ BL, u ∈ Y, a.e. t ∈ J. (4.23)

Define a function q : J ×X × Y → R according to the rule

q(t, x, u) =

{
l∗∗U (t, x, u), x ∈ BL, u ∈ Y,
+∞, otherwise.

(4.24)

Since BL is closed, the function q(t, x, u) satisfies the property of l∗∗U (t, x, u)
established in Lemma 4.2 item (3). Hence there exists an increasing se-
quence of closed sets Jk ⊆ J , k ≥ 1, with μ(J\ ∪∞

k=1 Jk) = 0, such
that (t, x, u) → q(t, x, u) is lower semicontinuous on Jk × X × Y . Since
the set ∪∞

k=1Jk is Borel, the function (t, x, u) → q(t, x, u) is Borel on
∪∞
k=1Jk × X × Y . Now, without loss of generality, we can suppose that

the function q(t, x, u) is Borel and hence is Σ ⊗ BX×Y measurable, since
we can change the values of q on the Borel set (J\ ∪∞

k=1 Jk) ×X × Y , for
example, set q(t, x, u) = 0 when t ∈ J\ ∪∞

k=1 Jk, x ∈ BL and u ∈ Y .
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In virtue of (4.23), (4.24) and the bipolar properties, for a.e. t ∈ J ,
(x, u)→ q(t, x, u) is lower semicontinuous, q(t, x, u) is convex in the variable
u and

q(t, x, u) ≥ ψ(t), for x ∈ X, u ∈ Y.

Therefore, by results obtained in [14], we know that the integral functional

Iq(x, u) =

∫
J
q(t, x(t), u(t))dt

is sequential lower semicontinuous on C(J,X)×ω-L
1
β (J, Y ). From Lemma

3.1 and (4.24), we have for any (x, u) ∈ RcoU , x(t) ∈ BL, t ∈ J and hence∫
J
l∗∗U (t, x(t), u(t))dt =

∫
J
q(t, x(t), u(t))dt. (4.25)

Because the set RcoU is compact in C(J,X)×ω-L
1
β (J, Y ), we deduce from

(4.25) that problem (RP) has a solution (x∗, u∗) ∈ RcoU .
Now let (x∗, u∗) be any solution of problem (RP), it is clear that

I∗∗(x∗, u∗) = min
(x,u)∈RcoU

I∗∗(x, u) ≤ inf
(x,u)∈RU

I(x, u).

Applying Theorem 4.1, we obtain a sequence (xn, un) ∈ RU , n ≥ 1, con-
verging to (x∗, u∗) such that (4.4), (4.5) and (4.6) are true. Therefore we
have

I∗∗(x∗, u∗) = lim
n→∞ I(xn, un) ≥ inf

(x,u)∈RU

I(x, u).

So we have (4.22) and a minimizing sequence (xn, un) ∈ RU , n ≥ 1, of
problem (P) such that (4.4), (4.5) and (4.6) hold.

Next we prove the converse part of the theorem.
Suppose (xn, un) ∈ RU , n ≥ 1, is a minimizing sequence of problem

(P). According to Theorem 3.1, we assume, without loss of generality, that

(xn, un) → (x∗, u∗) ∈ RcoU in C(J,X) × ω-L
1
β (J, Y ). Then by (4.22) we

have

min
(x,u)∈RcoU

I∗∗(x, u) = lim
n→∞

∫
J
l(t, xn(t), un(t))dt. (4.26)

From the definitions of lU and l∗∗U , the sequential lower semicontinuous of
I∗∗ on RcoU , we obtain

min
(x,u)∈RcoU

I∗∗(x, u) ≤
∫
J
l∗∗U (t, x∗(t), u∗(t))dt

≤ lim inf
n→∞

∫
J
l∗∗U (t, xn(t), un(t))dt ≤ lim

n→∞

∫
J
l(t, xn(t), un(t))dt. (4.27)

This and (4.26) imply that (x∗, u∗) ∈ RcoU is a solution of problem (RP).
From H(U)(3), H(L)(3) and Lemma 3.1, we have, for a.e. t ∈ J , n ≥ 1,

|l(t, xn(t), un(t))| ≤ k1(t) + k2(t)L+ k3(t)(au + cuL) ∈ L1(J,R).
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Then there exists a subsequence l(t, xnk
(t), unk

