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Abstract

The non local fractional Laplacian plays a relevant role when model-
ing the dynamics of many processes through complex media. From 1933
to 1949, within the framework of potential theory, the Hungarian mathe-
matician Marcel Riesz discovered the well known Riesz potential operators,
a generalization of the Riemann–Liouville fractional integral to dimension
higher than one. The scope of this note is to highlight that in the above
mentioned works, Riesz also gave the necessary tools to introduce several
new definitions of the generalized coupled fractional Laplacian which can
be applied to much wider domains of functions than those given in the lit-
erature, which are based in both the theory of fractional power of operators
or in certain hyper-singular integrals. Moreover, we will introduce the cor-
responding fractional hyperbolic differential operator also called fractional
Lorentzian Laplacian.

MSC 2010 : Primary 26A33; Secondary 35R11, 34A08

Key Words and Phrases: n-dimensional fractional operators, fractional
Laplacian, fractional Lorentzian Laplacian, Riesz potencial operators, frac-
tional spatial derivatives, Riemann–Liouville operators

c� 2015 Diogenes Co., Sofia
pp. 290–307 , DOI: 10.1515/fca-2015-0020



NEW RESULTS FROM OLD INVESTIGATION: A NOTE . . . 291

1. Introduction

As it is well known the fractional models play an important role in
many applied areas of sciences and engendering to describe the dynamics
of processes through strongly complex media with power law non-locality.
We consider that a medium is strongly complex if the conventional mod-
els do not work enough well to shape the dynamics of classical process
(for example, a diffusion process, a advection-diffusion process or a wave
process, etc.) on it. Fractals media are included in such kind of complex
media. Nowadays, the applied research groups are very interesting to find
a suitable definition of fractional Laplacian for isotropic and anisotropic
media. Some papers have been written on m-dimensional spatial fractional
coupled operators and the so called generalized fractional vector calculus
(see, for example, [18], [21], [12], [22], [14], [4], [23], [24], [7], and [27]) with
the objective to be used from both theoretical and applied point of view
(see, for example, [19], [15], [9], [16], [20], [29], [11], [10], [1], [25], [6], [26],
[3], [5], [2], [28], and [29]). This important issue is far to be enough well
solved.

The definitions given in the literature, which are essentially based in
the following techniques:

• The theory of fractional power of operators. What mean work on
a very strong domain of functions.

• By the ambiguous following property:

F((−Δ)
α
2 f) = |w|αF(f)(w)

where F denote the classical Fourier transform. What mean a am-
biguous definition, because it is obvious that many explicit opera-
tors verify the property this property.

• By certain hyper-singular integral. What mean work on a very
strong domain of functions.

Then, we can get as a first conclusion that such definitions are ambiguous
or too restrictive; moreover in many cases they can not used in real models.
Therefore, to extended the known explicit definitions of such operators so
they work on a wider set of functions will help to can review the known
fractional model which use these kind of operators and also they will pro-
duce novel and more accuracy numerical tools to can estimate the solutions
of such models.

In this note we try to highlight some important aspects, not so much
well known, related to such operator, which can be found in the Riesz
paper on the potential theory, titled “L’intégrale de Riemann–Liouville et
le problème de Cauchy”, published in 1949 [18], where he introduced and
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studied two of his famous m-dimensional Riesz’s potential integrals. Those
operators have had during a large time a really very important influence in
the potential theory, specially early the numerical methods could be used
in the applied sciences. The first remarkable fact that one can get from
the title of this paper is that Riesz got his inspiration to introduce such
m-dimensional fractional operators from the Riemann–Liouville fractional
one-dimensional integrals.

Finally, we will show that the m-dimensional integral operator given by
Riesz, their properties and the well known techniques used to give the wider
definition for many of the known one-dimensional fractional differential
operators will permit us to get a more suitable explicit definitions of the
differential fractional m-dimensional coupled Laplacian. Moreover, it will
be introduced the corresponding fractional hyperbolic differential operator
also called fractional Lorentzian Laplacian.

In Section 2 we will explain the technique to give the wider definition
of fractional derivative operators for the case one-dimensional. The new
definitions of the fractional coupled fractional Laplacian are given in Sec-
tion 3, and the last Section 4 is dedicated to introduction and justification
of the corresponding definitions of the Lorentizian Laplacian.

