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Abstract

We present non-existence results for systems of non-local in space hyper-
bolic equations, for systems of non-local in space parabolic equations, and
for systems of non-local in space hyperbolic equations with linear damping
terms. Our method of proof is based on the test function method with a
help of a convexity inequality recently proved in [2].
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1. Introduction

In this paper we are concerned with nonexistence of global in time
solutions of systems of nonlinear non-local in space hyperbolic equations,
of systems of nonlinear non-local in space parabolic equations, as well of
systems of nonlinear non-local in space hyperbolic equations with linear
posed in the Heisenberg group. This work is an extension to systems of the
recent work [2].

NOTATION. 7 =R2N*Lx (0,7), =R*N*! x (0, 400).

We adopt the notation X < Y to denote the estimate X < CY for
some positive constant C.

(© 2015 Diogenes Co., Sofia
pp. 1336-1349 , DOI: 10.1515/fca-2015-0077 DE GRUYTER



NONEXISTENCE OF SOLUTIONS OF SOME ... 1337

We start with
1.1. The system of non-linear non-local hyperbolic equations

on the Heisenberg group.

82U a m

0 o+ (03 (27) = ol -
0“v o, o '
0 (w307 = Jal?,

where 1 < p,q are real numbers and 0 < o < 2, supplemented with the

initial data

ou
U(%Z/,Tao) :UO(%%T), (x7y77_70) :Ul(iﬁayaT),
t (1.2)

v
U(‘Tvva) 0) = ’Uo(l‘,y,T), ot (%y,ﬂ 0) = Ul('rvva))

for which we consider weak solutions defined as follows.

A couple of locally integrable functions (u,v), u €

DEFINITION 1.1.
P (Qr) is called a weak solution of the system of differ-

L?OC(QT)’ Gl Llac
ential equations (1.1) in RiNH’l subject to the initial data ug,u1,vg,v1 €

L} (R2NF1Y if the equalities
2

0 a
/ (u o (=A% () - rvr%) dndt
or

(1.3)
dp
= [ ) 0+ [ n)e(.0)dy
R2N+1 R2N+1
and
2
/ (U%tf + 0 (—Am)2 (p) — !ulqw) dndt
Q

’ (1.4)

0
= —/ vo af (n,0) dn +/ v1(n)e(n,0) dn
R2N+1 R2N+1

are satisfied for any regular function ¢ belonging to the homogeneous
Sobolev space H®(R*"*) for the variable z and to C?(0,+o00) for the ¢

variable, ¢(n,T) = 0.

For the system (1.1), we will prove the following theorem.
Let m,l e N* 2l <p, 2m < qQ = 2N + 2,
[ G+ wmyan>o,

R2N+1

THEOREM 1.1.

and
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2(¢g+1) 2¢+1 4m+gq 2m+q}

15
pq—1 " pq—2l"pg—2m’ pg—4ml (15)

Q+2<apmin{

Then, system (1.1) does not admit a nontrivial weak solution.

Then, we will consider

1.2. The system of non-linear non-local parabolic equations
on the Heisenberg group

(—Am)? (u) = |vf?,
¢ (1.6)
g (—Ag)? (v) = |ulf,

where 1 < p, q are real numbers and 0 < a < 2, supplemented with initial

data
u(x,y,T, 0) = Uo(l’,y,T), U('Tvva) 0) = Uo($,y,7'). (17)

DEFINITION 1.2. A couple of locally integrable functions (u,v), u €

LL (Q7), ve LY (Qr)is called a weak solution of the system of differential

equations (1.6) in RiNH’l subject to the initial data ug, vy € L}OC(R2N+1)
if the equalities

0 o
[ (S0 -850 - bl ) ana
T ot (1.8)
= uo(n)p(n,0) dn
R2N+1
and
0 o
o (0% + o) (0) — lulte ) dua
o7 ot (1.9)
:/ v 8S0( 0)dn
R2N+1 Oat K

are satisfied for any ¢ belonging to the homogeneous Sobolev space H (RN
for the variable z and to C?(0, +o00) for the ¢ variable, ¢(n,T) = 0.

