A novel GH13 subfamily of α -amylases with a pair of tryptophans in the helix α 3 of the catalytic TIM-barrel, the LPDlx signature in the conserved sequence region V and a conserved aromatic motif at the C-terminus^{*}

Štefan JANEČEK^{1,2**}, Andrea KUCHTOVÁ¹ & Soňa PETROVIČOVÁ^{1,2}

¹Laboratory of Protein Evolution, Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, SK-84551 Bratislava, Slovakia; e-mail: Stefan.Janecek@savba.sk

² Department of Biology, Faculty of Natural Sciences, University of SS. Cyril and Methodius, SK-91701 Trnava, Slovakia

Abstract: The α -amylase enzyme specificity has been classified in the Carbohydrate-Active enZyme (CAZy) database into the families GH13, GH57, GH119 and eventually also GH126. α -Amylase is a glycoside hydrolase (GH) that catalyses in an endo-fashion the hydrolysis of the α -1,4-glucosidic linkages in starch and related α -glucans employing the retaining reaction mechanism. The family GH13 is the main α -amylase family with more than 28,000 members and 30 different specificities. The entire family GH13 has already been divided into 40 subfamilies; the α -amylase enzyme specificity being found in the subfamilies GH13_1, 5, 6, 7, 15, 19, 24, 27, 28, 32, 36 and 37. The present *in silico* study delivers a proposal to create a novel GH13 subfamily with the specificity of α -amylase. The proposal is based on a detailed bioinformatics analysis consisting of sequence, structural and evolutionary comparison of experimentally characterized α -amylases from, e.g., *Bacillus aquimaris, Anoxybacillus* sp. SK3-4 and DT3-1 and *Geobacillus thermoleovorans*, and hypothetical proteins, accompanied by α -amylases from well-established GH13 subfamilies and by closely related amylolytic enzymes (mainly from the subfamily GH13_31). Three sequence-structural features can be ascribed to the members of the newly proposed GH13 subfamily: (i) the pair of adjacent tryptophan residues positioned between the CSR-V and CSR-II in the helix α 3 of the catalytic TIM-barrel; (ii) the sequence LPDlx in their CSR-V; and (iii) a \sim 30-residue long C-terminal region with a motif of five conserved aromatic residues. From the evolutionary point of view, the novel GH13 α -amylase subfamily is most closely related to fungal and yeast α -amylases classified in the subfamily GH13_1.

Key words: α -amylase; family GH13; GH13 subfamilies; unique sequence features; conserved sequence regions; a pair of adjacent tryptophans; evolutionary relatedness.

Abbreviations: BaqA, *Bacillus aquimaris* α -amylase; CAZy, Carbohydrate-Active enZymes; CSR, conserved sequence region; GH, glycoside hydrolase; PDB, Protein Data Bank.

Introduction

 α -Amylase (EC 3.2.1.1) is an endo-type glycoside hydrolase (GH) catalysing with the retaining mechanism the hydrolysis of the α -1,4-glucosidic linkages in starch and related α -glucans (Janecek et al. 2014). Although this enzyme specificity is generally widespread in nature, individual α -amylases produced by various bacterial, archaeal and eukaryotic organisms may differ from each other by their exact substrate preference and product specificity (Svensson 1994; Leveque et al. 2000; Stanley et al. 2005; Kelly et al. 2009; van Zyl et al. 2012; Sharma & Satyanarayana 2013; Li et al. 2014).

Within the sequence-based classification of all GHs (Henrissat 1991) incorporated in the Carbohydrate-

Active enZymes (CAZy) database (Cantarel et al. 2009), the α -amylase specificity is present in families GH13, GH57, GH119 and, conditionally, also GH126 (Janecek et al. 2014; Lombard et al. 2014). The family GH13 has been considered to be the main α -amylase family (more than 28,000 members and 30 different specificities), representing, in fact, the clan GH-H formed by families GH70 and GH77 in addition to GH13 (Kuriki & Imanaka 1999; MacGregor et al. 2001; van der Maarel et al. 2002). The family GH57 has been known as the second and smaller α -amylase family (more than 1,400 members and less than 10 specificities) (Zona et al. 2004; Palomo et al. 2011; Blesak & Janecek 2012, 2013; Park et al. 2014) recently shown as closely related with the very small fam-

** Corresponding author

^{*} Electronic supplementary material. The online version of this article (DOI:10.1515/biolog-2015-0165) contains supplementary material, which is available to authorized users.

New GH13 subfamily with α -amylase specificity

ily GH119 (Janecek & Kuchtova 2012) counting only 12 sequences with one member characterized as an α amylase (Watanabe et al. 2006; Lombard et al. 2014). With regard to the family GH126, its member characterized as an amylase active on maltooligosaccharides, amylose and glycogen exhibits clear structural similarity to β -glucan-active enzymes employing the inverting mechanism (Ficko-Blean et al. 2011), so the presence of a pure α -amylase specificity in GH126 (Lombard et al. 2014) may be considered as disputable (Janecek et al. 2014).

The α -amylase family GH13 as one of the largest CAZy GH families (Janecek et al. 2014; Lombard et al. 2014) has been in 2006 officially divided by curators into 35 subfamilies (Stam et al. 2006) in order to reflect closer functional similarities and evolutionary relatedness among members of a subfamily. Some polyspecific subfamilies, i.e. oligo-1,6-glucosidase and neopullulanase ones, were proposed earlier (Oslancova & Janecek 2002) based on unique differences in specific conserved sequence regions (CSRs) characteristic for the α -amylase family (Janecek 2002). The subfamily GH13_36 closely related to both subfamilies mentioned above covers interesting α -amylases some of which possess also the activity toward pullulan and cyclodextrins (Majzlova et al. 2013).

A few years ago two closely related α -amylases ASKA and ADTA from two Anoxybacillus species were described (Chai et al. 2012). Subsequently, a preliminary bioinformatics analysis of a homologous α -amylase from Bacillus aquimaris BaqA revealed the presence of two consecutive tryptophans positioned at the helix $\alpha 3$ of the catalytic $(\beta/\alpha)_8$ -barrel domain (i.e. the TIMbarrel), a feature discriminating this α -amylase from other well-established GH13 subfamilies with the α amylase specificity (Puspasari et al. 2013). In fact, the first biochemically characterized α -amylase with such a "double-tryptophan" sequence feature could be the AmyB from Anaerobranca gottschalkii (Ballschmiter et al. 2005), but at that time in 2005 there were obviously no clear GH13 homologues available with the same α amylase specificity. Importantly, the three-dimensional structure has already been solved for a counterpart enzyme from Geobacillus thermoleovorans GTA (Mok et al. 2013) that exhibits 100% sequence identity to a previously reported α -amylase from the same organism, strain Pizzo (Finore et al. 2011). Mok et al. (2013) pointed out that GTA possesses at its C-terminal end 5 conserved aromatic residues (phenylalanines and tyrosines), i.e. a motif that might be common for the newly forming group of $\alpha\text{-amylases.}$ Furthermore, the specific sequence signature LPDlx, representing the CSR-V positioned in domain B, could be the additional feature of interest (Puspasari et al. 2013; Ranjani et al. 2014). Very recently, an additional α -amylase from Geobacillus thermoleovorans GTA-II was found, for which its domain C has been proposed to be responsible for the enzyme adsorption to raw starch (Mehta & Satyanarayana 2014).

GH13 α -amylases have still not been ascribed to any GH13 subfamily, we have undertaken a bioinformatics study with the main goal to describe this group of α amylases as a novel GH13 subfamily. To achieve this goal, as many as possible hypothetical homologous α amylases were retrieved from sequence databases and their sequences were analysed in details in an effort to identify their unique sequence-structural features that would clearly discriminate the entire novel group from all remaining, i.e. not only α -amylase, GH13 subfamilies.

