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Abstract

We present non-existence results for systems of non-local in space hyper-
bolic equations, for systems of non-local in space parabolic equations, and
for systems of non-local in space hyperbolic equations with linear damping
terms. Our method of proof is based on the test function method with a
help of a convexity inequality recently proved in [2].
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1. Introduction

In this paper we are concerned with nonexistence of global in time
solutions of systems of nonlinear non-local in space hyperbolic equations,
of systems of nonlinear non-local in space parabolic equations, as well of
systems of nonlinear non-local in space hyperbolic equations with linear
posed in the Heisenberg group. This work is an extension to systems of the
recent work [2].

Notation. Q T = R
2N+1 × (0, T ), Q = R

2N+1 × (0,+∞).
We adopt the notation X � Y to denote the estimate X ≤ CY for

some positive constant C.
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We start with

1.1. The system of non-linear non-local hyperbolic equations
on the Heisenberg group.

∂2u

∂t2
+ (−ΔH)

α
2 (u2m) = |v|p,

∂2v

∂t2
+ (−ΔH)

α
2 (v2l) = |u|q,

(1.1)

where 1 < p, q are real numbers and 0 < α ≤ 2, supplemented with the
initial data

u(x, y, τ, 0) = u0(x, y, τ),
∂u

∂t
(x, y, τ, 0) = u1(x, y, τ),

v(x, y, τ, 0) = v0(x, y, τ),
∂v

∂t
(x, y, τ, 0) = v1(x, y, τ),

(1.2)

for which we consider weak solutions defined as follows.

Definition 1.1. A couple of locally integrable functions (u, v), u ∈
Lq
loc(QT ), v ∈ Lp

loc(QT ) is called a weak solution of the system of differ-

ential equations (1.1) in R
2N+1,1
+ subject to the initial data u0, u1, v0, v1 ∈

L1
loc(R

2N+1) if the equalities∫
QT

(
u
∂2ϕ

∂t2
+ u2m(−ΔH)

α
2 (ϕ)− |v|pϕ

)
dηdt

= −
∫
R2N+1

u0(η)
∂ϕ

∂t
(η, 0) dη +

∫
R2N+1

u1(η)ϕ(η, 0) dη

(1.3)

and ∫
QT

(
v
∂2ϕ

∂t2
+ v2l(−ΔH)

α
2 (ϕ) − |u|qϕ

)
dηdt

= −
∫
R2N+1

v0
∂ϕ

∂t
(η, 0) dη +

∫
R2N+1

v1(η)ϕ(η, 0) dη

(1.4)

are satisfied for any regular function ϕ belonging to the homogeneous
Sobolev space Hα(R2N+1) for the variable x and to C2(0,+∞) for the t
variable, ϕ(η, T ) = 0.

For the system (1.1), we will prove the following theorem.

Theorem 1.1. Let m, l ∈ N
∗, 2l < p, 2m < qQ = 2N + 2,∫

R2N+1

(u1(η) + v1(η)) dη > 0,

and
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Q+ 2 < αp min

{
2(q + 1)

pq − 1
,
2q + 1

pq − 2l
,
4m+ q

pq − 2m
,
2m+ q

pq − 4ml

}
. (1.5)

Then, system (1.1) does not admit a nontrivial weak solution.

Then, we will consider

1.2. The system of non-linear non-local parabolic equations
on the Heisenberg group.

∂u

∂t
+ (−ΔH)

α
2 (u) = |v|p,

∂v

∂t
+ (−ΔH)

α
2 (v) = |u|q,

(1.6)

where 1 < p, q are real numbers and 0 < α ≤ 2, supplemented with initial
data

u(x, y, τ, 0) = u0(x, y, τ), v(x, y, τ, 0) = v0(x, y, τ). (1.7)

Definition 1.2. A couple of locally integrable functions (u, v), u ∈
Lq
loc(QT ), v ∈ Lp

loc(QT ) is called a weak solution of the system of differential

equations (1.6) in R
2N+1,1
+ subject to the initial data u0, v0 ∈ L1

loc(R
2N+1)

if the equalities∫
QT

(
−u

∂ϕ

∂t
+ u(−ΔH)

α
2 (ϕ)− |v|pϕ

)
dηdt

=

∫
R2N+1

u0(η)ϕ(η, 0) dη
(1.8)

and ∫
QT

(
−v

∂ϕ

∂t
+ v(−ΔH)

α
2 (ϕ)− |u|qϕ

)
dηdt

=

∫
R2N+1

v0
∂ϕ

∂t
(η, 0) dη

(1.9)

are satisfied for any ϕ belonging to the homogeneous Sobolev spaceHα(R2N+1)
for the variable x and to C2(0,+∞) for the t variable, ϕ(η, T ) = 0.

