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Abstract

In this paper, we study nonlocal boundary value problems of fractional
differential equations and inclusions with slit-strips integral boundary con-
ditions. We show the existence and uniqueness of solutions for the single
valued case (equations) by means of classical contraction mapping principle
while the existence result is obtained via a fixed point theorem due to D.
O’Regan. The existence of solutions for the multivalued case (inclusions)
is established via nonlinear alternative for contractive maps. The results
are well illustrated with the aid of examples.
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1. Introduction

Fractional differential equations have been extensively investigated by
several researchers in recent years. The sphere of study for these equations
covers theoretical treatment, analytic and numerical methods of solutions,
and applications in a variety of disciplines in physical and technical sciences.
Examples include biophysics, blood flow phenomena, control theory, wave
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propagation, signal and image processing, viscoelasticity, percolation, iden-
tification, fitting of experimental data, economics, etc. [28, 20, 29, 31, 19].
As a matter of fact, fractional calculus has evolved into an interesting field
of research and its tools have significantly improved the modelling tech-
niques. It has been mainly due to the fact that fractional-order operators
are nonlocal in nature and take into account the history of many important
materials and processes. The literature on linear and nonlinear boundary
value problems of fractional order, involving boundary conditions of diverse
nature, is also quite enriched now. For some recent work on the topic, see
[7, 22, 30, 14, 6, 1, 10, 4, 25, 15, 32] and the references therein.

Nonlocal Cauchy problems are regarded as more practical than the clas-
sical Cauchy problems with the initial conditions, see [9, 8]. Many kinds of
nonlocal problems have been studied in the last few decades. The topic of
nonlocal integral boundary conditions has also attracted a considerable at-
tention. More recently, the authors [2] discussed the existence of solutions
for fractional differential equations with slit-strips type integral boundary
conditions. In the present work, we consider a modified version of the
problem investigated in [2] by replacing the initial condition with a nonlo-
cal boundary condition. Precisely, we study the following boundary value
problem:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
cDqx(t) = f(t, x(t)), t ∈ [0, 1], 1 < q ≤ 2,

x(0) = h(x),

x(μ) = a

∫ α

0
x(s)ds + b

∫ 1

β
x(s)ds, 0 < α < μ < β < 1,

(1.1)

where cDq denotes the Caputo fractional derivative of order q, f : [0, 1] ×
R → R and h : C([0, 1],R) → R are given continuous functions, and a, b are
real constants.

We emphasize that the integral boundary condition in (1.1) can be
interpreted as the sum of the influences due to finite strips of arbitrary
lengths is proportional to the value of the unknown function at an arbitrary
position (nonlocal point) in the slit (a part of the boundary off the two
strips), and the nonlocal term h(x) in (1.1) may be understood as h(x) =∑p

j=1 κjx(tj) where κj , j = 1, . . . , p, are given constants and 0 < t1 < . . . <
tp ≤ 1. For some real world problems and engineering applications involving
the strip conditions similar to the ones considered in the present study, we
refer the reader to the works [18, 26, 5, 23].
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As a second problem, we study the multivalued analogue of problem
(1.1) given by⎧⎪⎪⎪⎨⎪⎪⎪⎩

cDqx(t) ∈ F (t, x(t)), t ∈ [0, 1], 1 < q ≤ 2,

x(0) = h(x),

x(μ) = a

∫ α

0
x(s)ds + b

∫ 1

β
x(s)ds, 0 < α < μ < β < 1,

(1.2)

where F : [0, 1] × R → P(R) is a multivalued map, P(R) is the family of
all nonempty subsets of R, h(x) and a, b are the same as defined in the
problem (1.1). For some recent work on fractional multivalued problems,
see ([16, 12, 11, 3]) and the references therein.

The paper is organized as follows. In Section 2, we recall some basic
definitions from fractional calculus and establish a lemma which plays a
pivotal role in the sequel. Section 3 deals with the existence results for the
problem (1.1) which are shown by applying Banach’s contraction principle
and a fixed point theorem due to D. O’Regan. In Section 4, we discuss
the existence of solutions for the problem (1.2) by means of the nonlinear
alternative for contractive maps.

2. Preliminaries

In this section, some basic definitions on fractional calculus and an
auxiliary lemma are presented [28, 20].

Definition 2.1. The Riemann-Liouville fractional integral of order q
for a continuous function g is defined as

Iqg(t) =
1

Γ(q)

∫ t

0

g(s)

(t− s)1−q
ds, q > 0,

provided the integral exists.