Our result concerning the system (1.6) is provided by the following
theorem.

THEOREM 1.2. Let 1 < p, < q, ug(n) >0, vo(n) > 0,uo(n) +vo(n) >0,
Q =2N +2, and

Q< pqoi L max{p.q}. (1.10)

Then, system (1.6) does not admit a nontrivial weak solution.
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And finally, we present a nonexistence result for the system of non-
linear and non-local in space hyperbolic equations with a linear damping
in each equation.

1.3. The system of non-linear non-local hyperbolic equations
with a linear damping on the Heisenberg group.

82U (e m 8u

op + BB+ = o, -
O Cami?) + % = g |
o2 H ot ’

where 1 < p,q are real numbers and 0 < o < 2, supplemented with the
initial data

gt (x7y77_7 O) = ul(xvy77_>7 (1'12)

v
U(x>y)7-v 0) = Uo(JI,y,T), ot (‘Tvva) 0) = Ul(x>y)7)v

U(«’UayaT,O) = U()(.’L',Z/,T),

for which we consider weak solutions defined as follows.

DEFINITION 1.3. A couple of locally integrable functions (u,v), u €
Ll (Qr), v e L} Q) is called a weak solution of the system of differen-

loc
tial equations (1.11) in RiNH’l subject to the initial data ug,ui,vg,v1 €
L} (R2N*1) if the equalities

loc
02 0 o
/ (“ f+u 7w (—Aw)E () - !v!%) dndt
o, \ Ot ot
(1.13)
dp
=— uo 5 (1,0) dn + (uo(n) +u1(n)) ©(n,0)dn
R2N+1 R2N+1
and
02 0 o
/ <” f+v 7 0 (—Aw)s () — Ws@) dndt
o, \ Ot ot
(1.14)
dp
=— 0 g (n,0)dn + + (vo(n) +v1(n)) ¢(n,0) dn
R2N+1

R2N+1

are satisfied for any ¢ belonging to the homogeneous Sobolev space H (RN
for the variable z and to C?(0, +o00) for the ¢ variable, ¢(n, T) = 0.

For the system (1.11), we will prove the following theorem.

THEOREM 1.3. Let m,l € N*, [ <m, pqg > 4ml, Q = 2N + 2,
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/ (ur () + v1(n)) dn > O,

R2N+1
and
O+ o< max ap(q + 1)’ ap(q + 1)’ ap(2m +q) | (1.15)
pqg—1 pq — 21 pq — 4ml

Then, system (1.11) does not admit a nontrivial weak solution.

Before we give the proofs of the theorems, let us dwell on the exist-
ing literature concerning systems of hyperbolic equations and systems of
parabolic equations posed on the Euclidian space RY, N > 1. The wave
equations (W1) uy — Au = |[u|P~tu and (W2) uy — Au = |ulP received
great attentions and are well documented (see [25], [9]). For (W1)((IW2)),
it took twenty years to establish that the critical exponent p,,(N) is the
positive root of (N — 1)p? — (N + 1)p — 2 = 0, when N > 2 is the space
dimension (p, (1) = oo, see Sideris [24], Rammaha [23]). The critical expo-
nent for the heat equation uy — Au = uP was established by Fujita in his
pioneering work [7]. The critical exponent for the Cauchy problem for the
wave equation with linear damping uy — Au + uy = |uP has mainly been
established in [28], and completed by [32] and [16]; they showed that the
critical exponent leads to blow-up.

Global or blowing-up solutions for the heat or the wave equation on
nilpotent Lie groups has been studied in [6], [8], [22], [29], [30]. Wave equa-
tions on the Heisenberg group has been discussed in [20], [3] for example
for the existence of local solutions in various spaces, and [33] also for global
solution but under sub-linear non-linearities.