2. Some one-dimensional fractional differential operators

First of all, we must remark that is well known that there exist many
one-dimensional fractional integral and derivative operators. For instance,
the called Riemann–Liouville, Caputo, Grünwald-Letnikov, Hadamard,
Marchaud, Erdélyi-Kober, Riesz-Feller, etc. (see, for example, [8], [13],
[21], [17], [19], [16], and [27]). In the most of these cases the fractional
integral operators are defined for a enough wide set of functions and any
real (or complex) order n − 1 < α <= n and also they verify three basic
properties. Then, it is defined the corresponding left inverse of such oper-
ators, or its fractional derivative of order α, using such properties, because
it is well known that the direct way replacing α in the integral definition by
−α is not the more suitable technique to get the more general definition.
As an example, we will illustrate bellow the mentioned technique with the
left-sided fractional operator of order α:

Let f a suitable good function (for instance, f ∈ L1(a, b) a measurable
Lebesgue), 0 < α < 1 and [a, b] ⊂ R. Then the Riemann–Liouville left-side
operator of order α is defined by

Iαa+f(x) :=
1

Γ(α)

∫ x

a
(x− t)α−1f(t)dt, (x > a) (2.1)
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which verifies among others, the following basic properties:

1. I0a+f(x) = lim
α→0

Iαa+f(x) = f(x) (2.2)

2. Iαa+I
β
a+f(x) = Iα+β

a+ f(x) (2.3)

3. DIα+1
a+ f(x) = Iαa+f(x), (0 < α ≤ 1). (2.4)

We remark here that (2.3) is the semigroup property for the studied
operator and (2.4) is, in some sense, an application of the fundamental
theorem of the classical integral calculus.

Now we could define the left inverse of the operator (2.1) as follow:

I−αa+ f(x) :=
1

Γ(−α)

∫ x

a
(x− t)−α−1f(t)dt, (x > a) (2.5)

which obviously is a hyper-singular operator and then it is convergence
only for functions f with enough strong restriction. Then, using the above
properties (2.2)-(2.4) we could write the above definition as follow:

I−αa+ f(x) := DII−αa+ f(x) = DI1−αa+ f(x). (2.6)

Therefore, taking in account (2.6) we can improve the definition (2.5) as
follow:

Dα
a+f(x) := DI1−αa+ f(x). (2.7)

The above explanation justifies why this is the usual definition one find
in the literature as the left-side fractional Riemann–Liouville derivative of
order α.

The above technique can be extended easily to the more general case
n − 1 < α ≤ n. See, for example, left and right Riemann–Liouville and
Liouville fractional integrals, which are given as follows:

Iαa+f(x) :=
1

Γ(α)

∫ x

a
(x− t)α−1f(t)dt, (x > a) (2.8)

Iαb−f(x) :=
1

Γ(α)

∫ b

x
(t− x)α−1f(t)dt, (x < b) (2.9)

Iα+f(x) :=
1

Γ(α)

∫ x

−∞
(x− t)α−1f(t)dt, (x ∈ R) (2.10)

Iα−f(x) :=
1

Γ(α)

∫ ∞

x
(t− x)α−1f(t)dt, (x ∈ R) (2.11)

and their respective fractional derivatives, given by:



294 H. Prado, M. Rivero, J.J. Trujillo, M.P. Velasco

Dα
a+f)(x) := Dn(In−αa+ f)(x) (x > a) (2.12)

(Dα
b−f)(x) := (−D)n(In−αb− f)(x) (x < b) (2.13)

(Dα
+f)(x) := Dn(In−α+ f)(x) (x ∈ R) (2.14)

(Dα
−f)(x) := (−D)n(In−α− f)(x) (x ∈ R) (2.15)

Bellow it can be found a piece of the paper by Riesz [18] where it is
possible to check that he knew perfectly the Riemann–Liouville integral
operators and the three properties above mentioned:

Fig. 2.1: Pieces of paper by Riesz (1949): Chap. I and Introduction.

In [18] Riesz introduced two different generalizations of the Riemann–
Liouville one-dimensional integral operators to the m-dimensional case,
which are well known as Riesz’s potential operators. His main objective
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was to give an explicit expression to the solution of certain elliptic and
hyperbolic Cauchy problem type involving the classical Laplacian.

3. Riesz Potentials and
coupled fractional m-dimensional Laplacian

In this section we are interesting to show that the basic results included
in the second chapter of the mentioned Riesz’s paper will permit us to intro-
duce new definitions of m-dimensional fractional Laplacian more suitable
that such others introduced in the early literature.