Material and methods

Sequence collection

Sequences were collected based on protein BLAST (Altshul et al. 1990) search against the non-redundant database using the entire amino acid sequence of *Bacillus aquimaris* α amylase BaqA (Puspasari et al. 2013). In addition to BaqA, the 4-5 more characterized α -amylases – two Anoxybacillus α -amylases ASKA and ADTA (Chai et al. 2012), two Geobacillus thermoleovorans α -amylases GTA and GTA-II (Finore et al. 2011; Mok et al. 2013; Mehta & Satyanarayana 2014) and eventually also the Anaerobranca gottschalkii α amylase AmyB (Ballschmiter et al. 2005) - have been recognized as potentially forming the new GH13 subfamily. Based on their comparison, the criteria for a sequence assignment to the new GH13 subfamily were as follows: (i) presence of all seven CSRs characteristic of the α -amylase family GH13 (Janecek 2002); (ii) complete catalytic machinery, i.e. the aspartic acid at the strand $\beta 4$ (CSR-II), glutamic acid at the strand $\beta 5$ (CSR-III) and aspartic acid at the strand $\beta 7$ (CSR-IV) corresponding with Asp214, Glu243 and Asp311, respectively, of the BaqA α -amylase (Puspasari et al. 2013); (iii) possessing the two consecutive tryptophans positioned at the helix $\alpha 3$ preceding the strand $\beta 4$ with the catalytic nucleophile within the catalytic TIM-barrel; (iv) the sequence signature LPDlx in the CSR-V; and (v) a motif of up to five conserved aromatic residues within the \sim 30-residue long region at the C-terminus.

Those sequences that have not possessed the complete α -amylase family GH13 catalytic machinery were eliminated despite the fact they may contain the two above-mentioned tryptophans. Any fragments, i.e. obviously incomplete sequences, were not taken into the comparison, too. Using these criteria, a set of 101 sequences of the supposedly novel GH13 α -amylase subfamily (Table S1) was obtained.

Several enzymes with non- α -amylase specificity from closely related oligo-1,6-glucosidase and neopullulanase subfamilies (Oslancova & Janecek 2002; Majzlova et al. 2013) were further added as follows: (i) five subfamily GH13_31 α glucosidases possessing the two tryptophans and the CSR-V in the version QPDLx; (ii) two hypothetical members of subfamilies GH13_29 and GH13_31 along with the currently unclassified cyclomaltodextrinase from *Flavobacterium* sp. No. 192 (Fritzsche et al. 2003) having the two tryptophans and MPDLx as the CSR-V (intermediate character); and (iii) representatives of oligo-1,6-glucosidase (Watanabe et al. 1997), α -glucosidase (Nakao et al. 1994), dextran glucosidase (Hondoh et al. 2008) and sucrose isomerase (Zhang et al. 2003) – all from the subfamily GH13_31 – with QPDLx as the CSR-V but having a phenylalanine in the position corresponding with the first of the two tryptophans.

The entire set was finally completed by selected α amylases ascribed to the individual well-established GH13 subfamilies, i.e. 1, 5, 6, 7, 15, 19, 24, 27, 28, 32, 36 and 37 (Lombard et al. 2014) that have been used in previous bioinformatics studies (Hostinova et al. 2010; DaLage et al. 2013; Majzlova et al. 2013; Puspasari et al. 2013) so that the final number of studied amylolytic enzymes and proteins was 146 (Table S1).

Evolutionary comparison

All 146 GH13 sequences were retrieved from GenBank (Benson et al. 2014) and UniProt (UniProt Consortium 2014) sequence databases and the set was aligned using the program Clustal-X (Larkin et al. 2007). A subtle manual tuning was done in order to maximize similarities, especially with regard to aligning the individual CSRs. The boundaries of the CSRs were defined based on previous bioinformatics studies (Janecek 2002; Oslancova & Janecek 2002; Da Lage et al. 2004; Majzlova et al. 2013; Puspasari et al. 2013). The evolutionary tree was based on the final alignment of the sequence segment corresponding to 269-residue long region of BaqA α -amylase (Puspasari et al. 2013) spanned almost the entire catalytic $(\beta/\alpha)_8$ -barrel domain including the domain B from the beginning of the CSR-VI (strand $\beta 2$; starting with Gly82) to the end of the CSR-VII (strand β 8; ending with Ser350). The tree was calculated as a Phylip-tree type using the neighbour-joining clustering (Saitou & Nei 1987) and the bootstrapping procedure - the number of bootstrap trials used was 1,000 (Felsenstein 1985) implemented in the Clustal-X package (Larkin et al. 2007). The tree was displayed with the program iTOL (Letunic & Bork 2007).

The sequence logo for the CSRs was created using the WebLogo 3.0 server (http://weblogo.threeplusone.com/; Crooks et al. 2004).

Tertiary structure comparison

Three-dimensional structures were retrieved from the Protein Data Bank (PDB; Berman et al. 2000) for: (i) the α -amylase GTA from *Geobacillus thermoleovorans* (PDB code: 4E2O; Mok et al. 2013) as a representative of the novel α -amylase GH13 subfamily; and (ii) if available, for members of all remaining subfamilies and groups listed in Table S1. In the case there was not a threedimensional structure available in any of the remaining subfamilies and groups mentioned above (e.g. the α -amylase GH13 subfamilies 19, 27, 32 and 37), structural models for their representatives were created using the Phyre2 server (www.sbg.bio.ic.ac.uk/phyre2/; Kelley & Sternberg 2009). The model was also created for the α -amylase BaqA from *Bacillus aquimaris* (Puspasari et al. 2013) as a leading representative of the novel α -amylase GH13 subfamily.

The individual structures (regardless they represented a real structure or a structural model) were compared to both the real α -amylase GTA from *Geobacillus thermoleovo*rans and the model of the α -amylase BaqA from *Bacillus aquimaris*, making their superimposition using the program MultiProt (Shatsky et al. 2004).

Results and discussion

Sequence comparison

The present bioinformatics study delivers a proposal to create a novel GH13 subfamily exhibiting the α amylase specificity. This subfamily is represented here by six closely related and experimentally characterized α -amylases described in the literature and 95 additional hypothetical proteins caught by BLAST search (Table S1). The former α -amylases, listed chronologically, are as follows: (i) AmyB from Anaerobranca gottschalkii (Ballschmiter et al. 2005); (ii) AmyA from Geobacillus thermoleovorans subsp. stromboliensis – strain Pizzo (Finore et al. 2011); (iii) ASKA and ADTA from Anoxybacillus sp. SK3-4 and DT3-1, respectively (Chai et al. 2012); (iv) BaqA from *Bacillus aquimaris* (Puspasari et al. 2013); (v) GTA from Geobacillus thermoleovorans (Mok et al. 2013) (identical to that from the strain Pizzo); and (vi) GTA-II from Geobacillus thermoleovorans (Mehta & Satyanarayana 2014). The set of studied enzymes was completed (Table S1) by 32 representatives of all individual GH13 subfamilies with the α amylase specificity, i.e. the subfamilies 1, 5, 6, 7, 15, 19, 24, 27, 28, 32, 36 and 37 (Stam et al. 2006; Lombard et al. 2014), as well as by 13 related amylolytic enzymes exhibiting closely related sequence features especially within the CSRs (Oslancova & Janecek 2002; Majzlova et al. 2013).

Figure 1 shows the seven CSRs that are the best conserved sequence stretches characteristic of the entire α -amylase family (Janecek 2002). As can be seen, the most exclusive sequence feature of the novel GH13 α -amylase subfamily could be the pair of adjacent tryptophan residues Trp201-Trp202 (Bacillus aquimaris BaqA α -amylase numbering), positioned between the CSR-V and CSR-II in the helix $\alpha 3$ of the catalytic TIM-barrel since such a feature is not present in any other GH13 subfamily with the α -amylase specificity. It is worth mentioning that the pair of tryptophans cannot be used as a sole sequence marker of the novel α -amylase subfamily (Fig. 1a) since it may be present in some members of the subfamily GH13_31 (Fig. 1b), i.e. of the so-called oligo-1,6-glucosidase subfamily (Oslancova & Janecek 2002; Stam et al. 2006). Thus the members of the novel GH13 α -amylase subfamily should contain the sequence LPDlx in their CSR-V (Fig. 1a), whereas the α -glucosidases from the subfamily GH13_31 possess typically QPDLN (Oslancova & Janecek 2002; Majzlova et al. 2013) as their CSR-V (Fig. 1b). Remarkably, some other related enzymes, currently unassigned to any of the established GH13 subfamilies, represented by the cyclomaltodextrinase from *Flavobacterium* sp. No. 92 (Fritzsche et al. 2003), have the tryptophan pair, too, but these related enzymes differ also from the members of the novel subfamily by their specific CSR-V sequence MPDLN (Fig. 1b). This signature was previously suggested to be a feature of a group of amylolytic enzymes intermediate between true oligo-1,6-glucosidases and true neopullulanases (Oslancova & Janecek 2002) that was later classified as the subfamily GH13_36 (Stam et al. 2006; Lombard et al. 2014). However, the α -amylases from the subfamily GH13_36 that exhibit also, e.g., cyclodextrinase and neopullulanase activities (Majzlova et al. 2013), do not possess the pair of adjacent tryptophan residues (Fig. 1b).