Definition 2.2. For at least n-times continuously differentiable func-
tion g : [0,∞) → R, the Caputo derivative of fractional order q is defined
as

cDqg(t) =
1

Γ(n− q)

∫ t

0
(t− s)n−q−1g(n)(s)ds, n− 1 < q < n, n = [q] + 1,

where [q] denotes the integer part of the real number q.
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Lemma 2.1. For any y ∈ C([0, 1],R), the unique solution of the linear
fractional boundary value problem⎧⎪⎪⎪⎨⎪⎪⎪⎩

cDqx(t) = y(t), 1 < q ≤ 2, t ∈ [0, 1]

x(0) = h(x),

x(μ) = a

∫ α

0
x(s)ds + b

∫ 1

β
x(s)ds, 0 < α < μ < β < 1,

(2.1)

is

x(t) =

∫ t

0

(t− s)q−1

Γ(q)
y(s)ds+

t

A

{
a

∫ α

0

∫ s

0

(s− τ)q−1

Γ(q)
y(τ)dτds

+b

∫ 1

β

∫ s

0

(s− τ)q−1

Γ(q)
y(τ)dτds −

∫ μ

0

(μ− s)q−1

Γ(q)
y(s)d ds

}
+
[
1− t

A
(1− aα− b(1− β))

]
h(x),

(2.2)

where

A = μ− aα2

2
− b(1− β2)

2
�= 0. (2.3)

P r o o f. It is well known that the general solution of the fractional
differential equation in (2.1) can be written as

x(t) = c0 + c1t+

∫ t

0

(t− s)q−1

Γ(q)
y(s)ds, (2.4)

where c0, c1 ∈ R are arbitrary constants.
Applying the given boundary conditions, we find that c0 = h(x), and

c1 =
1

A

{
a

∫ α

0

∫ s

0

(s− τ)q−1

Γ(q)
y(τ)dτds + b

∫ 1

β

∫ s

0

(s− τ)q−1

Γ(q)
y(τ)dτds

−
∫ μ

0

(μ− s)q−1

Γ(q)
y(s)d ds− {1− aα− b(1− β)}h(x)

}
.

Substituting the values of c0, c1 in (2.4), we get (2.2). This completes the
proof. �

3. Existence results for single-valued problem

We denote by C = C([0, 1],R) the Banach space of all continuous func-
tions from [0, 1] → R endowed with a topology of uniform convergence with
the norm defined by ‖x‖ = sup{|x(t)| : t ∈ [0, 1]}. Also by L1([0, 1],R) we
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denote the Banach space of measurable functions x : [0, 1] → R which are

Lebesgue integrable and normed by ‖x‖L1 =

∫ 1

0
|x(t)|dt.

In view of Lemma 2.1, we define an operator P : C → C by

(Px)(t) =

∫ t

0

(t− s)q−1

Γ(q)
f(s, x(s))ds

+
t

A

{
a

∫ α

0

∫ s

0

(s− τ)q−1

Γ(q)
f(τ, x(τ))dτds

+b

∫ 1

β

∫ s

0

(s− τ)q−1

Γ(q)
f(τ, x(τ))dτds

−
∫ μ

0

(μ− s)q−1

Γ(q)
f(s, x(s))ds

}
+
[
1− t

A
(1− aα− b(1− β))

]
h(x) t ∈ [0, 1].

(3.1)

Let us define P1,2 : C → C by

(P1x)(t) =

∫ t

0

(t− s)q−1

Γ(q)
f(s, x(s))ds

+
t

A

{
a

∫ α

0

∫ s

0

(s − τ)q−1

Γ(q)
f(τ, x(τ))dτds

+b

∫ 1

β

∫ s

0

(s− τ)q−1

Γ(q)
f(τ, x(τ))dτds

−
∫ μ

0

(μ − s)q−1

Γ(q)
f(s, x(s))ds

}
,

(3.2)

and

(P2x)(t) =
[
1− t

A
(1− aα− b(1− β))

]
h(x). (3.3)

Clearly

(Px)(t) = (P1x)(t) + (P2x)(t), t ∈ [0, 1]. (3.4)

For convenience we introduce the notations:

η :=
1

Γ(q + 1)
+

1

|A|

{
|a| αq+1

Γ(q + 2)
+ |b|1 − βq+1

Γ(q + 2)
+

μq

Γ(q + 1)

}
, (3.5)

and

δ := 1 +
1

|A|

∣∣∣1− aα− b(1− β)
∣∣∣. (3.6)

Theorem 3.1. Let f : [0, 1]×R → R be a continuous function. Assume
that
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(A1) |f(t, x)− f(t, y)| ≤ L‖x− y‖,∀t ∈ [0, 1], L > 0, x, y ∈ R;
(A2) h : C([0, 1],R) → R is a continuous function satisfying the condi-

tion:

|h(u)− h(v)| ≤ �‖u− v‖, � < δ−1, ∀ u, v ∈ C([0, 1],R), � > 0;

(A3) γ := Lη + δ� < 1.

