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Abstract

In this article, we develop an effective numerical method to achieve the
numerical solutions of nonlinear fractional Riccati differential equations.
We found the operational matrix within the linear B-spline functions. By
this technique, the given problem converts to a system of algebraic equa-
tions. This technique is used to solve fractional Riccati differential equation.
The obtained results are illustrated both applicability and validity of the
suggested approach.
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1. Introduction

The fractional calculus is an extension of the classical calculus and has
a long history [20, 10, 1, 5, 11, 17]. Fractional calculus is hot topics which
rapid development and implementations in various fields of engineering and
science [20, 10, 1, 5, 11, 17]. As a result the fractional differential equations
(FDEs) started to be used in describing of real world phenomena [1, 5]. For
most of the FDEs, obtaining the analytical solutions are not easy, so today,
it is natural that many authors have tried to solve fractional differential
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equations using different approximation and numerical techniques [8, 7, 9,
15, 19, 21].

We recall that in recent years, several methods based on orthogonal
functions and wavelets have been used for solving FDE. Jafari et al. [9]
solved fractional differential equations using Legendre wavelet.

Another alternative method is to divide the interval into a collection of
subintervals and construct a (generally) different approximating polynomial
on each subinterval. This is called B-spline function. We recall that “B”
in B-spline stands for basis. Spline functions are instances of a piecewise
polynomial function associated with a partition of an arbitrary interval.
Approximation by functions of this type is called piecewise-polynomial ap-
proximation. principal applications of B-splines arise in computer-aided
design, computer graphics, geometric modeling and many other different
subjects [3]. We recall that several methods based on the orthogonal func-
tions and the operational matrix of fractional derivatives (OMFD) were
utilized for solving FDE [4, 15, 21].

As it known Lakestani et al. [12] suggested the OMFD and solved FDEs
with the help of the powerful technique of B-splines collocation technique
(BSCT). Also Li [14] solved FDE by using the BSCT. With the help of
the B-spline functions, below we will generalize the operational matrix for
fractional integration and multiplication. The core of this approach is to
convert the linear FDEs into a system of algebraic equations. This transfor-
mation is possible by expanding the unspecified function within the linear
B-spline functions. The speed of the computation increases. We utilize
the operational matrix of integral to obtain the unknown coefficients which
appear in this approach.

We focus on obtaining the numerical solution of Riccati equation with
fractional order. One of most popular differential equation that was con-
sidered mostly in the literature, is Riccati’s equation. There are several
applications of this equation in algebraic geometry, theory of conformal
mapping, physics and applied problems (see for example Refs. [13, 18] and
the references therein). The fractional Riccati differential equation is the
following:

Dαf(x) = q0(x) + q1(x)f(x) + q2(x)f
2(x), n− 1 < α ≤ n, (1.1)

and it is equipped with initial conditions

f (i)(0) = di i = 0, 1, . . . , n− 1, (1.2)
where q0(x), q1(x) and q2(x) are given functions and q0(x), q2(x) �= 0. If
q0(x) = 0, we have a fractional Bernoulli type equation; while if q2(x) = 0,
Riccati equation - a first order linear ordinary differential equation. More-
over, Dαf(x) denotes the Caputo fractional derivative namely [1, 17]:
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Dα
xf(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

Γ(n− α)

∫ x

0

f(t)

(x− t)1+α−n dt, n− 1 < α < n, n ∈ IN,

dn

dtn
f(x), α = n.

(1.3)

Below the reader can find some basic properties of the Caputo derivative
used in this manuscript, namely [1, 10, 17]

(i) Dα
xC = 0, (C is a constant),

(ii) Dα
xx

β =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 β ∈ IN0, β < �α� ,

Γ(β + 1)

Γ(1 + β − α)
xβ−α,

β ∈ IN0, β ≥ �α� or β /∈ IN0, β > �α� ,

(iii) IαxD
α
xf(x) = f(x)−

n−1∑
k=0

f (k)(0+)
xk

k!
, n− 1 < α ≤ n. (1.4)

The reader can find detailed explanations about the properties of the frac-
tional operators in [1, 17]. Also Iαx the fractional Riemann-Liouville inte-
gral, namely [17, 1]:

Iαx f(x) =
1

Γ(α)

∫ x

0

f(t)

(x− t)1−α
dt, α > 0. (1.5)

Now we are ready to present the organization of our wok: In Section 2,
the linear B-spline scaling functions is presented over [0, 1]. Also the op-
erational matrix is computed for fractional integration and multiplication.
The suggested approach is used to approximate the fractional Riccati dif-
ferential equation in the next section. After that we applied the proposed
technique to solve fractional Riccati differential equation in Section ??. A
conclusion part in Section 5 closed the manuscript.