The sequence logo created for all 101 real and hypothetical α -amylases that could constitute a novel GH13 subfamily (Fig. 2) clearly summarizes the residues typically present in the individual positions of each New GH13 subfamily with α -amylase specificity

CSR. It is evident that most residues are conserved almost invariantly, the fact that might be a consequence of, until now, taxonomically rather narrow spectrum of producers (Table S1). Currently, the 4th position in the CSR-I (alanine and valine), the 5th position in the CSR-V (alanine and asparagine), the 8th position in the CSR-II (arginine and lysine), the 1st (phenylalanine and tyrosine), 3rd (leucine and isoleucine) and 8th (mostly ser-

(a)	β2	βЗ	loop3	ww	β4	β5	β7	β8
GRI.IN7 Bacillus amimaris	CSR-VI	CSR-I	CSR-V	201 000	CSR-II	CSR-III	CSR-IV	CSR-VII
UPI0005093F37 Bacillus aquimaris	82_GETSIWLTP	137 DEVVNH	181_LPDLN	201 WW	210 GYRLDTVRH	239 YLLGEVED	306 FIDNHD	342 GIPIVYYGS
UPI0005C9B251_Bacillus_aquimaris UPI0005520609 Bacillus vietnamensis	82 GETALWITE 82 GETALWITE	137 DEVVNE 137 DEVVNE	181 PD N 181 PD N	201 WW 201 WW	210 GY DTV H 210 GY DTV H	239 YILGEVYD 239 YILGEVFD	306 FIDNED	342 GIPLVYYGS 342 GIPLVYYGS
UPI0006A96CDA Bacillus marisflavi	82 GETAINLTE	137 DEVVNH	181 LPDLN	201 WW	210 GYRUDTVKH	239 YLLGEVED	306 FIDNHD	342 GIPILYYGS
AUAUJ5VHB6_Bacillus_marisflavi A0A0J5TGU1_Bacillus_marisflavi	82 GETALWLTP	137 DEVVNH	181 1901N	201 WW	210 GYRLDTVKH	239 YILGELED	306 FIDNED	342 GIPTINGS 342 GIPTLYYGS
A0A0J5Y780 Bacillus marisflavi	82 GETALWLTP	137 DEVVNH 134 DEVVNH	181 PDLN 179 PDLN	201 WW	210 GYRLDTVKH	239 YLLGEIFD	306 FIDNHD	342 GIPILYYGS
A6CT23_Bacillus_sp_SG_1	48_GETTIWLTP	103 DELVNH	147 LPDLN	167_WW	176 GYRLDTVRH	205 YILLGEVED	272 FIDNHD	308 GLPILYYGS
UPI00047920D4 Bacillus sp J33 02B943 Bacillus sp NRRL B14911	82 GETALWLTE 82 GETALWLTE	137 DEVVNH 137 DEVVNH	182 LPDLK 182 LPDLA	202 WW	211 GYRU TVEH		307 EMONED	343 GIPIVYYGS
E5WEA3 Bacillus sp 2A 57 CT2	82_ <mark>ge</mark> ta <mark>twl</mark> tp	137 DEVVNH	182 LPDLK	202 WW	211 GYRLDTVKH	240 YILGEVWS	307 FMDNHD	343 GIPIVYYGS
UP10006A9D5AA_Sporosarcina_globispora A0A0J5W714 Bacillus firmus	82 GETALWLTP	137 DEVVNE	182 1901N	202 WW	211 GY UTVE	240 YILGEVWS	307 FMONED	343 GIPIVIYES
UPI0002D7E70C_Bacillus_oceanisediminis	82 GETAINLTE	137 DEVVNH	182 LPDLK	202 W	211 GYRLDTVKH	240 YILGEVWS	307 FMDNHD	343 GIPIVYYGS
V6T0R9_Bacillus_p17376	82 GETAIWLTP	136 DEVVNH	181 1901A	202 WW	210 GYRLDTVRH	239 YLLGEVWS	306 FIDNHD	343 GIPIVIIGS
A0A0D6ZF67 Bacillus subterraneus	81 GESALWMTP	136 DEVVNH	181 PDLA	201 WW	210 GYRDDTVRH	239 YLIGEVWS	306 FIDNHD	342 GIPIVYYGS
UPI000625800A_Bacillus_sp_SA2_6	82 GETALWLTP	137_DEVVNH	182 LPDLD	202 WW	211 GYRLDTVEH	240 YLIGEVWS	307 FLONHD	343_GIPIVYYGS
A0A0C2R5X4 Jeotgalibacillus soli UPI000596C815 Jeotgalibacillus soli	97 GETTI WMTE	152 DEVVNH 140 DEVVNH	197 PD N 185 PDIN	217_WW 205_WW	226 GYRUDTVKH 214 GYRUDTVKH		322 FIDNED	358 GLP MYYGT
UPI0006A7A3BC_Bacillus_sp_FJAT_27251	82_GETATWLTP	137 DEVVNH	182 LPDLD	202 WW	211 GYRLDTVRH	240 YLIGEVWS	307 FMDNHD	343_GIPIVYYGS
A0A0B5AKV3_Jeotgalibacillus_sp_D5 A0A0C2W0M5 Jeotgalibacillus alimentarius	84 GETAIWLTE 84 GETAIWLTE	139 DEVVNE 139 DEVVNE	184 190 N 184 1901 N	204 WW 204 WW	213 GYRUDTVIH 213 GYRUDTVIH		309 FIDNED	345 GIPIMYYGS 345 GIPIMYYGS
A0A0C2VTR6 Jeotgalibacillus campisalis	85 GETAINLTP	140 DEVVNH	185 LPDLN	205 WW	214 GYRLDTVKH	243 YLLGEVYD	310 FIDNHD	346 GIPIMYYGS
A0A023CSB0_Geobacillus_stearothermophilus	82 GFTAIWLTP	137 DEVANH	182 PDLA	202 W	212 GIR TVRH	240 LLLGEVWS	307 FLDNHD	343 GIPIMYYGT
UPI0006707A3C Bacillus sp FJAT 27997	82 GETAINLTP	137 DEVVNH 137 DEVVNH	182 PDIN 182 PDIN	202 WW	211 GYRLDTVKH	240 YLIGEVWV	307 FIDNHD	343 GIP11YYGS
A0A023DE78_Geobacillus_caldoxylosilyticus	82 GETALWLTP	137 DEVANH	182 PDLA	202 WW	211 GYRLDTVEH	240 FLIGEVWS	307 FLDNHD	343 GIPIMYYGT
S5YWG2_Geobacillus_sp_JF8 M5JAR3_Anoxybacillus_flavithermus	82 GETALWLTE	137 DEVANE	182 PDLA 180 PDLA	202 WW 200 WW	211 GYRLDTVEH	240 FILLGEVWS	307 FLONED	343 GIPIMYYGT
C5D6S3 Geobacillus sp WCH70	82_GETATWLTP	137 DEVANH	182 LPDLA	202 WW	211 GYRLDAVRH	240 LLL GEVWA	307 FLDNHD	343 GIPIMYYGT
IlVWIO Anoxybacillus sp DT3 1 M5QU10 Anoxybacillus sp DT3 1	80 GETALWITE 80 GETALWITE	135 DEVVNE 135 DEVVNE	180 PD A 180 PD A	200 WW 200 WW	209 GY LOTVE	238 FILGEVEN	305 FLONED	340 GIPIMYYGT 341 GIPIMYYGT
G4Y5W9 Anoxybacillus sp GXS BL	80 GETAINLTP	135 DEVVNH	180 LPDLA	200 WW	209 GYRLDTVKH	237 FLLGEVWH	305 FLONED	341 GIPIMYYGT
AOAOA2T270 Anoxybacillus sp SK3 4 AOAOA2T270 Anoxybacillus gonensis	80 GETALWITE 80 GETALWITE	135 DEVVNE	180 1901A	200 WW	209 GYRLDTVEH	238 FILGEVWH	305 FLONED	340 GIPIMYYGT 340 GIPIMYYGT
UPI00040C9818 Bacillus sp URHB0009	83 GETAINLTE	138 DEVANH	183 LPDLN	203 WW	212 GYRUDTVER	241 YIL GEVWS	308 FMDNHD	343 GIPIVYYGS
A0A0D0HVJ6_Anoxybacillus_ayderensis	80 GETAIWLTP	135 DEVVNH	180 1901A	200 WW	209 GYRUDTVKH	238 FLLGEVWH	305 FLDNHD	340 GMPIMYYGT
A0A094JUZ7 Anoxybacillus sp KU2 6	80 GETA W TE	135 DEVVNH 137 DEVVNH	180 PDTA	200 WW	209 GYRUDTVKH	238 FLLGEVWH	305 FLONHD	340 GIPIMYYGT
B7GLU6_Anoxybacillus_flavithermus	80 GETALWLTP	135 DEVVNH	180 LPDLA	200 WW	209 GYRLDTVKH	238 FLLGEVWH	305 FLONHD	340 GIPIMYYGT
UPI0002F2C1C0_Anoxybacillus_kamchatkensis A0A093U2A9_Geobacillus_sp_GIW1	80 GETALWLTE 82 GETALWLTE	135 DEVVNH 137 DEVANH	180 PD A 182 PD A	200 WW 202 WW	209 GYRU TVE	238 FULGEVWH	305 FLONED	340 GLPIMYYGT