Then the boundary value problem (1.1) has a unique solution.

P r o o f. For x, y ∈ C and for each t ∈ [0, 1], from the definition of P
and assumptions (A1) and (A2), we obtain

|(Px)(t) − (Py)(t)|

≤
∫ t

0

(t− s)q−1

Γ(q)
|f(s, x(s))− f(s, y(s))|ds

+
t

|A|

{
|a|

∫ α

0

∫ s

0

(s− τ)q−1

Γ(q)
|f(τ, x(τ)) − f(τ, y(τ))|dτds

+|b|
∫ 1

β

∫ s

0

(s− τ)q−1

Γ(q)
|f(τ, x(τ))− f(τ, y(τ))|dτds

+

∫ μ

0

(μ− s)q−1

Γ(q)
|f(s, x(s))− f(s, y(s))|ds

}

+
∣∣∣1− t

A
(1− aα− b(1− β))

∣∣∣|h(x)− h(y)|

≤ L‖x− y‖
[∫ t

0

(t− s)q−1

Γ(q)
ds+

1

|A|

{
|a|

∫ α

0

∫ s

0

(s− τ)q−1

Γ(q)
dτds

+|b|
∫ 1

β

∫ s

0

(s− τ)q−1

Γ(q)
dτds+

∫ μ

0

(μ− s)q−1

Γ(q)
ds

}]

+
∣∣∣1− t

A
(1− aα− b(1− β))

∣∣∣�‖x− y‖

≤ L‖x− y‖
[

1

Γ(q + 1)
+

1

|A|

{
|a| αq+1

Γ(q + 2)
+ |b|1− βq+1

Γ(q + 2)
+

μq

Γ(q + 1)

}]

+

{
1 +

1

|A|

∣∣∣1− aα− b(1− β)
∣∣∣}�‖x− y‖

= (Lη + δ�)‖x − y‖.
Hence

‖(Px) − (Py)‖ ≤ γ‖x− y‖.
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As γ < 1 by (A3), the operator P is a contraction map from the Banach
space C into itself. Hence the conclusion of the theorem follows by the
contraction mapping principle (Banach fixed point theorem). �

Our next existence result relies on a fixed point theorem due to O’Regan
in [24].

Lemma 3.1. Denote by U an open set in a closed, convex set C of a
Banach space E. Assume 0 ∈ U. Also assume that F (Ū ) is bounded and
that F : Ū → C is given by F = F1+F2, in which F1 : Ū → E is continuous
and completely continuous and F2 : Ū → E is a nonlinear contraction
(i.e., there exists a nonnegative nondecreasing function φ : [0,∞) → [0,∞)
satisfying φ(z) < z for z > 0, such that ‖F2(x) − F2(y)‖ ≤ φ(‖x − y‖) for
all x, y ∈ Ū). Then, either

(C1) F has a fixed point u ∈ Ū ; or
(C2) there exist a point u ∈ ∂U and λ ∈ (0, 1) with u = λF (u), where Ū

and ∂U, respectively, represent the closure and boundary of U.

Let
Ωr = {x ∈ C([0, 1],R) : ‖x‖ < r},

and denote the maximum number by

Mr = max{|f(t, x)| : (t, x) ∈ [0, 1] × [−r, r]}.

Theorem 3.2. Let f : [0, 1] × R → R be a continuous function.
Suppose that (A1), (A2) hold. In addition we assume that

(A4) h(0) = 0;
(A5) there exists a nonnegative function p ∈ C([0, 1],R) and a nonde-

creasing function ψ : [0,∞) → (0,∞) such that

|f(t, u)| ≤ p(t)ψ(‖u‖) for any (t, u) ∈ [0, 1] × R;

(A6) sup
r∈(0,∞)

r

ηψ(r)‖p‖ >
1

1− δ�
, where η and δ are defined in (3.5) and

(3.6) respectively.

Then the boundary value problem (1.1) has at least one solution on [0, 1].

P r o o f. By the assumption (A6), there exists a number r0 > 0 such
that

r0
ηψ(r0)‖p‖

>
1

1− δ�
. (3.7)

We shall show that the operators P1 and P2 defined by (3.2) and (3.3)
respectively, satisfy all the conditions of Lemma 3.1.
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Step 1. The operator P1 is continuous and completely continuous. We
first show that P1(Ω̄r0) is bounded. For any x ∈ Ω̄r0 , we have

‖P1x‖ ≤
∫ t

0

(t− s)q−1

Γ(q)
|f(s, x(s))|ds

+
1

|A|

{
|a|

∫ α

0

∫ s

0

(s− τ)q−1

Γ(q)
|f(τ, x(τ))|dτds

+|b|
∫ 1

β

∫ s

0

(s− τ)q−1

Γ(q)
|f(τ, x(τ))|dτds

+

∫ μ

0

(μ− s)q−1

Γ(q)
|f(s, x(s))|ds

}

≤ Mr‖p‖
[

1

Γ(q + 1)
+

1

|A|

{
|a| αq+1

Γ(q + 2)
+ |b|1− βq+1

Γ(q + 2)

+
μq

Γ(q + 1)

}]
= Mrη‖p‖.