3.1. Elliptical m-dimensional Riesz potential

Here our main interest is the m-dimensional Riesz’s potential operator
corresponding to the elliptic case, which is given by:

R
I
αf(x) :=

1

γm(α)

∫
Rm

f(y)

|x− y|m−α dy, (3.1)

where 0 < α < m, f is a suitable function, for example, locally integrable
function on R

m or with decaying sufficiently rapidly at infinity, and with
the following normalized constant

γm(α) =
π

m
2 2αΓ(α2 )

Γ(m−α2 )
, (3.2)

in order to verify the identity R
I
α(eix1) = eix1 and x = (x1, x2, ..., xm). The

operator (3.1) verifies the following three properties, which are similar to
such mentioned above for the Riemann–Liouville fractional operator:

1. R
I
0f(x) = lim

α→0

R
I
αf(x) = f(x), (0 < α), (3.3)

2. R
I
α
(
R
I
βf
)
(x) =R

I
α+βf(x), (0 < α, β, α + β < m), (3.4)

3. −ΔR
I
α+2f(x) =R

I
αf(x), (3.5)

where Δ is the classical Laplacian, and 0 � α,α + 2 � m.

Also, the following property is well known, which is a particular case of
(3.5):

4. −ΔR
I
2f(x) = f(x). (3.6)

This property informs us about that the −Δ is the left inverse operator
of RI2 for suitable functions. Then the operator (3.1) is a suitable candidate
to give a definition of the couple fractional Laplacian.
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Therefore, several authors, as Samko-Kilbas-Marichev (1987; 1993) [21],
have realized in an explicit form the corresponding to (3.1) fractional Lapla-
cian given by the hypersingular integral R

I
−α for 0 < α < m. The expres-

sion obtained by them is the following:

((−Δ)
α
2 f)(x) =

1

dm

∫
Rm

(Δl
tf)(x)

|t|α+m
dt, (l > α), (3.7)

where (Δl
tf)(x) = (E − τt)

lf(x) =

l∑
k=0

(−1)k
(

l
k

)
f(x− kt) and

dm(l, α) = 2−απ1+m
2 Al(α)

Γ(1+α
2
)Γ(α+m

2
)sin(απ

2
)
with Al(α) =

l∑
k=0

(−1)k−1
(

l
k

)
kα.

On the other hand, the following properties are well known:

5. F(Δf)(w) = |w|2F(f)(w), (3.8)

6. F(RIαf)(w) = |w|−αF(f)(w), (3.9)

where F is the classical coupled m-dimensional Fourier transform. However,
we can not use (3.7) to give the classical Laplacian or the Riesz’s potential
(3.1) a biunivocal form as follow:

Δf(x) = F−1(|w|2F(f))(x) (3.10)

and

(RIαf)(x) = F−1(|w|−αF(f))(x). (3.11)

Therefore, the following definition, used by many authors in the literature
to define the inverse of the Riesz’s operator (1.17), is ambiguous:

(−Δ)
α
2 f(x) = R

I
−αf(x) = F−1((|w|αF(f))(x). (3.12)

We will show in Subsection 3.2 that we can introduce several fractional
inverse operator of (3.1) which verify (3.12).

3.2. New definitions of the fractional Riesz Laplacian

Following the Riesz potential (3.1) and the properties (3.3)-(3.5), and
the technique used to define the Riemann–Liouville fractional derivative,
for suitable functions f(x), (x ∈ R

m), and n ∈ N such that whether m > 1
then n = −[−α] , but whether m = 1 then n = −[α] and {α} = α − [α],
where [•] is used to note the integer part of the argument.
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We can introduce the following explicit definitions of the inverse oper-
ators on the left of the Riesz m-dimensional elliptic potential (3.1):

1. ((−Δ)αf) (x) := (−Δ)n(I2n−2αf)(x), (3.13)

2. (Δαf) (x) := −(−Δ)n(I2n−2αf)(x), (3.14)

3.
(
CΔαf

)
(x) := −(−1)n(I2n−2αΔnf)(x). (3.15)

Any of these new operators verify the Fourier property requested in
(3.12):

F((−Δ)αf)(w) = F(−Δαf)(k) = F(−CΔαf)(k) = |w|2αF(f)(w). (3.16)

We consider that the new definitions given by (3.13)-(3.15):

• Will permit to review the many theoretical results in the framework
of the PDE theory presented in the literature by many authors
with the objective to proof some of them under weaker hypothesis.
See, for example, the above mentioned references by Luis Caffarelli,
Juan L. Vázquez, Xavier Cabré or Luis Silvestre, among other many
papers on this topic.

• From the point of view of the real applications such definitions could
open a new way to arrange many investigations on isotropic spaces
stopped from long time ago. And following the same techniques
that in the classical case on anisotropic spaces.