A0A0D0S219 Anoxybacillus thermarum	80 GETATWLTP	135 DEVVNH	180 LPDLA	200 WW	209 GYRLDTVKH	238 <mark>FLL</mark> G <mark>EVW</mark> H	305 FLDNHD	341 GIPIMYYGT
M8D7E8_Anoxybacillus_flavithermus UPI00041899BA Sporosarcina sp EUR3 2 2 2	80 GETALWITE 82 GETALWITE	135 DEVVNE 137 DEVVNE	180 PD A 182 PD N	200 WW 202 WW	209 GY LOTVE	238 FIG GEVNE	305 FIDNED 307 FMDNHD	341 GIPIMYYGT 343 GIPILYYGS
UPI00041C00EA Bacillus panaciterrae	82 GETAICLTP	137 DEVENH	181 LPDLE	201 WW	210 GERUDAVEH	239 FLMGEVSN	306 FIDNHD	342 GIPIVYYGT
UP10003096FF2_Paenisporosarcina_sp_TG_14 UP1000488AC21_Anoxybacillus_tepidamans	82 GETAIWLTP	137 DEVANH	182 190 A	202 WW	211 GYRIDAM H	240 FLLGEVWS	307 FLONHD	343 GIPIMYYGT
UPI0005A9A01A Geobacillus kaustophilus	82 GETAINLTE	137 DEVANH	182 1901 A	202 WW	211 GYRLDTVRH	240 FLLGEVWS	307 FLONED	343 GIPIMYYGT
U2X6P3_Geobacillus_kaustophilus	84_GETAINLTP	139 DEVANH	184 LPDLA	204 WW	213 GYRLDTVRH	242 FLLGEVWS	309 FLONHD	344 GIPIMYYGT
I3QII4 Geobacillus thermoleovorans A0A0E0T9F8 Geobacillus sp Y412MC52	84 GETAIWLTP 82 GETAIWLTP	139 DEVANE 137 DEVANE	184 PD A 182 PD A	204 WW 202 WW	213 GYRUDTVEH 211 GYRUDTVEH	242 FILGEVWS 240 FILGEVWS	309 FLONED 307 FLONED	344 GIPIMYYGT 343 GIPIMYYGT
L7ZU32_Geobacillus_sp_GHH01	82 GETAINLTP	137 DEVANH	182 LPDLA	202 WW	211 GYRLDTVEH	240 FLLGEVWS	307 FLONHD	343 GIPIMYYGT
D6R179_Geobacillus_thermoleovorans	84 GETAIWLTP	139 DEVANE	184 PDLA	202 WW	213 GYRLDTVRH	240 FLLGEVWS	309 FLONHD	345 GIPIMYYGT
UPI000518C40C Geobacillus sp WSUCF1	82 GETAINLTE	137 DEVANH	182 PDIA	202 WW	211 GYRDDTVRH	240 FLLGEVWS	309 FLDNHD	343 GIPIMYYGT
S7SUP4_Geobacillus_sp_WSUCF1	84 GETAIWLTP	139 DEVANH	184 LPDLA	204 WW	213 GYRLDTVEH	242 FLLGEVWS	309 FLONHD	345_GIPIMYYGT
A0A0G3XUB1 Geobacillus sp 12AMOR1 UPI0005CD7B75 Anoxybacillus sp ATCC BAA2555	82 GETALWITE	137 DEVANE	182 PD A 182 PD A	202 WW	211 GYRU DTVEH	240 500 GEVWS	307 FLONED	343 GLP MYYGT
A0A063YU84_Geobacillus_sp_CAMR5420	82_GETATWLTP	137 DEVANH	182 LPDLA	202 WW	211 GYRLDTVRH	240 <mark>FLLGEVW</mark> S	307 FLDNHD	343 GIPIMYYGT
UPI0006A947AB_Geobacillus_stearothermophilus UPI000517DE36 Geobacillus stearothermophilus	82 GETAIN TE 82 GETAINITE	137 DEVANE 137 DEVANE	182 PD A 182 PD A	202 WW 202 WW	211 GY LOTVE	240 ELLGEVWS	307 FLONED	343 GIPIMYYGT 343 GIPIMYYGT
UPI00067B1029 Geobacillus sp LC300	82 GETAIWLTP	137 DEVANH	182 PDLA	202 WW	211 GYRLDTVRH	240 FLLGEVWS	307 FLONHD	343 GIPIMYYGT
B7UDC2_Geobacillus_sp_GXS1	84 GETAIWLTP	139 DEVANH	184 PDLA	204 WW	213 GYRLDTVRH	242 FLLGEVWS	309 FLONHD	345 GIPIMYYGT
UPI00066FEBD0 Geobacillus stearothermophilus	82 GETAINLTP	137 DEVANH	182 PDIA	202 WW	211 GYRDDTVRH	240 FLLGEVWS	307 FLDNHD	343 GIPIMYYGT
A8QL62_Geobacillus_sp_POT5	85 GETAINITE	140 DEVANH	185 LPDLA	205 WW	214 GYRLDTVRH	243 FLLGEVWS	310 FLONHD	346 GIPIMYYGT
UPI0006A9D12B_Bacillus_koreensis A0A0J0VAY2 Geobacillus_sp_T6	66 GETSIWLTE 82 GETAIWLTE	121 DEVANE 137 DEVANE	166 PD N 182 PD A	186 WW 202 WW	195 GYRUDTVEH 211 GYRUDTVEH	224 ELLGEVWN 240 ELLGEVWS	291 FLONED	327 GIPLVYYGT 343 GIPLMYYGT
UPI0004DF9D29_Geobacillus_vulcani	82_GFTALWLTP	137 DEVANH	182 PDLA	202 WW	211 GYRLDTVEH	240 FLLGEVWS	307 FLONHD	343 GIPIMYYGT
UPI00041C9EBC_Bacillus_sp_FJAT_14515 UPI000493D6B9_Bacillus_sp_M3_13	86 GETALWLTP	140 DLVVNH	182 PDIN	202 WW	211 GYRLDTVKH	244 FLIGEVWH	311 EMONHD	343 GIPIMYYGT
UPI0006AF27AB Bacillus sp FJAT 18017	82 GETA W TP	137 DEVVNH	182 PDEN	202 WW	211 GYRLDTVRH	240 YLIGEVWT	307 FIDNHD	343 GIPIIYYGS
UPI0005C6A38F_Bacillus_sp_EB01	82 GPTALWLTP	137 GEVVNH	182 190FN	202 WW	211 GYRLDTVRH	240 YIII GEVWT	307 FIDNHD	343_GIPIIYYGS
A0A084GIJ4 Bacillus indicus	86 GETS W TP	141 DEVVNH 137 DEVVNH	186 PDLN 182 PDLN	206 WW	215 GYRUDTVRH	244 FLMGEVWD	311 FIDNHD	347 GMP1VYYGT
A0A084H7X2 Bacillus_sp_SJS	82 GETALWLTP	137 DEVVNH	182 1901 N	202 WW	211 GYRLDTVEH	240 FLLGEVWS	307 FLDNHD	343 GIPIVYYGS
A0A068PFD8 Geobacillus sp SBS 48 UPI0006AEB314 Bacillus sp FJAT 22090	43 GETALWITE 82 GETALWITE	98 DEVANH 137 DEVVNH	143 PDLA 182 PDLN	163 WW 202 WW	172 GYRLDTVEH 211 GYRLDTVEH	201 FLLGEVWS	268 FLDNHD 307 FLDTHD	304 G PIMYYGT 343 G PIVYYGT
UPI00064DD3E5_Ornithinibacillus_contaminans	82_ <mark>ge</mark> ta <mark>twl</mark> te	137 <mark>DLVV</mark> NH	182 1901 A	202 WW	211 GYRUDTVKH	240 FLIGEVWH	307 FIDNHD	343_GIPIVYYGT
UPI000225AA66_Ornithinibacillus_scapharcae UPI0005AB0560_Paucisalibacillus_sp_EB02	80 GETALWITE 80 GETSIWITE	135 DLVVNH 135 DLVVNH	180 PD A 180 PD A	200 WW 200 WW	209 GY DTV H	238 FLIGEVNH 238 FLIGEVNH	306 FIDNHD 306 FIDNHD	342 GIPLIYYGT 342 GIPLIYYGT
UPI00064DF1CD_Ornithinibacillus_californiensis	80 GETAIWLTP	135_ <mark>01.VV</mark> NH	180 1901A	200 WW	209 GYRLDTVKH	238 FLIGEVWH	306 FIDNHD	342 GIPIVYYGT
AUAUBUHR96_Anoxybacillus_sp_BCOl UPI00047CCB89 Paucisalibacillus globulus	80 GETAIWLTP 80 GETAIWLTP	135 DEVVNH 135 DLVVNH	180 PDLA 180 PDLA	200 WW 200 WW	209 GY TOTVE	238 FLIGEVWH	306 FIDNHD	342 GMP MYYGT 342 GIPIVYYGT
UPI00069F2415_Clostridium_sp_DMHC10	86 GETTINITE	140 DIVVNH	186 LPDLD	206 WW	215 GYRLDTVEH	244 YFIGEVNN	309 FVDNHD	342 GIPVMYYGT
UPI0006903FE5_Spirochaeta_sp_JC230	75 GESALWISE	130 DLVVNH	175 PDI A	195 WW	204 GYRIDTVRH	233 YLMGEVEH	298 FIDNHD	331_GIPLLYYGT
Q51943 Anaerobranca gottschalkii RICVX1 Caldisalinibacter kiritimatiensis	53 GATALWITE	108 DIVVNH 163 DHVVNH	151 PDLN 208 PDLN	171 WW	180 GERIDTVKH 237 GM	209 111 GEVMH	274 FIDNHD	305 GVP11YYGT
V5WDG2 Salinispira pacifica	83 GESALWISS	138 DLAINH	183 PDI N	203 WW	212 GY 10A	241 YLIGEVED	307 FIDNED	340 GIPIMYYGT