Thus the operator P1(Ω̄r0) is uniformly bounded. For any t1, t2 ∈ [0, 1], t1 <
t2, we have

|(P1x)(t2)− (P1x)(t1)|

≤ 1

Γ(q)

∫ t1

0
[(t2 − s)q−1 − (t1 − s)q−1]|f(s, x(s))|ds

+
1

Γ(q)

∫ t2

t1

(t2 − s)q−1|f(s, x(s))|ds

+
|t2 − t1|

|A|

{
|a|

∫ α

0

∫ s

0

(s− τ)q−1

Γ(q)
|f(τ, x(τ))|dτds

+|b|
∫ 1

β

∫ s

0

(s− τ)q−1

Γ(q)
|f(τ, x(τ))|dτds +

∫ μ

0

(μ − s)q−1

Γ(q)
|f(s, x(s))|ds

}

≤ Mr

Γ(q)

∫ t1

0
[(t2 − s)q−1 − (t1 − s)q−1]ds +

Mr

Γ(q)

∫ t2

t1

(t2 − s)q−1ds

+
Mr|t2 − t1|

|A|

[
1

Γ(q + 1)
+

1

|A|

{
|a| αq+1

Γ(q + 2)
+ |b|1− βq+1

Γ(q + 2)
+

μq

Γ(q + 1)

}]
,
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which is independent of x and tends to zero as t2 − t1 → 0. Thus, P1 is
equicontinuous. Hence, by the Arzelá-Ascoli Theorem, P1(Ω̄r0) is a rela-
tively compact set. Now, let xn ⊂ Ω̄r0 with ‖xn − x‖ → 0. Then the limit
‖xn(t)−x(t)‖ → 0 is uniformly valid on [0, 1]. From the uniform continuity
of f(t, x) on the compact set [0, 1]× [−r0, r0], it follows that ‖f(t, xn(t))−
f(t, x(t))‖ → 0 is uniformly valid on [0, 1]. Hence ‖P1xn − P1x‖ → 0 as
n → ∞ which proves the continuity of P1. This completes the proof of Step
1.

Step 2. The operator P2 : Ω̄r0 → C([0, 1],R) is contractive. This is a
consequence of (A2). For x, y ∈ C([0, 1],R), we have

|P2x(t)− P2y(t)| =
∣∣∣1− t

A
(1− aα− b(1− β))

∣∣∣|h(x) − h(y)|

≤
{
1 +

1

|A|
∣∣a(1− α)− 1

∣∣}|h(x)− h(y)|,

≤ δ�‖x − y‖,
which, on taking supremum over t ∈ [0, 1], yields

‖P2x− P2y‖ ≤ L0‖x− y‖, L0 = δ� < 1.

This shows that P2 is a contraction as L0 < 1.
Step 3. The set P(Ω̄r0) is bounded. The assumptions (A2) and (A4)

imply that

‖P2(x)‖ ≤ δ�r0,

for any x ∈ Ω̄r0 . This, with the boundedness of the set P1(Ω̄r0) implies that
the set P(Ω̄r0) is bounded.

Step 4. Finally, it will be shown that the case (C2) in Lemma 3.1 does
not hold. On the contrary, we suppose that (C2) holds. Then, we have
that there exist λ ∈ (0, 1) and x ∈ ∂Ωr0 such that x = λPx. So, we have
‖x‖ = r0 and

x(t) = λ

∫ t

0

(t− s)q−1

Γ(q)
f(s, x(s))ds

+λ
t

A

{
a

∫ α

0

∫ s

0

(s− τ)q−1

Γ(q)
f(τ, x(τ))dτds

+b

∫ 1

β

∫ s

0

(s− τ)q−1

Γ(q)
f(τ, x(τ))dτds

−
∫ μ

0

(μ− s)q−1

Γ(q)
f(s, x(s))ds

}

+λ
[
1− t

A
(1− aα− b(1 − β))

]
h(x), t ∈ [0, 1].
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Using the assumptions (A4)− (A6), we get

r0 ≤ ηψ(r0)‖p‖+ δ�r0.

Thus, we get a contradiction:
r0

ηψ(r0)‖p‖
≤ 1

1− δ�
.