• Moreover, such definition will permit to develop more suitable and
accuracy numerical estimations to get the solutions of many applied
fractional models in n-dimensional spaces involving the fractional
Laplacian.

3.3. Some pieces of Chapter II of the paper by Riesz

Fig. 3.1: Pieces of paper by Riesz (1949): Index Chap. II.
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Fig. 3.2: Pieces of paper by Riesz (1949): Chap. II a)
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Fig. 3.3: Pieces of paper by Riesz (1949): Chap. II b)
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3.4. Definitions of the fractional Laplacian
for anisotropic media

It is well known that the models involving the classical Laplacian are
suitable only for isotropic media, also the models that involve the fractional
Laplacian defined in Subsection 2.2 are suitable for isotropic media. How-
ever, they can be used on anisotropic media using same technique that in
the classical case, that is through a tensor that characterize such kind of
media.

Although this is not the main objective of this note we must remark that
the classical Laplacian could be defined as the inner product of two gradient
operators on a suitable space of functions. Following such guide, many
authors have given the following definition based in a natural definition
of fractional gradient, which is directly suitable to be used on anisotropic
media:

(Δ)αU(x, y, z) := (∇α.∇αU)(x, y, z), (3.17)

where (∇αU)(x, y, z) = (Dα
xU,D

β
yU,D

γ
zU), α = (α, β, γ), 0 < α, β, γ � 1,

and the components of the fractional gradient ∇α are any suitable one-
dimensional spatial fractional derivative of order between 0 and 1, for exam-
ple, they could be the Caputo or Riemann–Liouville fractional derivative,
etc.

On the other hand, other possible definition could be the following one:

(ΔαU)(x, y, z) = (Dα
xU +Dβ

yU +Dγ
zU), (1 < α, β, γ � 2). (3.18)

4. Riesz hyperbolic potentials and fractional m-dimensional
coupled hyperbolic differential operator

Here we are interesting just in the Riesz potential operator correspond-
ing to the hyperbolic case introduced in Chapter III of the mentioned paper
by Riesz [18].

4.1. Hyperbolic m-dimensional Riesz potential

The Riesz’s potential operator corresponding to the hyperbolic case, is
given by:

RIαf(x) :=
1

Hm(α)

∫
Dx

s

f(y)

|x− y|m−α dy, (4.1)

where α > m−2, m > 1, Dx
s is given by certain cone (see bellow Fig. 4.1),

f is a suitable function, and with the normalized constant

Hm(α) = π
m−2

2 2α−1Γ(
α

2
)Γ(

α+ 2−m

2
), (4.2)
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in order to verify the identity RIIα(ex1) = ex1 and x = (x1, x2, ..., xm). The
operator (4.1) verifies the following three properties, which are similar to
such mentioned above for the Riemann–Liouville fractional operator:

1. RI0f(x) = lim
α→0

RIαf(x) = f(x), (α > 0), (4.3)

2. RIαRIβf(x) =R Iα+β
a+ f(x), (α, β > m− 2), (4.4)

3. � RIα+2f(x) =R Iαf(x), (α > m− 2), (4.5)

where

� =

(
δ

δx1
− δ

δx2
− δ

δx3
− ...

δ

δxm

)
. (4.6)

4.2. New definitions of the fractional hyperbolic operator
or Lorentzian Laplacian

Following the above three properties proved by Riesz, the correspond-
ing analytic prolongation of the Riesz hyperbolic integral (see [18]) and the
technique used in the elliptic case, we can easily introduce an explicit defi-
nition of the fractional Riesz hyperbolic differential operator or Lorentzian
Laplacian as the corresponding left-side inverse to the mentioned hyper-
bolic Riesz Integral (4.1), for suitable functions f(x), (x ∈ R

m, α > 0,
m > 1, and n, l ∈ N such that n = −[−α]; l = m+ n− 2, are given by:

1. (�αf) (x) := �l(RI l−αf)(x), (4.7)

2. (c�αf) (x) :=
(
RI l−α�lf

)
(x). (4.8)

4.3. Some pieces of Chapter III of the paper by Riesz

Fig. 4.1: Pieces of paper by Riesz (1949): Cone used in hyperbolic case
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Fig. 4.2: Pieces of paper by Riesz (1949): Chap. III a)
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Fig. 4.3: Pieces of paper by Riesz (1949): Chap. III b)
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Fig. 4.4: Pieces of paper by Riesz (1949): Chap. III c)
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