2. The Linear B-spline function

For a given scaling function in L2(R) the scaling function can be utilized
to expand it. We know that the scaling functions are defined R, therefore
they can not be inside of the domain of the investigated issue. To bypass
this aspect, in our manuscript we considered the B-spline scaling functions
on [0, 1].

We recall that [6]
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Nm(x) =
1

(m− 1)!

m∑
k=0

(
m

k

)
(−1)k(x− k)m−1+ (2.1)

denotes the cardinal B-spline function of order m ≥ 2 (degree m-1) for
the knot sequence {. . . ,−1, 0, 1, . . .} and supp[Nm(x)] = [0,m]. Also let
N1(x) = χ[0,1](x).

Boor et al. [2, 6] define the explicit expression of N2(x) (the linear
B-spline function) in the following form:

N2(x) =
2∑

k=0

(
2

k

)
(−1)k(x− k)+ =

⎧⎪⎨⎪⎩
x x ∈ [0, 1),

2− x x ∈ [1, 2),

0 otherwise.

(2.2)

Suppose Nj,k(x) = N2(2
jx− k), j, k ∈ Z and

Bj,k = supp[Nj,k] = close {x : Nj,k �= 0} .
By inspection we have that

Bj,k = [2−jk, 2−j(2 + k)], j, k ∈ Z. (2.3)

The support of Nj,k(x) can be outside of [0, 1], therefore we have to define
Nj,k(x) on [0, 1]. Thus, we conclude that

φj,k = Nj,k(x)χ[0,1](x), j ∈ Z. (2.4)

As a result we have

φj,k =

2∑
i=0

(
2

i

)
(−1)i(2jx− (k + i))+

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2jx− k,

k

2j
≤ x <

k + 1

2j
,

2− (2jx− k),
k + 1

2j
≤ x <

k + 2

2j
,

0 otherwise.

(2.5)

2.1. Approximation of functions. Let f(x) is a defined function on
[0, 1]. It can be expanded by B-spline scaling functions for a fixed j = J ,
as

f(x) ≈
2j−1∑
k=−1

ckφj,k(x) = CTΦJ(x), (2.6)

where

C = [c−1, c0, . . . , c2j−1]
T (2.7)

ΦJ(x) = [φj,−1(x), φj,0(x), . . . , φj,2j−1(x)]
T . (2.8)
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Then, ck can be obtained by

cTk =

∫ 1

0
f(x)φ̃T

j,k(x)dx, k = −1, . . . , 2j − 1, (2.9)

where φ̃j,k is the vector of dual basis of ΦJ . By using the linear combinations

of φj,k, the φ̃j,k are obtained as:

φ̃j,k = P−1ΦJ , (2.10)

where

P =

∫ 1

0
ΦJ(x)Φ

T
J (x)dt =

1

2J−2

⎡⎢⎢⎢⎢⎢⎣
1
12

1
24

1
24

1
6

1
24

. . .
. . .

. . .
1
24

1
6

1
24

1
24

1
12

⎤⎥⎥⎥⎥⎥⎦ , (2.11)

where P is a symmetric (2J + 1) × (2J + 1) matrix. Replacing (2.10) in
(2.9) leads

cTk =

(∫ 1

0
f(x)φT

J (x)dx

)
P−1. (2.12)

2.2. The operational matrix of fractional order integration. The
operational matrices of fractional order integration of the vector φJ is ap-
proximated as:

0I
α
xΦJ(x) � IαΦJ(x), (2.13)

where Iα is the (2J+1)×(2J+1) fractional operational matrix of integration
for B-spline function. We obtain the matrix Iα as follows:

Iα =

∫ 1

0
(0I

α
xΦJ(x))Φ̃

T
J (x)dx =

(∫ 1

0
(0I

α
xΦJ(x))Φ

T
J (x)dx

)
P−1, (2.14)

where

E =

∫ 1

0
(0I

α
xΦJ(x))Φ

T
J (x)dx. (2.15)

In (2.15), E is a (2J + 1)× (2J + 1) matrix given by

E =⎡⎢⎢⎣
∫ 1
0 (0I

α
x φj,−1(x))φT

j,−1(x)dx . . .
∫ 1
0 (0I

α
x φj,−1(x))φT

j,2j−1(x)dx
...