Various equations (elliptic, parabolic, hyperbolic, of Schrodinger type)
with fractional powers of the Laplacian are now accepted as good models in
many applied situations (see for example [1], [5], [11], [10], [13], [14], [15],
17, [26], [27]).

2. Preliminaries

For the reader’s convenience, let us briefly recall the definition, the basic
properties of the Heisenberg group, some facts about fractional powers
of the sub-elliptic Laplacian on the Heisenberg group, and an important
inequality proved in [2].

2.1. The Heisenberg group. The Heisenberg group H, whose points will
be denoted by n = (z,y,7), is the Lie group (R?V*! o) with the non-
commutative group operation o defined by

noil = (a+ &y + .7+ 7+ 2A< 2G>~ <dy>),
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where < -,- > is the usual inner product in RY. The Laplacian Ag over H
is obtained, from the vector fields X; = 821_ + 2y; 38T and Y; = 8(2/1- — 2x; 387,

by N

Ag=> (X} +Y7). (2.1)
i=1
Observe that the vector field T' = 887- does not appear in (2.1)). This fact
makes us presume a ”loss of derivative” in the variable 7. The compensation
comes from the relation
[ X:,Y;] = —4T, 4,5 €{1,2,--- N} (2.2)
The relation (2.2)) proves that H is a nilpotent Lie group of order 2. In-
cidently, (2.2)) constitutes an abstract version of the canonical relations
of commutation of Heisenberg between momentum and positions. Explicit
computation gives the expression

N
62 62 62 82 , , 62
B ; <(’3x12 " (9yi2 Ay 0x;0T N 4%(‘)%37- + 4(x7 + y; )87-2) . (2.3)

A natural group of dilatations on H is given by
() = (O, Ay, A1), A >0,
whose Jacobian determinant is A9, where
Q=2N +2 (2.4)
is the homogeneous dimension of H.

The operator Ay is a degenerate elliptic operator. It is invariant with
respect to the left translation of H and homogeneous with respect to the
dilatations 6. More precisely, we have

Au(u( 0 7)) = (Awu)( 07), 05
Ap(uody) = XN(Agu)ody, 0,7 € H. '
The natural distance from n to the origin is

N 1/4
ol = ( B +y$>) | 26)

=1

2.2. Fractional powers of sub-elliptic Laplacians. Here, we collect
some results on fractional powers of sub-Laplacian in the Heisenberg group.
To begin with, let us characterize (—Ap)® as the spectral resolution of Ay
in L?(H).

THEOREM 2.1. The operator —Ay is a positive self-adjoint operator
with domain W]&’Q(H). Denote now by {E(X)} the spectral resolution of
—Ay in L?(H).

If « > 0, then
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“+o00
(—Ag): = / A2 dE(N),
with domain (_)i_oo
Wi (H) == {v € L*(H); / A\ d < E(AN)v,v > < 0o},
0

endowed with graph norm.

PROPOSITION 2.1.  Assume that the function ¢ is smooth and bounded.

Then, . N N
o’ (—Am)2¢ > (—Am)2¢”. (2.7)

For the proof see [2].

In the Euclidian case, this inequality has been first established in [5]
and then generalized in [11].

Proof of Theorem 1.1. Let (u,v) be a solution of (1.1)-(1.2)

and ¢ be a smooth nonnegative function. Let us set ok

7" k,(p </ ’ AH ok SOU*T,T% dndt) " , (28)
for r > 2k, and
O 0%y

_ o—2r'

for o > 1,7 + " = rr’. Making use of inequality (2.7)) with ¢ in place of
¢ in (1.3) and (1.4), we obtain

/IUIqw“dndH/ v1(n)¢? (n,0) dn
o) R2N+1

1
T'/ r!

2r’
dndt) (2.9)

+ 900.77,/

2

_ /Q (Ua;ﬁa +U2l(_AH>3‘(¢U)> dndt (2.10)

21

S </ !v!”w“dndt> (p, (/ [vP? dndt) A, 1, ¢),
Q

and
/!v!”w"dndH/ u1(n)? (n,0) dn
Q R2N+1
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82(100 2m & o
:/Q<u 912 +u " (—Am)z2 (¢ )) dndt
S(/QIUIqsO“dndt> B(q,¢)+</g IUIqsO"dndt) Alg,m, ).

for some positive constant C' and where we have chosen ¢ such that p(n,T) =
0.