Our result concerning the system (1.6) is provided by the following
theorem.

Theorem 1.2. Let 1 < p,< q, u0(η) ≥ 0, v0(η) ≥ 0, u0(η)+v0(η) > 0,
Q = 2N + 2, and

Q ≤ α

pq − 1
max {p, q} . (1.10)

Then, system (1.6) does not admit a nontrivial weak solution.
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And finally, we present a nonexistence result for the system of non-
linear and non-local in space hyperbolic equations with a linear damping
in each equation.

1.3. The system of non-linear non-local hyperbolic equations
with a linear damping on the Heisenberg group.

∂2u

∂t2
+ (−ΔH)

α
2 (u2m) +

∂u

∂t
= |v|p,

∂2v

∂t2
+ (−ΔH)

α
2 (v2l) +

∂v

∂t
= |u|q,

(1.11)

where 1 < p, q are real numbers and 0 < α ≤ 2, supplemented with the
initial data

u(x, y, τ, 0) = u0(x, y, τ),
∂u

∂t
(x, y, τ, 0) = u1(x, y, τ),

v(x, y, τ, 0) = v0(x, y, τ),
∂v

∂t
(x, y, τ, 0) = v1(x, y, τ),

(1.12)

for which we consider weak solutions defined as follows.

Definition 1.3. A couple of locally integrable functions (u, v), u ∈
Lq
loc(QT ), v ∈ Lp

locQT ) is called a weak solution of the system of differen-

tial equations (1.11) in R
2N+1,1
+ subject to the initial data u0, u1, v0, v1 ∈

L1
loc(R

2N+1) if the equalities∫
QT

(
u
∂2ϕ

∂t2
+ u

∂ϕ

∂t
+ u2m(−ΔH)

α
2 (ϕ) − |v|pϕ

)
dηdt

= −
∫
R2N+1

u0
∂ϕ

∂t
(η, 0) dη +

∫
R2N+1

(u0(η) + u1(η))ϕ(η, 0) dη

(1.13)

and∫
QT

(
v
∂2ϕ

∂t2
+ v

∂ϕ

∂t
+ v2l(−ΔH)

α
2 (ϕ)− |u|qϕ

)
dηdt

= −
∫
R2N+1

v0
∂ϕ

∂t
(η, 0) dη ++

∫
R2N+1

(v0(η) + v1(η))ϕ(η, 0) dη

(1.14)

are satisfied for any ϕ belonging to the homogeneous Sobolev spaceHα(R2N+1)
for the variable x and to C2(0,+∞) for the t variable, ϕ(η, T ) = 0.

For the system (1.11), we will prove the following theorem.

Theorem 1.3. Let m, l ∈ N
∗, l ≤ m, pq > 4ml, Q = 2N + 2,
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∫
R2N+1

(u1(η) + v1(η)) dη > 0,

and

Q+ α ≤ max

{
αp(q + 1)

pq − 1
,
αp(q + 1)

pq − 2l
,
αp(2m+ q)

pq − 4ml

}
. (1.15)

Then, system (1.11) does not admit a nontrivial weak solution.

Before we give the proofs of the theorems, let us dwell on the exist-
ing literature concerning systems of hyperbolic equations and systems of
parabolic equations posed on the Euclidian space R

N , N ≥ 1. The wave
equations (W1) utt − Δu = |u|p−1u and (W2) utt − Δu = |u|p received
great attentions and are well documented (see [25], [9]). For (W1)((W2)),
it took twenty years to establish that the critical exponent pw(N) is the
positive root of (N − 1)p2 − (N + 1)p − 2 = 0, when N ≥ 2 is the space
dimension (pw(1) = ∞, see Sideris [24], Rammaha [23]). The critical expo-
nent for the heat equation utt −Δu = up was established by Fujita in his
pioneering work [7]. The critical exponent for the Cauchy problem for the
wave equation with linear damping utt −Δu + ut = |u|p has mainly been
established in [28], and completed by [32] and [16]; they showed that the
critical exponent leads to blow-up.