(t)), k ≥ 1, of the sequence
l(t, xn(t), un(t)), n ≥ 1, which converges to a function ρ ∈ L1(J,R) in ω-
L1(J,R). Since

(
unk

(t), l(t, xnk
(t), unk

(t))
) ∈ F (t, xnk

(t)) a.e. t ∈ J and

unk
→ u∗ in ω-L

1
β (J, Y ), Mazur Lemma and item (2) of Lemma 4.1 (cf.

the proof of (3.16), (3.17)) imply that

(u∗(t), ρ(t)) ∈ coF (t, x∗(t)) a.e. t ∈ J.

From item (2) of Lemma 4.2, we get

l∗∗U (t, x∗(t), u∗(t)) ≤ ρ(t) a.e. t ∈ J.

Therefore we have, for all t ∈ J ,∫ t

0
l∗∗U (s, x∗(s), u∗(s))ds ≤

∫ t

0
ρ(s)ds = lim

k→∞

∫ t

0
l(s, xnk

(s), unk
(s))ds.

(4.28)
Recall that we have∫

J
l∗∗U (t, x∗(t), u∗(t))dt = lim

k→∞

∫
J
l(t, xnk

(t), unk
(t))dt.

So it follows from (4.28) that, for a.e. t ∈ J ,

l∗∗U (t, x∗(t), u∗(t)) = ρ(t).

That is to say we have the sequence l(t, xnk
(t), unk

(t))→ l∗∗U (t, x∗(t), u∗(t))
in ω-L1(J,R). From H(L)(3) it follows that |l(t, xnk

(t), unk
(t))| ≤ k1(t) +

k2(t)L+ k3(t)(au + cuL). These facts immediately imply that

lim
k→∞

sup
0≤t1≤t2≤b

∣∣∣ ∫ t2

t1

(
l∗∗U (s, x∗(s), u∗(s))− l(s, xnk

(s), unk
(s))

)
ds
∣∣∣ = 0.

Therefore relation (4.6) holds for the subsequence (xnk
, unk

), k ≥ 1. This
is the end of the proof. �

5. An example

In this section, an example is given to illustrate our abstract results
obtained in the previous section.

Let X = R
2, Y = R, α = 3

4 , β = 1
2 and b = 1. We equip the space

R
d (d ≥ 1) with the norm ‖x‖ = max{|x1|, |x2|, · · · , |xd|}. We consider the

following minimizing problem:∫ 1

0
l(t, x(t), u(t))dt → inf (5.1)

on the solutions (x, u) of the fractional control system

cD
3
4x(t) = f(t, x(t)) +B(t)u(t),

x(0) = x0, u(t) ∈ U(t, x(t)) a.e. t ∈ [0, 1],
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where x0 ∈ R
2 is given and

f(t, x(t)) =

(
3t2 + 5 + sinx1(t) +

|x2(t)|
1+|x2(t)|

x1(t) + arctan x2(t)

)
, B(t) =

(
3t3 + 5
e−t + 5t

)
,

U(t, x(t)) =
[
− 1

(1 + t)2
|x1(t)| − 2

3
,−1

2

]⋃[1
4
, 1 + 5t sin2 x2(t)

]
,

l(t, x(t), u(t)) = ϕ(t) +
∣∣∣√x21(t) + x22(t)− φ(t)

∣∣∣+ cos u(t),

here ϕ, φ ∈ L1([0, 1],R) are given functions.
We make no hypothesis concerning convexity (U(t, x) is not convex

valued and l(t, x, u) is not convex with the third variable u), and as a result
there is in general no solution to problem (5.1). We therefore consider the
corresponding relaxed problem:∫ 1

0
l∗∗U (t, x(t), u(t))dt→ inf (5.2)

on the solutions (x, u) of the fractional control system

cD
3
4x(t) = f(t, x(t)) +B(t)u(t),

x(0) = x0, u(t) ∈ coU(t, x(t)) a.e. t ∈ [0, 1].

The solutions of the relaxed problem thus appear as “generalized solutions”
of the original problem.

Next, we show that the above problems satisfy the assumptions of The-
orems 4.1 and 4.2.