. . .
...∫ 1

0 (0I
α
x φj,2j−1(x))φT

j,−1(x)dx . . .
∫ 1
0 (0I

α
x φj,2j−1(x))φT

j,2j−1(x)dx

⎤⎥⎥⎦ .
(2.16)

And we have 0I
α
xΦJ(x) as follows:
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0I
α
x φJ(x) =0 I

α
x

(
2∑

i=0

(
2

i

)
(−1)i(2Jx− (k + i))+

)

=
2Jα

Γ(2 + α)

2∑
i=0

(
2

i

)
(−1)i(2Jx− (k + i))2+α

+ (2.17)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x ≤ k

2J
,

2Jα(2Jx− k)α+1

Γ(α+ 2)
,

k

2J
≤ x <

k + 1

2J
,

2Jα((2Jx− k)α+1 − 2(2Jx− (k + 1))α+1)

Γ(α+ 2)
,

k + 1

2J
≤ x <

k + 2

2J
,

2Jα((2Jx− k)α+1 − 2(2Jx− (k + 1))α+1 + (2Jx− (k + 2))α+1)

Γ(α+ 2)
,

x ≥ k + 2

2J
.

2.3. The operational matrix of product. For the product Ĉ, the op-
erational matrices by using linear B-spline function is given by

CTΦJ(x)ΦJ(x)
T � ΦJ(x)

T Ĉ, (2.18)

where Ĉ is an (2J +1)× (2J +1) matrix. Since cTΦJ(x) =
∑2j−1

i=−1 ciφj,i(x),
we have

CTΦJ(x)ΦJ (x)
T = cTΦJ(x)[φj,−1(x), φj,0(x), . . . , φj,2j−1(x)] (2.19)

=

⎡⎣2j−1∑
i=−1

ciφj,i(x)φj,−1(x),
2j−1∑
i=−1

ciφj,iφj,0(x), . . . ,

2j−1∑
i=−1

ciφj,iφj,2j−1(x)

⎤⎦ .
Now, we approximate the product of φj,i(x)φj,k(x) in terms of φj,i for i, k =
−1, . . . , 2j − 1 as

φj,i(x)φj,k(x) ≈ eTk,iΦJ , i, k = −1, 0, . . . ,m. (2.20)

that

ek,i = [ek,i−1, e
k,i
0 , . . . , ek,i

2j−1]
T (2.21)

by (2.6) we have
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ek,i = P−1
∫ 1

0
φj,i(x)φj,k(x)ΦJ(x)dx

= P−1

⎡⎢⎢⎢⎣
∫ 1
0 φj,i(x)φj,k(x)φj,−1(x)dx∫ 1
0 φj,i(x)φj,k(x)φj,0(x)dx
...∫ 1
0 φj,i(x)φj,k(x)φj,2j−1(x)dx

⎤⎥⎥⎥⎦ .
Therefore,

2j−1∑
i=−1

ciφj,i(x)φj,k(x) ≈
2j−1∑
i=−1

ci

2j−1∑
n=−1

ek,in φj,n

=

2j−1∑
n=−1

φj,n

2j−1∑
i=−1

cie
k,i
n

= ΦT
J

⎡⎢⎢⎢⎢⎣
∑2j−1

i=−1 cie
k,i
−1∑2j−1

i=−1 cie
k,i
0

...∑2j−1
i=−1 cie

k,i
2j−1

⎤⎥⎥⎥⎥⎦
= ΦT

J [ek,−1, ek,0, . . . , ek,2j−1]c

= ΦT
J C̃k+2c, (2.22)

where C̃k+2(k = −1, 0, . . . , 2j − 1) is a (2J +1)× (2J +1) matrix which has
vectors ek,i(i = −1, 0, . . . , 2j−1) for each column. Therefore the operational

matrix of product Ĉ = C̃k+2c is obtained.

3. The operational matrix form of the fractional
order Riccati equation

Below, the fractional Riccati differential equation (1.1) with initial con-
ditions (1.2) is considered.

We expand the fractional derivative in Eq.(1.1) by linear B-spline func-
tion ΦJ as follows:

Dαf(x) ≈ CTΦJ(x). (3.1)

Using (1.4) and (2.14), f(x) can be expanded as:

f(x) ≈ CT IαΦJ(x). (3.2)

Also using (2.6) we approximate functions q0(x), q1(x), q2(x) using the lin-
ear B-spline basis as:
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q0(x) ≈ QT
0 ΦJ(x), q1(x) ≈ QT

1 ΦJ(x), q2(x) ≈ QT
2 ΦJ(x). (3.3)

Now, by substituting (3.1)-(3.3) into (1.1), leads

CTΦJ(x) = QT
0 ΦJ(x) +QT

1 ΦJ(x)(ΦJ (x)
T (Iα)TC)