Global or blowing-up solutions for the heat or the wave equation on
nilpotent Lie groups has been studied in [6], [8], [22], [29], [30]. Wave equa-
tions on the Heisenberg group has been discussed in [20], [3] for example
for the existence of local solutions in various spaces, and [33] also for global
solution but under sub-linear non-linearities.

Various equations (elliptic, parabolic, hyperbolic, of Schrödinger type)
with fractional powers of the Laplacian are now accepted as good models in
many applied situations (see for example [1], [5], [11], [10], [13], [14], [15],
[17], [26], [27]).

2. Preliminaries

For the reader’s convenience, let us briefly recall the definition, the basic
properties of the Heisenberg group, some facts about fractional powers
of the sub-elliptic Laplacian on the Heisenberg group, and an important
inequality proved in [2].

2.1. The Heisenberg group. The Heisenberg group H, whose points will
be denoted by η = (x, y, τ), is the Lie group (R2N+1, ◦) with the non-
commutative group operation ◦ defined by

η ◦ η̃ = (x+ x̃, y + ỹ, τ + τ̃ + 2(< x, ỹ > − < x̃, y >)),
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where < ·, · > is the usual inner product in R
N . The Laplacian ΔH over H

is obtained, from the vector fields Xi =
∂
∂xi

+ 2yi
∂
∂τ and Yi =

∂
∂yi

− 2xi
∂
∂τ ,

by

ΔH =
N∑
i=1

(X2
i + Y 2

i ). (2.1)

Observe that the vector field T = ∂
∂τ does not appear in (2.1)). This fact

makes us presume a ”loss of derivative” in the variable τ . The compensation
comes from the relation

[Xi, Yj ] = −4T, i, j ∈ {1, 2, · · ·, N}. (2.2)
The relation (2.2)) proves that H is a nilpotent Lie group of order 2. In-
cidently, (2.2)) constitutes an abstract version of the canonical relations
of commutation of Heisenberg between momentum and positions. Explicit
computation gives the expression

ΔH =
N∑
i=1

(
∂2

∂x2i
+

∂2

∂y2i
+ 4yi

∂2

∂xi∂τ
− 4xi

∂2

∂yi∂τ
+ 4(x2i + y2i )

∂2

∂τ2

)
. (2.3)

A natural group of dilatations on H is given by

δλ(η) = (λx, λy, λ2τ), λ > 0,

whose Jacobian determinant is λQ, where

Q = 2N + 2 (2.4)

is the homogeneous dimension of H.
The operator ΔH is a degenerate elliptic operator. It is invariant with

respect to the left translation of H and homogeneous with respect to the
dilatations δλ. More precisely, we have

ΔH(u(η ◦ η̃)) = (ΔHu)(η ◦ η̃),
ΔH(u ◦ δλ) = λ2(ΔHu) ◦ δλ, η, η̃ ∈ H.

(2.5)

The natural distance from η to the origin is

|η|H =

(
τ2 +

N∑
i=1

(x2i + y2i )

)1/4

. (2.6)

2.2. Fractional powers of sub-elliptic Laplacians. Here, we collect
some results on fractional powers of sub-Laplacian in the Heisenberg group.
To begin with, let us characterize (−ΔH)

s as the spectral resolution of ΔH

in L2(H).

Theorem 2.1. The operator −ΔH is a positive self-adjoint operator
with domain W 2,2

H
(H). Denote now by {E(λ)} the spectral resolution of

−ΔH in L2(H).
If α > 0, then
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(−ΔH)
α
2 =

∫ +∞

0
λ

α
2 dE(λ),

with domain

Wα,2
H

(H) := {v ∈ L2(H);

∫ +∞

0
λα d < E(λ)v, v > < ∞},

endowed with graph norm.