(b)	β2	βЗ	loop3	WW	β4	β5	β7	β 8
	CSR-VI	CSR-I	CSR-V		CSR-II	CSR-III	CSR-IV	CSR-VII
1_Q8J1E4_Lipomyces_kononenkoae	76 GEDAVWISP	137 DVVINH	194 LVDLK	214 01	223 GIRLDTARH	247 FVTGEADN	312 FLDNOD	347_GIPVIYYGF
1_B5BQC3_Hypocrea_rufa	76 GEDAIWINP	131_DVVANH	178_LPDVD	198_NL	207 GVRIDTVRH	231 YCIGEVEN	295 FVDNHD	325_GIPIVYYGS
1_POC1B3_Aspergillus_oryzae	77_GFTAIWITP	138_DVVANH	194_LPDLD	214_S	223 GLRIDTVKH	247 YCIGEVID	313_EVENHD	343 GIPTIYAGQ
1_A7LGW4_Cryprococcus_flavus	78_GETALWISE	143_DVVVNH	206 1001	226 N	235 G 10 S 20	260 YMVGEVEN	327 FLENOD	358 GIPITYYGQ
1_D4P4Y7_Saccharomycopsis_fibuligera	83 GETALWISE	144 DVTNE	200 000	220 0	229 G SA	253 YSVGEVEQ	319 5VON:0	349 G PV YYGQ
??_Q8KKG0_Flavobacterium_sp_No92	179 GETQ WETE	236 000 SH	296_M	316 WW	325 6 101161	354 NM GEDWS	431 ECONED	461 100000560
37 geLIAS PhotoBacterium profundum	105 CMNAVW TH	170 DEVECH		211 1	220 GW LOQATO	263 TMVAS WN	338 MICNED	379 GPTT 11GD
37 D9M214 Uncultured Dacterium	97 GMNA W TH	124 GVEGH	210 100	220 24	222 GROUND	272 VI 169 MN	222 M CNHD	333 GP11111GE
36 01942 Anaerobranca gottschaikii	70 N TA M	122	101 100	201 24	200 0000000	244 11000	210 0000	241 01051000
36 ORGELS Halothermothriz orenii	75 GUNE W ME	128 D P NH	192 MPD N	212 14	220 CD CAME	256 VIVCEVAD	325 0 7000	356 ENDELVYCE
36 D20845 Bacillus monsterium	83 OUNCIMME	136 DUVNH	201 MP0 N	221 54	229 05 0 44	269 VITCHUND	335 DUTNED	366 ENEXTYYCE
36 047804 Bacillus sp WS06	89 OUNCIMME	143 DIVVNH	207 MPDIN	227 PW	235 GPEUDAAUH	275 VITERVAD	341 FUTNED	372 ENEXTYYCE
31 08KR84 Klebsiella sp LX3	85 C A W NE	141 DVVINH	209 OPD N	229 FW	237 CM EDTVAT	291 ATAGE DE	364 E DNED	400 ATPELYCES
31 D4W893 Turicibacter sanguinis	47 GVNLLWLOP	101 DLVLNH	175 MPDIN	195 WW	203 GERVDAVAH	260 FTVGEVGG	336 YW NHD	371 GTPFLYNGE
29 C2H450 Enterococcus faecalis	44 GVSELWLTP	98 DLVVNH	167 MPD N	187 WW	195 GERLOVINN	250 VTVGELSS	324 EWTNHD	360 GTTEVYOGE
31 Q9AI60 Erwinia rhapontici	43 GIDLIWICP	97 DLVVNH	166 OPDIN	186 WW	194 GERIDATCH	251 VTIGEMNG	324 YVENHD	359 GTPELYOGO
31 P94451 Geobacillus stearothermophilus	44 GVDIVWICP	98 DLVINH	167 OPD N	187 WW	195 GERIDAISH	252 MTVGEANG	321 FLENHD	356 GTPFIYOGO
31 Q60015 Staphylococcus xylosus	44 GIDVIWLSP	98 DLVVNH	168 OPDIN	188 WW	196 GERVDALTH	253 MTVGEANC	321 FLENHD	356 GTPFLYQGQ
31 Q9AF93 Bifidobacterium adolescentis	60 GVDVLWLSP	114 DLVVNH	189 QPDLN	209 WW	217 GERMOVITO	286 MNVGEAPG	358 FFONHD	385 GTPYIYEGE
31_Q2HWU5_Streptococcus_mutans	39 GVMATWLSP	93_DLVVNH	157 QPDLN	177 EW	185 GERMOVIDM	227 TVGETWG	313 FWNNHD	338 GTPYLYOGE
31_Q93RD5_Brevibacterium_fuscum	58 GVDVLWLSP	112 DLVVNH	181_QPD_N	201_WW	209 GERMOVISE	268 LTVGEMVD	341 YWNNHD	376 GTPYIYQGE
31_P43473_Pediococcus_pentosaceus	46 GIDVIWLNP	100 DLVVNH	169 QPDLN	189 <mark>WW</mark>	197 GE MOVINO	252 MTVGETHG	327 FWNNHD	363 GTPYLYQGE
31_P21332_Bacillus_cereus	44_GIDVIWLSP	98_DLVVNH	167_QPDIN	187_FW	195 GERMOVINE	251_MTVGEMPG	324 YWNNHD	358_GTPYIYQGE
31_Q45517_Bacillus_sp_SAM1606	60 GVDVLWLNP	104_DLVANH	183 QPD N	203 <mark>B</mark> W	211 GE MOVINA	268_MTVGETGG	341_YWTNHD	376 GTPYLYQGE
19 A8QWV3 Bacillus halodurans	106 GINA W TA	174_DVVMNH	255 PDF	312_AW	321 GERVOTARE	367 WMVGEVWG	432 Y SOLD	457 GOVEYOD
19_P25718_Escherichia_coli	242 GUNALW SA	310 MNH	404 000	447 QW	456 GE VOTA	499 WMTGPAWC	560 X SS	584 GAVQ EYED
6 P00693 Hordeum vulgare	58 GVTHVWLPP	112 DIVINH	171 APD D	191 W	200 AW DEA C	225 AVABUND	310 NED	341 C PC FYDH
6_Q5BLY0_Malus_domestica	57 GETSAW DE	110 NH	161 107	181 W	190 DE EDEA C	215 ESVGEYWD	296 E DNED	327 GIPTVEYDE
7_Q/LIT/ Pyrococcus_woesei	60 G SA W PP	131 NH	184 100	207 1	219 GW 501 G	243 WAVGETWD	309 EVANED	332 GODATEV
5 A0TO74 Apellomuces canculatus	67 GUTSTIDE	131 MT 11	133 0910	253 WM	262 C 10 10 10 10	292 11 2 2 2	357 NUMBER	430 EVEL EVEL
5 A71832 Paracoccidioides brasiliensis	67 GUTSTWIPE	131 DAVINH	232 54 5	252 W	261 01 00 00	291 PEUARYWK	355 EVANIED	388 CVPCLEVCD
5 P00692 Bacillus amvioliquefaciens	65 GTTAVWIPE	129 NUT NE	229 YADVD	249 WY	258 GP 1 AA	288 FTVARYNO	354 EVENED	387 GYPOVEYCD
5 09R0T8 Cytophaga sp	70 GTAVWTPP	134 DVVMNH	234 YAD D	254 WY	263 GYRLDAVKH	293 ETVERYNO	359 IVENHD	392 GYPSVEYGD
28 P00691 Bacillus substilis	74 GYTA OTSE	138 DAVINH	185 YOWN	205 A	213 GEREDAAKH	245 FOYGETTO	305 WVESHD	339 STRUFFSRP
28 Q48502 Lactobacillus amylovorus	81 GYTAVQTSE	145 DATIND	192 FYDWN	212 2	220 GERYDAATH	254 FOYGEVIO	314 WVESHD	348 SVPLFFDRP
27 P22630 Aeromonas hydrophila	46 GYROVLISP	112 DVVLNH	184 LPDID	203 A	211 GERVDAVKH	238 HVFGEVIT	309 PALTHD	343 GSPLVYSDH
27 Q56791 Xanthomonas campestris	60 GYRKVLVAP	116 DVVENH	198 LPDLL	217 AL	225 GERVDAAKH	252 YVFGEVIT	323 PAVTHD	357-GVPMVYTON
32 P09794 Streptomyces limosus	60 GYGYVQVSP	116 DSVINH	173 LADLD	213	221 GERIDAAKH	228 YW QEATH	291 FVDNHD	324 GSPDVHSGY
32 P29750 Thermonospora curvata	65 GEGAVQVSP	126 DAVINH	187 LADLK	207 81	215 GERIDAAKH	249 YIFOEVIA	308 FVVNHD	341 GTPKVMSSY
15_P08144_Drosophila_melanogaster	54 GYAGVOVSP	112 DVVENH	172 LEDIN	192 HL	200 GERVDAAKH	237 YIVQEVID	301 FVDNHD	339 GTPRVMSSF
15 P56634 Tenebrio molitor	36 GEGGVQISP	94 DAVINH	153 LEDLN	173 HM	181 GERVDAAKH	218 FIYQEVID	282 FVDNHD	317 GTTRIMSS
24_Q98942_Gallus_gallus	51_GEGGVQVSP	111_DAVVNH	180 1101A	200 H	208 GERIDAAKH		310_FVDNHD	348_GETRVMSSY
24 P04746 Homo sapiens	51 GEGGVOVSP	111 DAVINE	180 III A	200 1	208 GR DAS H	244 FLYORVID	310 DVDNHD	348 GET VMSSY