Thus the operators P1 and P2 satisfy all the conditions of Lemma 3.1.
Hence, the operator P has at least one fixed point x ∈ Ω̄r0 , which is the
solution of the problem (1.1). This completes the proof. �

Example 3.1. Consider the following fractional boundary value prob-
lem ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

cD8/5x(t) = f(t, x(t), t ∈ [0, 1],

x(0) =
1

4
+

|x(1/5)|
12(1 + |x(1/5)|) ,

x (2/3) =
1

2

∫ 1/4

0
x(s)ds+

∫ 1

3/4
x(s)ds.

(3.8)

Here, q = 8/5, a = 1/2, b = 1, α = 1/4, μ = 2/3 β = 3/4, and

h(x) =
1

4
+

|x(1/5)|
12(1 + |x(1/5)|) . Obviously |h(x) − h(y)| ≤ �‖x − y‖ with

� = 1/12. Further, A = 83/192, η ≈ 1.881496, δ ≈ 2.445783.

(a) Let us take

f(t, x) =
1√

t2 + 16

(
cos x+

1

6
tan−1(x/2)

)
+

t

t3 + 8
(3.9)

in the problem (3.8). Then |f(t, x)− f(t, y)| ≤ L‖x− y‖ with L = 1/3 and
γ = Lη + δ� ≈ 0.830981 < 1. Thus, the all the conditions of Theorem 3.1
with f(t, x) given by (3.9) are satisfied and hence it follows by the conclu-
sion of Theorem 3.1 that there exists a unique solution for the problem (3.8).

The next example is concerned with the illustration of Theorem 3.2.

(b) Consider problem (3.8) with

f(t, x) =
1

9

(
1√
t+ 1

+ 1

)(
t+ |x|+ | sinx|

1 + | sinx|

)
, (3.10)

and h(x) =
|x(1/5)|

12(1 + |x(1/5)|) . Clearly |f(t, x)| ≤ p(t)ψ(‖x‖), where

p(t) =
1

9

(
1√
t+ 1

+ 1

)
, ψ(‖x‖) = 2 + ‖x‖.
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Moreover, sup
r∈(0,∞)

r

ηψ(r)‖p‖ ≈ 2.391714,
1

1− δ�
≈ 1.255990, that is, the

condition (A6) holds. Hence the hypothesis of Theorem 3.2 holds. In
consequence, by the conclusion of Theorem 3.2, the problem (3.8) with
chosen values of f(t, x) and h(x) has a solution on [0, 1].

4. Existence results for multivalued problem (1.2)

Let us recall some basic definitions on multi-valued maps [13, 17]. For
a normed space (X, ‖ · ‖), let Pcl(X) = {Y ∈ P(X) : Y is closed}, Pb(X) =
{Y ∈ P(X) : Y is bounded}, Pcp(X) = {Y ∈ P(X) : Y is compact}, and
Pcp,c(X) = {Y ∈ P(X) : Y is compact and convex}. A multi-valued map
G : X → P(X) is convex (closed) valued if G(x) is convex (closed) for all
x ∈ X. The map G is bounded on bounded sets if G(B) = ∪x∈BG(x) is
bounded in X for all B ∈ Pb(X) (i.e. supx∈B{sup{|y| : y ∈ G(x)}} < ∞).
G is called upper semi-continuous (u.s.c.) on X if for each x0 ∈ X, the
set G(x0) is a nonempty closed subset of X, and if for each open set N
of X containing G(x0), there exists an open neighborhood N0 of x0 such
that G(N0) ⊆ N. G is said to be completely continuous if G(B) is relatively
compact for every B ∈ Pb(X). If the multi-valued map G is completely
continuous with nonempty compact values, then G is u.s.c. if and only if G
has a closed graph, i.e., xn → x∗, yn → y∗, yn ∈ G(xn) imply y∗ ∈ G(x∗).
G has a fixed point if there is x ∈ X such that x ∈ G(x). The fixed point
set of the multivalued operator G will be denoted by FixG. A multivalued
map G : [0; 1] → Pcl(R) is said to be measurable if for every y ∈ R, the
function

t 
−→ d(y,G(t)) = inf{|y − z| : z ∈ G(t)}
is measurable.

Definition 4.1. A function x ∈ AC2([0, 1],R) is a solution of the

problem (1.2) if x(0) = h(x), x(μ) = a

∫ α

0
x(s)ds + b

∫ 1

β
x(s)ds, and

there exists a function f ∈ L1([0, 1],R) such that f(t) ∈ F (t, x(t)) a.e. on
[0, 1] and
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x(t) =

∫ t

0

(t− s)q−1

Γ(q)
f(s)ds+

t

A

{
a

∫ α

0

∫ s

0

(s− τ)q−1

Γ(q)
f(τ)dτds

+b

∫ 1

β

∫ s

0

(s − τ)q−1

Γ(q)
f(τ)dτds −

∫ μ

0

(μ− s)q−1

Γ(q)
f(s)ds

}
+
[
1− t

A
(1− aα− b(1− β))

]
h(x).