Proposition 2.1. Assume that the function ϕ is smooth and bounded.
Then,

σϕσ−1(−ΔH)
α
2 ϕ ≥ (−ΔH)

α
2 ϕσ. (2.7)

For the proof see [2].
In the Euclidian case, this inequality has been first established in [5]

and then generalized in [11].

P r o o f o f T h e o r em 1.1. Let (u, v) be a solution of (1.1)-(1.2)
and ϕ be a smooth nonnegative function. Let us set

A(r, k, ϕ) =

(∫
Q
|(−ΔH)

α
2 (ϕ)| r

r−2kϕσ− r
r−2k dηdt

) r−2k
r

, (2.8)

for r > 2k, and

B(r, ϕ) =
(∫

Q
ϕσ−2r′

∣∣∣∣∂ϕ∂t
∣∣∣∣2r′ + ϕσ−r′

∣∣∣∣∂2ϕ

∂t2

∣∣∣∣r′ dηdt
) 1

r′

(2.9)

for σ � 1, r + r′ = rr′. Making use of inequality (2.7)) with ϕσ in place of
ϕ in (1.3) and (1.4), we obtain∫

Q
|u|qϕσ dηdt+

∫
R2N+1

v1(η)ϕ
σ(η, 0) dη

=

∫
Q

(
v
∂2ϕσ

∂t2
+ v2l(−ΔH)

α
2 (ϕσ)

)
dηdt

�
(∫

Q
|v|pϕσ dηdt

) 1
p

B(p, ϕ) +
(∫

Q
|v|pϕσ dηdt

) 2l
p

A(p, l, ϕ),

(2.10)

and ∫
Q
|v|pϕσ dηdt+

∫
R2N+1

u1(η)ϕ
σ(η, 0) dη
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=

∫
Q

(
u
∂2ϕσ

∂t2
+ u2m(−ΔH)

α
2 (ϕσ)

)
dηdt

�
(∫

Q
|u|qϕσ dηdt

) 1
q

B(q, ϕ) +
(∫

Q
|u|qϕσ dηdt

) 2m
q

A(q,m,ϕ).

(2.11)

for some positive constant C and where we have chosen ϕ such that ϕ(η, T ) =
0.

Let us anticipate that∫
R2N+1

u1(η)ϕ
σ(η, 0) dη > 0,

∫
R2N+1

v1(η)ϕ
σ(η, 0) dη > 0

as it will be showed hereafter for a certain choice of the function ϕ. Setting

I =

∫
Q
|u|qϕσ dηdt, J =

∫
Q
|v|pϕσ dηdt,

we write (2.10) and(2.11) in the form

J � I 1
qB(q, ϕ) + I 2m

q A(q,m,ϕ),

I � J 1
pB(p, ϕ) + J 2l

p A(p, l, ϕ),

(2.12)

which leads to

I � I 1
pqB 1

p (q, ϕ)B(p, ϕ) + I 2m
pq B(p, ϕ)A 1

p (q,m,ϕ)

+ I 2l
pqA(p, l, ϕ)B 2l

p (q, ϕ) + I 4ml
pq A 2l

p (q,m,ϕ)A(p, l, ϕ),

(2.13)

and

J � J 1
pqB 1

q (p, ϕ)B(q, ϕ) + J 2l
pqB(q, ϕ)A 1

q (p, l, ϕ)

+ J 2m
pq A(q,m,ϕ)B 2m

q (p, ϕ) + J 4ml
pq A 2m

q (p, l, ϕ)A(q,m,ϕ).

(2.14)

Using the Young inequality with ε

ab ≤ εar + Cεb
s, r + s = rs, a ≥ 0, b ≥ 0,

where ε and Cε are two positive constants, we obtain the inequalities

J 1
pqB(q, ϕ)B 1

q (p, ϕ) ≤ εJ + CεB
pq

pq−1 (q, ϕ)B p
pq−1 (p, ϕ),

J 2l
pqB(q, ϕ)A 1

q (p, l, ϕ) ≤ εJ + CεB
pq

pq−2l (q, ϕ)A p
pq−2l (p, l, ϕ),

J 2m
pq B 2m

q (p, ϕ)A(q,m,ϕ) ≤ εJ + CεB
2mp

pq−2m (p, ϕ)A pq
pq−2m (q,m,ϕ),

J 4ml
pq A(q,m,ϕ)A 2m

q (p, l, ϕ) ≤ εJ + CεA
pq

pq−4ml (q,m,ϕ)A 2mp
pq−4ml (p, l, ϕ).
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Whereupon, choosing ε small enough,