Fig. 1. Sequence alignment of CSRs of studied family GH13 enzymes with focus on the novel α -amylase subfamily. The two consecutive tryptophans characteristic for the novel α -amylase subfamily are also shown. Colour code for the selected residues: W, yellow; F, Y – blue; V, L, I – green; D, E – red; R, K – cyan; H – brown; C – magenta; G, P – black. The catalytic triad is signified by asterisks and the only one additional invariantly conserved position of the arginine in the CSR-II is marked by a hashtag under the alignment. (a) The order from top reflects the relatedness of the new GH13 subfamily α -amylases to the BaqA α -amylase (i.e. their sequence similarity) as delivered by the BLAST search. (b) For the sequences of remaining α -amylases and related amylolytic enzymes, the order corresponds with their arrangement in the evolutionary tree (Fig. 4). The label of the protein source consists of the UniProt (UniParc) accession number and the name of the organism. If there is an additional number at the beginning of the protein source label, it means the number of the GH13 subfamily. The alignment of all 146 enzymes spanning the sequence segment from the beginning of the strand β 8 (CSR-VII) is shown in Figure S1.

Fig. 2. Sequence logo of the novel GH13 subfamily. CSR-I, residues 10-15; CSR-II, residues 23-31; CSR-III, residues 32-39; CSR-IV, residues 40-45; CSR-V, residues 16-20; CSR-VI, residues 1-9; CSR-VII, residues 46-54. The two adjacent characteristic tryptophans, positioned between the CSR-V and CSR-II, are also shown. The catalytic triad, i.e. the catalytic nucleophile (No. 27, aspartic acid), the proton donor (No. 36, glutamic acid) and the transition-state stabiliser (No. 45, aspartic acid) are indicated by asterisks. The logo is based on 101 sequences of real and hypothetical α -amylases that potentially define the new GH13 subfamily.

ine, histidine and aspartic acid) positions in the CSR-III, the 2nd position in the CSR-IV (leucine, isoleucine and methionine), and the 5th (mostly methionine, valine and isoleucine) and 9th (threonine and serine) positions in the CSR-VII – belong to positions within the CSRs that obviously do not require a strictly invariant amino acid residue (Fig. 2). For example, based on a protein engineering study of the α -amylase from *Anoxy*bacillus sp. SK3-4 ASKA it was found that the naturally present alanine at the end of the CSR-V (Fig. 1a) may contribute to the high maltose production of the ASKA (Ranjani et al. 2014). It nevertheless can be awaited – as the number of members of this novel subfamily will increase – the future logo will reveal both the positions evolutionarily conserved and those that are tolerant to changes.

With regard to comparison of additional sequence segments that connect the CSRs, their alignment spanning the region from the beginning of the CSR-VI to the end of the CSR-VII is shown in Figure S1. It covers, in fact, almost the entire catalytic $(\beta/\alpha)_8$ -barrel domain (from the strand $\beta 2$ to the strand $\beta 8$) includ-

Table 1. Tertiary structure comparison of two α -amylases from the novel subfamily with representatives of the remaining studied family GH13 enzymes.^a

E	G8N704_Geo	$bacillus_thermoleovorans$ (4E2O)	G8IJA7_Bacillus_aquimaris (4e2o)		
ramily GH13 representatives	C_{α}	RMSD (Å)	C_{α}	RMSD (Å)	
31_P94451_Geobacillus_stearothermophilus (2ze0)	315	1.64	318	1.66	
??_Q8KKG0_Flavobacterium_sp_No92 (1H3G)	378	1.48	378	1.49	
31_P21332_Bacillus_cereus (1UOK)	327	1.69	334	1.73	
31_Q45517_Bacillus_sp_SAM1606 (1uok)	329	1.71	307	1.55	
31_Q2HWU5_Streptococcus_mutans (2ZID)	312	1.70	314	1.55	
31_Q8KR84_ <i>Klebsiella_</i> sp_LX3 (1M53)	331	1.62	327	1.54	
36_Q8GPL8_Halothermothrix_orenii (1WZA)	366	1.44	367	1.44	
1_P0C1B3_Aspergillus_oryzae (2TAA)	379	1.70	379	1.71	
5_P00692_Bacillus_amyloliquefaciens (3BH4)	291	1.65	292	1.66	
6_P00693_Hordeum_vulgare (1P6W)	287	1.63	287	1.63	
7_Q7LYT7_Pyrococcus_woesei (1MXD)	315	1.69	315	1.69	
15_P56634_Tenebrio_molitor (1JAE)	284	1.64	283	1.63	
19_P25718_Escherichia_coli (4aee)	314	1.49	315	1.50	
24_P04746_Homo_sapiens (1HNY)	265	1.58	277	1.63	
27_P22630_Aeromonas_hydrophila (1jae)	271	1.55	270	1.56	
28_P00691_Bacillus_substilis (1BAG)	265	1.52	275	1.57	
32_P09794_Streptomyces_limosus (4jcl)	344	1.47	343	1.46	
$37_D9MZ14_Uncultured_bacterium (1tcm)$	360	1.36	360	1.37	