(4.1)

Here AC1([0, 1],R) will denote the space of functions x : [0, 1] → R that are
absolutely continuous and whose second derivative is absolutely continuous.

Definition 4.2. A multivalued map F : [0, 1] × R → P(R) is said to
be Carathéodory if

(i) t 
−→ F (t, x) is measurable for each x ∈ R;
(ii) x 
−→ F (t, x) is upper semicontinuous for almost all t ∈ [0, 1];

Further a Carathéodory function F is called L1−Carathéodory if

(iii) for each a > 0, there exists ϕa ∈ L1([0, 1],R+) such that

‖F (t, x)‖ = sup{|v| : v ∈ F (t, x)} ≤ ϕa(t)

for all ‖x‖ ≤ a and for a. e. t ∈ [0, 1].

For each y ∈ C([0, 1],R), define the set of selections of F by

SF,y := {v ∈ L1([0, 1],R) : v(t) ∈ F (t, y(t)) for a.e. t ∈ [0, 1]}.
The following lemma will be used in the sequel.

Lemma 4.1. ([21]) Let X be a Banach space. Let F : [0, 1] × R →
Pcp,c(X) be an L1− Carathéodory multivalued map and let Θ be a linear
continuous mapping from L1([0, 1],X) to C([0, 1],X). Then the operator

Θ ◦ SF : C([0, 1],X) → Pcp,c(C([0, 1],X)), x 
→ (Θ ◦ SF )(x) = Θ(SF,x)

is a closed graph operator in C([0, 1],X) × C([0, 1],X).

To prove our main result in this section, we use the following form of
the Nonlinear Alternative for contractive maps [27, Corollary 3.8].

Theorem 4.1. Let X be a Banach space, and D a bounded neigh-
borhood of 0 ∈ X. Let Z1 : X → Pcp,c(X) and Z2 : D̄ → Pcp,c(X) two
multi-valued operators satisfying
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(a) Z1 is contraction, and
(b) Z2 is u.s.c and compact.

Then, if G = Z1 + Z2, either

(i) G has a fixed point in D̄ or
(ii) there is a point u ∈ ∂D and λ ∈ (0, 1) with u ∈ λG(u).

Theorem 4.2. Assume that (A2) holds. In addition we suppose that:

(H1) F : [0, 1] × R → Pcp,c(R) is L
1−Carathéodory multivalued map;

(H2) there exists a continuous nondecreasing function ψ : [0,∞) →
(0,∞) and a function p ∈ C([0, 1],R+) such that

‖F (t, x)‖P := sup{|y| : y ∈ F (t, x)} ≤ p(t)ψ(‖x‖) for each (t, x) ∈ [0, 1]×R;

(H3) there exists a number M > 0 such that

(1− δ�)M

ψ(M)η‖p‖ > 1, (4.2)

where η, δ are defined in (3.5) and (3.6) respectively.

Then the boundary value problem (1.2) has at least one solution on [0, 1].

P r o o f. To transform the problem (1.2) to a fixed point, we introduce
an operator N : C([0, 1],R) −→ P(C([0, 1],R)) defined by

N (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h ∈ C([0, 1],R) :

h(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ t

0

(t− s)q−1

Γ(q)
f(s)ds

+ t
A

{
a
∫ α
0

∫ s
0

(s−τ)q−1

Γ(q) f(τ)dτds

+b

∫ 1

β

∫ s

0

(s− τ)q−1

Γ(q)
f(τ)dτds

−
∫ μ
0

(μ−s)q−1

Γ(q) f(s)ds

}
+
[
1− t

A
(1− aα− b(1− β))

]
h(x),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
for f ∈ SF,x.

Now, we define two operators A1 : C([0, 1],R) −→ C([0, 1],R) by

A1x(t) =
[
1− t

A
(1− aα− b(1− β))

]
h(x), (4.3)
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and a multi-valued operator A2 : C([0, 1],R) −→ P(C([0, 1],R)) by

A2(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h ∈ C([0, 1],R) :

h(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ t

0

(t− s)q−1

Γ(q)
f(s)ds

+
t

A

{
a

∫ α

0

∫ s

0

(s− τ)q−1

Γ(q)
f(τ)dτds

+b

∫ 1

β

∫ s

0

(s− τ)q−1

Γ(q)
f(τ)dτds

−
∫ μ

0

(μ − s)q−1

Γ(q)
f(s)ds

}
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.4)

Observe that N = A1 +A2. We shall show that the operators A1 and A2

satisfy all the conditions of Theorem 4.1 on [0, 1]. The proof consists of
several steps and claims.

Step 1: We show that A1 is a contraction on C([0, 1],R). The proof is
similar to the one for operator P2 in Step 2 of Theorem 3.2.