J � J1 + J2 + J3 + J4, (2.15)

where
J1 = B pq

pq−1 (q, ϕ)B p
pq−1 (p, ϕ),

J2 = B pq
pq−2l (q, ϕ)A p

pq−2l (p, l, ϕ),

J3 = B 2mp
pq−2m (p, ϕ)A pq

pq−2m (q,m,ϕ),

J4 = A pq
pq−4ml (q,m,ϕ)A 2mp

pq−4ml (p, l, ϕ).

Set

ϕ(η, t) = Φ

(
τ2 + |x|4 + |y|4 + t

4
α

R4

)
, (2.16)

where R > 0, and Φ ∈ D([0,+∞[) is the standard cut-off function

Φ(r) =

⎧⎨⎩ 1, 0 ≤ r ≤ 1,
0 ≤ Φ(r) ≤ 1,

0, r ≥ 2.
(2.17)

Note that supp(ϕ) is a subset of

ΩR =
{
η ∈ H; 0 ≤ τ2 + |x|4 + |y|4 + t

4
α ≤ 2R4

}
. (2.18)

Note also that

α
∂ϕ

∂t
(η, t) = 4t

4
α
−1R−2Φ′

(
τ2 + |x|4 + |y|4 + t

4
α

R4

)
=⇒ ∂ϕ

∂t
(η, 0) = 0,

as required here above. Moreover, using the scaled variables

τ̃ = R−2τ, x̃ = R−1x, ỹ = R−1y, t̃ = R−αt, (2.19)

we obtain the estimates

A(r, k, ϕ) � Rδ1 , δ1 = −α+ r−2k
r (2 + 2N + α),

B(r, ϕ) � Rδ2 , δ2 = −2α+ r−1
r (2 + 2N + α).

(2.20)

Consequently,

J �
i=4∑
i=1

R−ϑi , (2.21)

where

ϑ1 =
1

pq−1(2αp(q + 1)− (2 + 2N + α)(pq − 1)),

ϑ2 =
1

pq−2l(αp(2q + 1) − (2 + 2N + α)(pq − 2l)),

ϑ3 =
1

pq−2m (αp(4m+ q)− (pq − 2m)(2 + 2N + α))

ϑ4 =
1

pq−4ml (αp(2m+ q)− (pq − 4ml)(2 + 2N + α)).

(2.22)
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Now, if

Q+ 2 < αpmin

{
2(q + 1)

pq − 1
,
2q + 1

pq − 2l
,
4m+ q

pq − 2m
,
2m+ q

pq − 4ml

}
,

which means min {ϑ1, ϑ2, ϑ3, ϑ4} > 0, then passing to the limit when
R → ∞ in (2.15), we obtain∫

Q
|v|p dηdt = 0.

This is a contradiction.
In the limit case when

ϑ1 = ϑ2 = ϑ3 = ϑ4 = 0,

we obtain ∫
Q
|v|p dηdt ≤ C < ∞,

which leads to

lim
R→∞

∫
CR

|v|pϕσ(η, t) dηdt = 0,

where

CR =
{
η ∈ H; R4 ≤ τ2 + |x|4 + |y|4 + t

4
α ≤ 2R4

}
.

Passing to the limit in (2.10) as t → ∞, we obtain the contradiction∫
Q
|u|q dηdt = 0.

�

Remark 2.1. It appears clear from the proof that we need the positive
powers u2m and v2l in (1.1) in order to apply the convexity inequality (2.7).

P r o o f o f T h e o r em 1.2. Assume to the contrary that the so-
lution is global. Proceeding as in the proof of Theorem 1.1, we have the
estimates∫

Q
|v|pϕσ dηdt ≤

(∫
Q
|u|qϕσ dηdt

) 1
q

(C(q, ϕ) +D(q, ϕ)) , (2.23)∫
Q
|u|qϕσ dηdt ≤

(∫
Q
|v|pϕσ dηdt

) 1
p

(C(p, ϕ) +D(p, ϕ)) , (2.24)

where we have set

C(r, ϕ) =
(∫

Q
ϕ(σ−1−σ

r
)r′ |ϕt|r′

) 1
r′
,

D(r, ϕ) =

(∫
Q
ϕ(σ−1−σ

r
)r′ |(−ΔH)

α
2 (ϕ)|r′

) 1
r′

.