(2.11)

Let us anticipate that

[ m@e @00 [ omem.0d>0
R2N+1 R2N+1
as it will be showed hereafter for a certain choice of the function . Setting
7= / |u|9p dndt, J = / |v|[P? dndt,
Q Q
we write (2.10) and(2.11) in the form

J <TiBlg,0)+T 5 Alg,m, ),

(2.12)
1 21
IS JTPBp,e)+Tr Alp,l, ),
which leads to
T S TmBr(q,0)B(p,¢) + I 7 B(p,)A»(g,m, o)
(2.13)
21 21 4ml 21
+ Ira A(p, 1, 0)B7 (q,) +Z ra Ar (q,m,)AD,L, ¢),
and
1 1 21 1
T S TraBa(p,p)B(q, ) + TraB(q,¢)A(p,1, )
(2.14)

2m 2m 4ml 2m
+ T v Alg,m, 9)B « (p,p) + T r1 A« (p,l,0)Alg,m, p).
Using the Young inequality with e
ab<ea" +Chb°, r+s=rs,a>0,0>0,
where € and C. are two positive constants, we obtain the inequalities
1 1 rq P
T B(q,p)Ba(p,p) < eJ + CBra-1(q, p)Bra-1(p, o),
21 1
TmB(g,9)A1(p,1,¢) < e + CBri=2 (g, ) Ari== (p,1, 5),
2m 2m 2m
T B3 (p,0)Alg,m,9) < eJ + CBravim (p, ) Avi2m (q,m, ),

2m
q

J v Alq,m, @) At (p,1, ) < e + CeAraimi (g, m, ) Aveimt (p,1, o).
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Whereupon, choosing ¢ small enough,

I ST+ T+ T3+ Ja, (2.15)
where b )
Ji = Bra=1 (g, p)Bra-1(p, ),
To = B~ (q,0) An2 (p, 1, 0),
2m
Ty = Broin (p, o) Ar“m (g, m, ),
To = An"bnt (q,m, @) Are” ot (p, 1, )
Set ,
72+ |z|t + Jy|t + te
p(n,t) =@ ( | R4’ , (2.16)
where R > 0, and ® € D([0,+00[) is the standard cut-off function
1, 0<r<1,
O(r) = 0<P(r)<1, (2.17)

0, r>2.
Note that supp(yp) is a subset of
Qg = {neH; 0< 72+ [zt + [yt +ta 5234}. (2.18)
Note also that

R4 ot (7770) =Y,

2 4 4 4
+ + 4 ta
a%f(n;t) = 4t§*1R72‘I>’ (T =] vl ) — ¢

as required here above. Moreover, using the scaled variables

F=R2r, =R 'z, §=R'y, t=R, (2.19)
we obtain the estimates

A(r ko) SR, 6 =—a+"*(2+2N +a),

(2.20)
B(r,p) SR%, 6y =-20+"'(2+2N +a).
Consequently, »
JSY R, (2.21)
=1
where
01 =, (2ap(q + 1) = (2+ 2N + a)(pg — 1)),
Yo =t (ap(2g +1) — (242N + a)(pg — 20)),
2=, o (ap(2¢+1) — ( (pq —21)) (2.22)

)
U3 = pgtom (ap(dm + q) — (pg — 2m)(2 + 2N + a))
)

01 = 0 i (@P(2m + ) — (pg — 4ml)(2 + 2N + ).
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Now, if
2(¢g+1) 2¢+1 4m+gq 2m+q}

2 < i ) b b

o apmm{ pq—1 "pq—2l" pg—2m pqg—4ml

which means min {1, Y2, ¥3, ¥4} > 0, then passing to the limit when
R — oo in (2.15), we obtain