^a The label of the protein source consists of the UniProt (UniParc) accession number and the name of the organism. If there is an additional number at the beginning of the protein source label, it means the number of the GH13 subfamily. The tertiary structures indicated as PDB codes (in parenthesis) were obtained either as PDB co-ordinates of determined real tertiary structures (capital letters) or model co-ordinates based on real PDB structures (small letters). C_{α} and RMSD represent the number of superimposed C-alpha atoms and the root-mean-square deviation, respectively.

ing the entire domain B that together, for all members of the novel GH13 subfamily, consist of approximately 270 residues (Table S1). The alignment revealed that the α -amylases proposed here to define a new GH13 subfamily contain, in addition to the abovementioned pair of adjacent tryptophans, several other conserved tryptophan residues, such as Trp103, Trp149, Trp158, Trp177 and Trp224 (Bacillus aguimaris BagA α -amylase numbering). These may have their counterparts mainly among the α -amylases from the subfamilies GH13_1 and GH13_36 as well as among the α -glucosidases from the subfamily GH13_31 (Fig. S1). Since the novel GH13 subfamily could be the group of raw-starch degrading α -amylases (Finore et al. 2011; Puspasari et al. 2011; Mehta & Satyanarayana 2014) without any distinct starch-binding domain (Mok et al. 2013; Puspasari et al. 2013), the aromatic tryptophan positions should be of interest (Janecek et al. 2011; Carvalho et al. 2015). Moreover, Mok et al. (2013) have pointed out the eventual role in raw starch binding and degradation ability of a \sim 30-residue long C-terminal region of Geobacillus thermoleovorans α -amylase with five aromatic residues (phenylalanines and tyrosines), which might be an additional characteristic feature of the novel GH13 subfamily since that stretch is usually present and well-conserved (Fig. 3). Since it was truncated in the three-dimensional structure, it was only predicted to be an α -helix and its exact role could not be completely elucidated until now (Mok et al. 2013).

Structure comparison

In order to see the closest eventual structural homologues, the solved tertiary structure of *Geobacillus ther*moleovorans α -amylase GTA (Mok et al. 2013) was compared with those - either real structures or their models if real structures were not available - of representatives of all studied groups and/or subfamilies. These data are summarized in Table 1, supported also by data obtained when the structural model of *Bacil*lus aquimaris BaqA α -amylase was used. It is obvious that the α -amylase GTA from Geobacillus thermoloevorans exhibits the best structural similarity with the α -amylase from Halothermothrix orenii from the subfamily GH13_36 (Sivakumar et al. 2006) and currently unassigned cyclomaltodextrinase from *Flavobacterium* sp. No. 92 (Fritzsche et al. 2003). Interesting similarity (Table 1) was revealed also to the α -amylase from uncultured bacterium from the subfamily GH13_37 (Liu et al. 2012), but for this α -amylase only the structure modelled according to the template was used and very probable lack of domain B in the subfamily GH13_37 (Janecek et al. 2014) should also be taken into account. Overall the presented structural comparison may thus indicate also the evolutionary relatedness of the novel proposed GH13 subfamily with the α -amylase subfamily GH13_36, the group represented by the Flavobac*terium* sp. No. 92 cyclomaltodextrinase and, eventually, with the α -amylase subfamily GH13_37.

Evolutionary relationships

The evolutionary relationships among the members of the novel proposed GH13 subfamily as well as those of this subfamily with α -amylases from other GH13 subfamilies and several closely related amylolytic enzymes (mostly α -glucosidases) are depicted in Figure 4. It is clear that currently there are three major clusters reflecting taxonomy consisting of α -amylases from the genera *Geobacillus*, *Anoxybacillus* and mostly *Bacillus*

G8IJA7 Bacillus aquimaris UPI0005093F37_Bacillus_aquimaris UPI0005C9B251_Bacillus_aquimaris UPI0005520609 Bacillus vietnamensis UPI0006A96CDA Bacillus marisfli AOAOJ5VHB6 Bacillus marisflavi AOAOJ5TGUI Bacillus marisflavi AOAOJ5Y780 Bacillus marisflavi E5WEA3 Bacillus_sp_2A_57_CT2 UPI0006A9D5AA Sporosarcina_globispora AOA0J5W14 Bacillus firmus UPI0002D7E70C Bacillus_cocanisediminis W7LK76 Bacillus_firmus V6TOR9 Bacillus_sp 17376 AOA0D62F67 Bacillus_subterraneus AOAOA8X764 Bacillus_subterraneus AOAOA8X764 Bacillus_selenatarsenatis UPI000625800A Bacillus_sp SA2_6 AOA0C2R5X4 Jeotgalibacillus_soli UPI0006A7A3BC Bacillus_sp SA2_6 AOAO5AKV3_deotgalibacillus_soli UPI0006A7A3BC Bacillus_p FJAT_27251 AOAO65AKV3_deotgalibacillus_sp D5 AOAOC2VTR6_Jeotgalibacillus_ap_51s UPI0005CCC6A4 Bacillus_alimentarius AOAOC2VTR6_Jeotgalibacillus_campisalis UPI0005CCC6A4 Bacilus_alveayuensis A0A0C2VTR6 Jeotgalibacillus_campisalis UPI0005CCC4A4 Bacillus_alveayuensis A0A023CSB0 Geobacillus_stearothermophilus UPI0006707A3C Bacillus_sp_FJAT_27997 UPI0002E242FF Bacillus_psychrosaccharolyticus A0A023DE78 Geobacillus_aldoxylosilyticus S5YWG2_Geobacillus_ap_FR8 M5JAR3_Anoxybacillus_flavithermus OSD603_cothereilus_ac_M2072 MSJAK3 ANOXYDACIIIIS FLAVIE C5D6S3 Geobacillus sp WCH70 IIVWIO Anoxybacillus sp DT3 1 M5QUIO Anoxybacillus sp DT3 1 G4YSW9 Anoxybacillus sp GXS B G4T5W9 Anoxybacillus sp GXS BL 11VHH9 Anoxybacillus sp SX3 4 AOAOA2T270 Anoxybacillus gonensis UPI00040C9818 Bacillus sp URHB0009 R4F9M5 Anoxybacillus sp URHB0009 R4F9M5 Anoxybacillus syderensis AOAOD0HVJ6 Anoxybacillus sp KU2 6 A4IKZ2 Geobacillus thermodenitrificans P7GUI6 novybacillus sp thermodenitrificans B7GLUG Anoxybacillus flavithermus UPI002F2C1CO Anoxybacillus kamchatkensis A0A093U2A9 Geobacillus sp GIW1 A0A0D05219 Anoxybacillus thermarum M8D7E8 Anoxybacillus flavithermus WD0/26_ANOxyDacills_lidvinermus UPI00041899BA_Sporosarcina_sp_EUR3_2_2_2 UPI00041C00EA_Bacillus_panaciterrae UPI0003096FF2_Paenisporosarcina_sp_TG_14 UPI000488A2C1_AnoxyDacillus_tepidamans UPI0005A9A01A_Geobacillus_kaustophilus UPI0005A9A01A Geobacillus_kaustophilus UPI0005A9A01A Geobacillus_kaustophilus U2X6P3 Geobacillus_kaustophilus **130IT4 Geobacillus_thermoleovorans** A0A0E0T9F8 Geobacillus_sp_Y412MC52 L7Z032 Geobacillus_sp_GHH01 A0A008E721 Geobacillus_stwstophilus D6R179 Geobacillus_thermoleovorans UPI000518C40C Geobacillus_sp_WSUCF1 A0A087LBC8 Geobacillus_sp_12AMOR1 UPI0005CD7B75_Anoxybacillus_sp_ATCC_BAA2555 A0A063YUB4 Geobacillus_stearothermophilus UPI0005A9YA7AB Geobacillus_stearothermophilus UPI0005fB1029 Geobacillus_sp_CAMR5420 UPI00067B1029 Geobacillus_sp_C30 Q5L238 Geobacillus_kaustophilus UPI00067B1029 Geobacillus_sp_LC300 Q5L238 Geobacillus_kaustophilus B7UDC2_Geobacillus_sp_GXS1 UPI00066FEBD0_Geobacillus_stearothermophilus UPI00066FEBD0_Geobacillus_stearothermophilus A8QL62 Geobacillus_sp_FOT5 UPI0006A9D12B_Bacillus_sp_T6 UPI0004LC9EBC Bacillus_sp_T7AT 14515 UPI00041C9EBC Bacillus_sp_F7AT 14515 UPI0006AF27AB_Bacillus_sp_F7AT 18017 A0A0J5GT6_Bacillus_sp_ED01 UPI0005C6A38F_Bacillus_sp_EB01 A0A0A5GT0F_Bacillus_sp_EB01 A0A084GTJ4_Bacillus_indicus G8N704_Geobacillus_indicus G8N704_Geobacillus_sp_S7S CONVA_GEOBACITUS_INETHIOLEONOTAINS AOAO84H7X2_Bacillus_sp_SJS AOAO68PFD8_Geobacillus_sp_SBS_4S UPI0006AEB314_Bacillus_sp_FJAT_22090 UPI00064DD3E5_Ornithinibacillus_contaminans UPI000225AA66 Ornithinibacillus scapharcae UPI0005AB0560 Paucisalibacillus sp_EB02 UPI00064DF1CD Ornithinibacillus californiensis 0P100064DF1CD_Ornithinbacillus_californi A0A0B0HR96_Anoxybacillus_sp_BCOI UP100047CCB89_Paucisalibacillus_globulus UP100069F2415_Clostridium_sp_DMHC10 UP100068C2797_Caloranaerobacter_azorensis