Since we have

‖f(t, x)‖ =
∥∥∥( 3t2 + 5 + sinx1 +

|x2|
1+|x2|

x1 + arctan x2

)∥∥∥ ≤ 3t2 + 5 +
π

2
+ 2‖x‖,

‖f(t, x)− f(t, y)‖ ≤ 2‖x− y‖,
‖B(t)‖L(Y,X) ≤ 8, t ∈ [0, 1],

U(t, x) =
[
− 1

(1 + t)2
|x1| − 2

3
,−1

2

]⋃[1
4
, 1 + 5t sin2 x2

]
,

sup{‖v‖Y : v ∈ U(t, x)} ≤ 6 +
2

3
+ ‖x‖, t ∈ [0, 1],

h(U(t, x), U(t, y)) ≤ max{10t, 1

(1 + t)2
}‖x− y‖

and

|l(t, x, u)| =
∣∣ϕ(t) + |√x21 + x22 − φ(t)|+ cos u

∣∣
≤ |ϕ(t)| + |φ(t)|+ 2‖x‖+ 1 + ‖u‖.
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Therefore we know that H(f), H(B), H(U), H(L) and (4.1) are all satis-
fied and the conclusions of Theorems 4.1 and 4.2 can be applied for these
problems.
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[24] S. Migórski, Existence and relaxation results for nonlinear second order
evolution inclusions. Discuss. Math. Differ. Incl. Control Optim. 15
(1995), 129–148.

[25] K.S. Miller, B. Ross, An Introduction to the Fractional Calculus and
Differential Equations. John Wiley, New York (1993).

[26] J. Sabatier, O.P. Agrawal, J.A.T. Machado (Eds.), Advances in Frac-
tional Calculus: Theoretical Developments and Applications in Physics
and Engineering. Springer, Dordrecht (2007).

[27] S.I. Suslov, The Bogolyubov theorem with a differential inclusion
as constraint. Siberian Math. J. 35, No 4 (1994), 802–814; DOI:
10.1007/BF02106624.

[28] Z.X. Tai, X.C. Wang, Controllability of fractional-order impul-
sive neutral functional infinite delay integrodifferential systems in
Banach spaces. Appl. Math. Lett. 22 (2009), 1760–1765; DOI:
10.1016/j.aml.2009.06.017.

[29] S.A. Timoshin, A.A. Tolstonogov, Bogolyubov-type theorem with con-
straints induced by a control system with hysteresis effect. Nonlinear
Anal. 75 (2012), 5884–5893; DOI: 10.1016/j.na.2012.05.028.

[30] A.A. Tolstonogov, Bogolyubov’s theorem under constraints generated
by a controlled second-order evolution system. Izv. Math. 67, No 5
(2003), 1031–1060; DOI: 10.1070/IM2003v067n05ABEH000456.

[31] A.A. Tolstonogov, Bogolyubov’s theorem under constraints generated
by a lower semicontinuous differential inclusion. Sb. Math. 196, No 2
(2005), 263–285; DOI: 10.1070/SM2005v196n02ABEH000880.

[32] A.A. Tolstonogov, Relaxation in non-convex control problems de-
scribed by first-order evolution equations. Mat. Sb. 190, No 11
(1999), 135–160; Engl. transl., Sb. Math. 190 (1999), 1689–1714; DOI:
10.1070/SM1999v190n11ABEH000441.

[33] A.A. Tolstonogov, D.A. Tolstonogov, Lp-continuous extreme selectors
of multifunctions with decomposable values: Existence theorems. Set-
Valued Anal. 4 (1996), 173–203; DOI: 10.1007/BF00425964.

[34] A.A. Tolstonogov, D.A. Tolstonogov, Lp-continuous extreme selectors
of multifunctions with decomposable values: Relaxation theorems. Set-
Valued Anal. 4 (1996), 237–269; DOI: 10.1007/BF00419367.

[35] G.T. Wang, B. Ahmad, L.H. Zhang, Impulsive anti-periodic bound-
ary value problem for nonlinear differential equations of frac-
tional order. Nonlinear Anal. 74, No 3 (2011), 792–804; DOI:
10.1016/j.na.2010.09.030.
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