+ QT
2 ΦJ(x)(C

T IαΦJ(x)ΦJ (x)
T (Iα)TC). (3.4)

Then, from (2.18) we have

QT
1 ΦJ(x)ΦJ(x)

T ≈ ΦJ(x)
T Q̂1, (3.5)

CT IαΦJ(x)ΦJ(x)
T ≈ ΦJ(x)

T Ĉα, (3.6)

where Cα = CT Iα, Now substituting Eqs. (3.5) and (3.6) in Eq. (3.4) we
obtain:

CTΦJ(x) = QT
0 ΦJ(x) + ΦJ(x)

T Q̂1C
T
α + (ΦJ(x)

T Q̂2ĈαC
T
α ) (3.7)

or

(CT −QT
0 − CαQ̂1

T − CαĈα
T
Q̂2

T
)ΦJ(x) = 0. (3.8)

Finally, by using the independent property of B-spline functions, we obtain:

(CT −QT
0 − CαQ̂1

T − CαĈα
T
Q̂2

T
) = 0. (3.9)

The vector C can be obtained by solving the above system. Consequently
the approximate value of f(x) can be determined by substituting C in (3.2).

4. Illustrative examples

Below we use the presented approach in order to solve several FDEs.

Example 4.1. We recall the equation discussed in [16, 9], namely

Dαf(x) = −f2(x) + 1, 0 < α ≤ 1, (4.1)

equipped with initial conditions

f(0) = 0. (4.2)

The accuracy solution for α = 1, is

f(x) =
e2x − 1

e2x + 1
. (4.3)

Eq. (4.1) is studied by Jafari et al. [9] by using the Legendre wavelets.
Odibat and Momani solved it using the decomposition method, [16]. Here
we apply the linear B-spline function to solve it. Fig. 1 shows exact solu-
tion and the approximation solutions of f(x) for J = 6 and different values
of α = 1, 0.95, 0.9, 0.85. Definitely, as α approaches 1, the approximate
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values of f(x) will converge to the exact solutions. Both the numerical
results f(x) and the exact solution for α = 1 and different values of J can
be seen in Fig. 2. By the comparison Fig. 2 (using B-spline method) and
Fig. 3 (Legendre wavelet method [9] ), by inspection we understand that
the present approximations are more efficient.

0 0.2 0.4 0.6 0.8 1
x

0

0.2

0.4

0.6

y
�
x
�

Blue Α�0.85
.... Α�0.9
Red Α�0.95
���� Α�1
Black Exact

Figure 1. Exact solution and numerical results of Eq. (4.1)
using linear B-spline function when α = 1, 0.95, 0.9, 0.85.
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���� J�6
Black Exact

Figure 2. Exact solution and numerical results of Eq.
(4.1) using linear B-spline function for J = 4, 5, 6
when α = 1.

Example 4.2. We demonstrate the accuracy of the presented nu-
merical scheme by considering the fractional Riccati differential equation
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Figure 3. Exact solution and numerical results of Eq. (4.1)
using Legendre wavelet solution when α = 1.

possessing the initial value given in [16, 9] by

Dαf(x) = 2f(x)− f2(x) + 1, 0 < α ≤ 1, (4.4)

f(0) = 0, (4.5)

and admitting exact solution when α = 1

f(x) = 1 +
√
2 tanh(

√
2x+

1

2
log(

√
2− 1√
2 + 1

)). (4.6)

Fig. 4 shows the exact solution and the approximate solution of Eq.
(4.4) for different values of α when J = 6 using the linear B-spline function.
We see that as α approaches 1, the approximate solutions will converge to
the exact solution. The numerical results f(x) together with the exact so-
lution for J = 4, 5, 6 and α = 1 are plotted in Fig. 5. By comparing the
Fig. 5 ( using B-spline method ) and the Fig. 6 (Legendre wavelet method
[9] ), we can see that the presented numerical scheme is more efficient.

5. Conclusion

In this work we proposed an accurate and efficient approach based on
the linear B-spline function for solving the fractional type Riccati differen-
tial equation. B-spline operational matrices of fractional integration and
multiplication were calculated. We provided the general procedure of form-
ing this matrix. Specific applications were presented to show the applicabil-
ity and validity of the approach. Mathematica was used for computations.
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Figure 4. Solutions of Eq. (4.4) using linear B-spline func-
tion when α = 1, 0.95, 0.9.
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Figure 5. Solutions of Eq. (4.4) using linear B-spline func-
tion for J = 4, 5, 6 when α = 1.
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