Step 2: A2 is compact and convex valued and it is completely continuous.
This will be established in several claims.

Claim I: A2 maps bounded sets into bounded sets in C([0, 1],R). Let Br =
{x ∈ C([0, 1],R) : ‖x‖ ≤ r} be a bounded set in C([0, 1],R). Then, for each
h ∈ A2(x), x ∈ Bρ, there exists f ∈ SF,x such that

h(t) =

∫ t

0

(t− s)q−1

Γ(q)
f(s)ds+

t

A

{
a

∫ α

0

∫ s

0

(s− τ)q−1

Γ(q)
f(τ)dτds

+b

∫ 1

β

∫ s

0

(s− τ)q−1

Γ(q)
f(τ)dτds−

∫ μ

0

(μ− s)q−1

Γ(q)
f(s)ds

}
.

Then, for t ∈ [0, 1], we have

|h(t)|

≤
∫ t

0

(t− s)q−1

Γ(q)
|f(s)|ds+ 1

|A|

{
|a|

∫ α

0

∫ s

0

(s− τ)q−1

Γ(q)
|f(τ)|dτds

+|b|
∫ 1

β

∫ s

0

(s− τ)q−1

Γ(q)
|f(τ)|dτds +

∫ μ

0

(μ − s)q−1

Γ(q)
|f(s)|ds

}

≤ ψ(‖x‖)‖p‖
[

1

Γ(q + 1)
+

1

|A|

{
|a| αq+1

Γ(q + 2)
+ |b|1− βq+1

Γ(q + 2)
+

μq

Γ(q + 1)

}]
.
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Thus,

‖h‖ ≤ ψ(r)η‖p‖.

Claim II: A2 maps bounded sets into equi-continuous sets. Let t1, t2 ∈ [0, 1]
with t1 < t2 and x ∈ Bρ. Then, for each h ∈ A2(x), we obtain

|h(t2)− h(t1)| ≤ ψ(‖x‖)‖p‖
Γ(q)

∫ t1

0
[(t2 − s)q−1 − (t1 − s)q−1]ds

+
ψ(‖x‖)‖p‖

Γ(q)

∫ t2

t1

(t2 − s)q−1ds

+
ψ(‖x‖)‖p‖|t2 − t1|

|A|

[
1

Γ(q + 1)
+

1

|A|

{
|a| αq+1

Γ(q + 2)

+|b|1− βq+1

Γ(q + 2)
+

μq

Γ(q + 1)

}]
.

Obviously the right hand side of the above inequality tends to zero inde-
pendently of x ∈ Bρ as t2−t1 → 0. Therefore it follows by the Ascoli-Arzelá
theorem that A2 : C([0, 1],R) → P(C([0, 1],R)) is completely continuous.
Claim III: A2 has a closed graph. Let xn → x∗, hn ∈ A2(xn) and hn → h∗.
Then we need to show that h∗ ∈ A2(x∗). Associated with hn ∈ A2(xn),
there exists fn ∈ SF,xn such that for each t ∈ [0, 1],

hn(t) =

∫ t

0

(t− s)q−1

Γ(q)
fn(s)ds+

t

A

{
a

∫ α

0

∫ s

0

(s− τ)q−1

Γ(q)
fn(τ)dτds

+b

∫ 1

β

∫ s

0

(s− τ)q−1

Γ(q)
f(τ)dτds−

∫ μ

0

(μ− s)q−1

Γ(q)
fn(s)ds

}
.

Thus it suffices to show that there exists f∗ ∈ SF,x∗ such that for each
t ∈ [0, 1],

h∗(t) =

∫ t

0

(t− s)q−1

Γ(q)
f∗(s)ds+

t

A

{
a

∫ α

0

∫ s

0

(s− τ)q−1

Γ(q)
f∗(τ)dτds

+b

∫ 1

β

∫ s

0

(s− τ)q−1

Γ(q)
f(τ)dτds−

∫ μ

0

(μ− s)q−1

Γ(q)
f∗(s)ds

}
.
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Let us consider the linear operator Θ : L1([0, 1],R) → C([0, 1],R) given
by

f 
→ Θ(f)(t) =

∫ t

0

(t− s)q−1

Γ(q)
f(s)ds+

t

A

{
a

∫ α

0

∫ s

0

(s− τ)q−1

Γ(q)
f(τ)dτds

+b

∫ 1

β

∫ s

0

(s− τ)q−1

Γ(q)
f(τ)dτds −

∫ μ

0

(μ − s)q−1

Γ(q)
f(s)ds

}
.