Setting
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X =

∫
Q
|u|qϕσ dηdt, Y =

∫
Q
|v|pϕσ dηdt,

and using (2.23) and (2.24), we obtain the estimates

X 1− 1
pq �

(
C 1

p (q, ϕ) +D 1
p (q, ϕ)

)
(C(p, ϕ) +D(p, ϕ)) (2.25)

and
Y1− 1

pq �
(
C 1

q (p, ϕ) +D 1
q (p, ϕ)

)
(C(q, ϕ) +D(q, ϕ)) . (2.26)

Now if we take the same test function as before and we use the same scaled
variables, we obtain

X 1− 1
pq � RQ(1− 1

pq
)−α

p (2.27)
and

X 1− 1
pq � R

Q(1− 1
pq

)−α
q . (2.28)

Consequently, if (1.10) is satisfied, repeating the same reasoning as in the
previous proof, we obtain a contradiction. �

Remark 2.2. As u0 ≥ 0 and v0 ≥ 0, relying on [4], u ≥ 0 and v ≥ 0,
so we can safely use the convexity inequality (2.7).

P r o o f o f T h e o r em 1.3. Proceeding as in the previous theorems,
we obtain for

U =

∫
Q
|u|qϕσ dηdt, V =

∫
Q
|v|pϕσ dηdt,

the estimates
V ≤ U 1

qB(q, ϕ) + U 2m
q A(q,m,ϕ) + U 1

q C(q, ϕ) (2.29)
and

U ≤ V 1
pB(p, ϕ) + V 2l

p A(p, l, ϕ) + V 1
pC(p, ϕ). (2.30)

Consequently,

V ≤ V 1
pq

(
B 1

q (p, ϕ) + C 1
q (p, ϕ)

)
(B(q, ϕ) + C(q, ϕ))

+V 2l
pqA 1

q (p, l, ϕ)(B(q, ϕ) + C(q, ϕ))
+V 2m

pq

(
B 2m

q (p, ϕ) + C 2m
q (p, ϕ)

)
A(q,m,ϕ)

+V 4ml
pq A 2m

q (p, l, ϕ)A(q,m,ϕ).

Using the ε-Young inequality, we obtain

V �
(
B 1

q (p, ϕ) + C 1
q (p, ϕ)

) pq
pq−1

(B(q, ϕ) + C(q, ϕ)) pq
pq−1

+A p
pq−2l (p, l, ϕ)(B(q, ϕ) + C(q, ϕ)) pq

pq−2l

+
(
B 2m

q (p, ϕ) + C 2m
q (p, ϕ)

) pq
pq−2m A pq

pq−2m (q,m,ϕ)

+A 2mp
pq−4ml (p, l, ϕ)A pq

pq−4ml (q,m,ϕ).

(2.31)
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Now, using the test function (2.16) with the choice (2.17) and the scaled
variables (2.19), we obtain

V �
4∑

i=1

R−βi, (2.32)

where

β1 =
pq

pq−1

(
1
q (−α+ (Q+ α) 1

p′ )− α+ (Q+ α) 1
q′

)
β2 =

pq
pq−2l

(
1
q (−α+ (Q+ α)p−2l

l )− α+ (Q+ α) 1
q′

)
β3 =

pq
pq−2m

(
2m
q (−α+ (Q+ α) 1

p′ )− α+ (Q+ α) q−2m
q

)
β4 =

p
pq−4ml

(
2m(−α+ (Q+ α)p−2l

l )− α+ (Q+ α) q−2m
m

)
.

The choice
βi ≥ 0, i = 1, . . . , 4,

which lead to a contradiction as in the previous proofs means

Q+ α ≤ max

{
αp(q + 1)

pq − 1
,
αp(q + 1)

pq − 2l
,
αp(2m+ q)

pq − 4ml

}
;

this is the requirement (1.15).
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