/ |v|P dndt = 0.
Q

This is a contradiction.
In the limit case when

P =ty =93 =194 =0,
we obtain
/ [v|P dndt < C' < o0,
Q
which leads to
lim [v[Pe?(n, 1) dndt = 0,

R—oo Cr
where

Cr = {UGH; R! §7'2+]$|4+|y]4+t3 < 2R4}.
Passing to the limit in (2.10) as ¢ — oo, we obtain the contradiction
/ |u|? dndt = 0.
Q
O

REMARK 2.1. It appears clear from the proof that we need the positive
powers u?™ and v? in (1.1) in order to apply the convexity inequality (2.7).

Proof of Theorem 1.2. Assume to the contrary that the so-
lution is global. Proceeding as in the proof of Theorem 1.1, we have the
estimates

/lel%c’dndtﬁ (/Q IUIqw"dndt); (C(a,¢) +D(g, %)), (2.23)

/Q [ul° dndt < ( /Q rvrpwdndt);<c<p,so>+z><p,so>>, (2.24)

where we have set

1
C(r,p) = (/ w(“_l_i)rllsotlrl) :
Q

Pl </Q A (CVNE (@)VT/> ’ .

Setting
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= [l dnar, v = [ Jupe dn,
Q Q
and using (2.23) and (2.24), we obtain the estimates

X' 5 (Cr(a,0) + D2 (0.9)) (Clp.9) + D)) (225)
and

AARETIES (Cflf(p, ©) + D (p, 30)) (C(g,) + D(g, ) - (2.26)

Now if we take the same test function as before and we use the same scaled
variables, we obtain

1 1 a
Xl_pq SJ RQ(I_pq)_p (2.27)

and ) L
Xl_pq 5 RQ(I_pq)_ q. (2.28)
Consequently, if (1.10) is satisfied, repeating the same reasoning as in the
previous proof, we obtain a contradiction. O

REMARK 2.2. As up > 0 and vy > 0, relying on [4], w > 0 and v > 0,
so we can safely use the convexity inequality (2.7).

Proofof Theorem 1.3. Proceeding as in the previous theorems,
we obtain for

U= / u0” dndt, V= / (o[ dt,
Q Q

the estimates ) . )

V<UB(gp)+U s Alg,m, ) +UC(q, ¢) (2.29)
and 1 21 1

USVrB(p, o)+ Ve Alp, L, @) + VrC(p, ). (2.30)
Consequently,

Y <V (B;(p, )+ Ca(p, )) (B(g,¢) +C(q,¢))
+ VA (p,1,0)(Blg, ) Clq, )
+V€:§(32m( ©)+C 1 (p, ))A(,m,w)

Ve A% 7 (p,1,)Alg,m, ).

Using the e-Young inequality, we obtain
rq

VS (Bq (p, ) + Ca(p, 90)> pg—1 (B(q,¢) +C(q, (p))pf;fl
T _qu’im (p; 1, )(B(q, ) +C(q,¥)) pa—21

rq

—I— (B 2;” (p’ (p) —I— ngn (p’ (p)) pq—2m qugq2m (Q) m’ (p) (231)
 Apa-ini (p, 1, @) Ava”imi (g, m, ).
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Now, using the test function (2.16) with the choice (2.17) and the scaled
variables (2.19), we obtain

V< 24: RP, (2.32)
where ‘
si= 0 (Lot @+a)h)—at@+a)})
b= 0 (5 a+<@+a>p72’>—a+<cz+a>;,)
Bs= .7 2m( —a+(Q + ) ,)—a+(Q+a)q_q2m>
Pa = P(I*4ml (2m —a+(Q+a)" 21) _a+(Q+a)q£m>.
The choice

Bi 207 i:17"'747
which lead to a contradiction as in the previous proofs means
1 1 2
Q+a§max{ap(q+ ) ap(g+1) ap( m+q)},

pg—1 " pg—21 " pg—4ml
this is the requirement (1.15).
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