Observe that

‖hn(t)− h∗(t)‖

=

∥∥∥∥∥
∫ t

0

(t− s)q−1

Γ(q)
(fn(s)− f∗(s))ds

+
t

A

{
a

∫ α

0

∫ s

0

(s− τ)q−1

Γ(q)
(fn(τ)− f∗(τ))dτds

+b

∫ 1

β

∫ s

0

(s − τ)q−1

Γ(q)
f(τ)dτds−

∫ μ

0

(μ− s)q−1

Γ(q)
(fn(s)− f∗(s))ds

}∥∥∥∥∥
→ 0, as n → ∞.

Thus, it follows by Lemma 4.1 that Θ ◦ SF is a closed graph operator.
Further, we have hn(t) ∈ Θ(SF,xn). Since xn → x∗, therefore, we have

h∗(t) =

∫ t

0

(t− s)q−1

Γ(q)
f∗(s)ds+

t

A

{
a

∫ α

0

∫ s

0

(s− τ)q−1

Γ(q)
f∗(τ)dτds

+b

∫ 1

β

∫ s

0

(s− τ)q−1

Γ(q)
f(τ)dτds−

∫ μ

0

(μ− s)q−1

Γ(q)
f∗(s)ds

}
,

for some f∗ ∈ SF,x∗. Hence A2 has a closed graph (and therefore has closed
values). In consequence, the operator A2 is compact valued.

Thus the operators A1 and A2 satisfy all the conditions of Theorem 4.1
and hence its conclusion implies either condition (i) or condition (ii) holds.
We show that the conclusion (ii) is not possible. If x ∈ λA1(x) + λA2(x)



NONLOCAL FRACTIONAL BOUNDARY VALUE . . . 277

for λ ∈ (0, 1), then there exists f ∈ SF,x such that

x(t) = λ

∫ t

0

(t− s)q−1

Γ(q)
f(s)ds+ λ

t

A

{
a

∫ α

0

∫ s

0

(s− τ)q−1

Γ(q)
f(τ)dτds

+b

∫ 1

β

∫ s

0

(s− τ)q−1

Γ(q)
f(τ)dτds−

∫ μ

0

(μ− s)q−1

Γ(q)
f(s)ds

}

+λ
[
1− t

A
(1− aα− b(1− β))

]
h(x), t ∈ [0, 1].

Following the method for proof of Claim I, we can obtain

|x(t)| ≤ ψ(‖x‖)‖p‖
[

1

Γ(q + 1)
+

1

|A|

{
|a| αq+1

Γ(q + 2)
+ |b|1 − βq+1

Γ(q + 2)

+
μq

Γ(q + 1)

}]
+
{
1 +

1

|A|
∣∣a(1− α)− 1

∣∣}�‖x‖.
Thus

‖x‖ ≤ ψ(‖x‖)η‖p‖ + δ�‖x‖. (4.5)

If condition (ii) of Theorem 4.1 holds, then there exists λ ∈ (0, 1) and
x ∈ ∂Br with x = λN (x). Then, x is a solution of (1.2) with ‖x‖ = M.
Now, by the inequality (4.5), we get

(1− δ�)M

ψ(M)η‖p‖ ≤ 1

which contradicts (4.2). Hence, N has a fixed point in [0, 1] by Theorem
4.1, and consequently the problem (1.2) has a solution. This completes the
proof. �

Example 4.1. Consider the following boundary value problem⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

cD3/2x(t) ∈ F (t, x), 0 < t < 1,

x(0) =
1

4
+

|x(1/5)|
12(1 + |x(1/5)|) ,

x (2/3) =
1

2

∫ 1/4

0
x(s)ds+

∫ 1

3/4
x(s)ds.

(4.6)

Here, q = 8/5, a = 1/2, b = 1, α = 1/4, μ = 2/3 β = 3/4, and h(x) =
1

4
+

|x(1/5)|
12(1 + |x(1/5)|) . Obviously |h(x) − h(y)| ≤ �‖x − y‖ with � = 1/12.

Further, A = 83/192, η ≈ 1.881496, δ ≈ 2.445783. Let F : [0, 1]×R → P(R)
be a multivalued map given by



278 B. Ahmad, S. Ntouyas

x → F (t, x) =

[
1

12

sin3 x

(sin3 x+ 3)
+

1

24
(t+ 1),

1

2
cos x

]
.

For f ∈ F, we have

|f | ≤ max

[
1

12

sin3 x

(sin3 x+ 3)
+

1

24
(t+ 1),

1

2
cosx

]
≤ 1

2
.

Thus,

‖F (t, x)‖P := sup{|y| : y ∈ F (t, x)} ≤ p(t)ψ(‖x‖), x ∈ R,

with p(t) = 1, ψ(‖x‖) = 1/2. By the condition (H3), we find that M >
M1, M1 ≈ 1.81570. Clearly, all the conditions of Theorem 4.2 are satisfied
and hence the problem (4.6) has at least one solution on [0, 1].
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