UPI0006903FE5 Spirochaeta sp JC230 251943 Anaerobranca gottschalkii R1CVX1_Caldisalinibacter_kiritimat: kiritimatiensis

V5WDG2_Salinispira_pacifica

GLNIPIIISVAAVWAADAVDIETIVKRKRTKQ----512 GINIPIIAALVAVTAIGLEVIAKKKAS-----505 GINIPIIAALVAVTAIGLEVIAKKKA------504 GINIPIIAALVAVTAIGLEVIAKKKA------504 GINIPIIAALVAVTAIGLEVIAKKKAS------505 GINIPIIAALVAVTAIGLEVIAKKKAS------505 GINIPIIAALVAVTAIGLEVIAKKKAS------504 GINIPIIAALLAVTAIGLEVIAKKKAS------504 GINIPIIAALLAVTAIGLEVIAKKKAS------504 GINIPIIAALLAVTAIGLEVIAKKKAS------504 GINIPIIAALLAVTAIGLEVIAKKKAS------504 GINIPIIAALVAVIALGLEVIAKKKAS------504 GINIPIIAALVAVIALGLEVIAKKKAS------504 GINIPIIAALVAVIASGLEVIAKKKAS------504 GINIPIIAALVAVIASGLEVIAKKKAS------504 GINIPIIALVAVVASGLEVIAKKKASEHKQ----510 SLSISULLAKSVULLAIVIIESLKKELKGKKRAS-------514 GINVPIIAALVAVVASGLEVIVIKKSKRAA-------514 NLIULCTAAAAASIIII 490 --AGKGLLITVLSVVAAAVAGLLIGLLAK------549 -----CIIPPKSSAV-QLBAPEK------443 -----496 ------490

* * *

> Fig. 3. Sequence alignment of \sim 30residue long C-terminal segment of α amylases of the newly proposed GH13 subfamily. This C-terminus was shown (Mok et al. 2013) to contain five conserved aromatic residues (phenylalanine and/or tyrosine). This feature (signified by asterisks above the alignment) could also be unique for the newly proposed GH13 subfamily of α amylases. All phenylalanines and tyrosines present in the C-terminal segment are signified, respectively, by blue and green highlighting together with all tryptophan positions (yellow). The label of the protein source consists of the UniProt (UniParc) accession number and the name of the organism. Note that a few putative α -amylases from Caloranaerobacter azorensis, Caldisalinibacter kiritimatiensis and Salinispira pacifica, obviously do not contain such a C-terminus with 5 aromatic residues.

Fig. 4. Evolutionary tree of studied family GH13 enzymes with focus on the novel α -amylase subfamily. The label of the protein source consists of the UniProt (UniParc) accession number and the name of the organism. If there is an additional number at the beginning of the protein source label, it means the number of the GH13 subfamily. The tree is based on the alignment shown in Figure S1.

(covering also Paucisalibacillus, Ornithinibacillus and Jeotgalibacillus). Each of the three named clusters contains at least one real, i.e. biochemically characterised α -amylase (cf. Table S1). Interestingly, the part of the evolutionary tree, where the hypothetical α -amylases from the genus Bacilus dominate, covers also those from genera Sporosarcina and Paenisporosarcina; both, however, belonging to the class of Bacilli of the phylum Firmicutes.

It is worth mentioning that six sequences that, in fact, are neighbouring with remaining α -amylases and related amylolytic enzymes, represented in the tree by fungal and yeast α -amylases from the subfamily GH13_1, may represent some intermediates. In addition to the α -amylase from Anaeorobranca gottchalkii (Ballschmiter et al. 2005; UniProt accession No.: Q5I943), they are five hypothetical proteins as follows: Caloranaerobacter azorensis (UPI00068C2797), Caldisalinibacter kiritimatiensis (R1CVX1), Clostridium sp. DMHC10 (UPI00069F2415), Spirochaeta sp. JC230 (UPI0006903FE5) and Salinispira pacifica (V5WDG2). While Anaeorobranca, Caloranaerobacter, Caldisalinibacter and Clostridium rank all among the class of Clostridia under the phylum Firmicutes, both Spirochaeta and Salinispira rank among the phylum Spirochaetes. Despite all the six have been included in the present study (Table S1), none them might necessarily belong to the newly proposed α -amylase subfamily. It is also possible that the number of various genera producing the α -amylases of this novel GH13 subfamily will not dramatically increase and from the taxonomical point of view, the subfamily will remain a bacterial subfamily containing predominantly Firmicutes (Table S1).

The fungal and yeast α -amylases from the subfamily GH13_1, represented by the Taka-amylase A (Matsuura et al. 1984) are the group most closely related to the novel GH13 subfamily. On the other hand, the α -amylases belonging to the so-called "animal" group of α -amylases (Janecek 1994; D'Amico et al. 2000; Da Lage et al. 2004, 2007; Janecek et al. 2014), i.e. those from subfamilies GH13_24 (e.g. mammals), GH13_15 (e.g. insect) and GH13_32 (e.g. actinomycetes) represent the α -amylases most distantly related to those from the newly proposed subfamily. Interestingly, the unclassified cyclomaltodextrinase from *Flavobacterium* sp. No. 92 (Fritzsche et al. 2003) exhibits on the other hand a close relatedness to the new subfamily, followed by the α amylases from recently established subfamily GH13_37 (Lei et al. 2012). All remaining non- α -amylases from the subfamily GH13_31 (and GH13_29) included in the present study, i.e. the specificities of oligo-1,6glucosidase (Watanabe et al. 1997), α -glucosidase (Nakao et al. 1994), dextran glucosidase (Hondoh et al. 2008) and sucrose isomerase (Zhang et al. 2003), are found to be clustered together (Fig. 4) and sharing a common branch with the "intermediary" α amylases from the subfamily GH13_36 (Majzlova et al. 2013).

Conclusions

The amino acid sequences of experimentally characterized α -amylases BaqA from *Bacillus aquimaris*, ASKA and ADTA from Anoxybacillus sp. SK3-4 and DT3-1, respectively, GTA and GTA-II both from Geobacillus thermoleovorans and eventually also (although less convincingly) the AmyB from Anaerobranca gottschalkii were analysed in detail together with their 95 other hypothetical protein homologues available in sequence databases. These α -amylases are proposed to define a novel GH13 subfamily with the α -amylase specificity, in addition to subfamilies 1, 5, 6, 7, 15, 19, 24, 27, 28, 32, 36 and 37, already established in the CAZy database. The novel GH13 subfamily can be characterized by a few exclusive sequence features, such as the pair of adjacent tryptophan residues positioned between the CSR-V and CSR-II in the helix $\alpha 3$ of the catalytic TIM-barrel, the sequence signature LPDlx in their CSR-V and a \sim 30-residue long C-terminal region with a motif of five conserved aromatic residues.

Acknowledgements

This work was supported by the VEGA grant No. 2/150/14.

References

- Altschul S.F., Gish W., Miller W., Myers E.W. & Lipman D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403–410.
- Ballschmiter M., Armbrecht M., Ivanova K., Antranikian G. & Liebl W. 2005. AmyA, an α -amylase with β -cyclodextrinforming activity, and AmyB from the thermoalkaliphilic organism *Anaerobranca gottschalkii*: two α -amylases adapted to their different cellular localizations. Appl. Environ. Microbiol. 71: 3709–3715.
- Benson D.A., Clark K., Karsch-Mizrachi I., Lipman D.J., Ostell J. & Sayers E.W. 2014. GenBank. Nucleic Acids Res 42: D32– D37.
- Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig H., Shindyalov I.N. & Bourne P.E. 2000. The Protein Data Bank. Nucleic Acids Res. 28: 235–242.
- Blesak K. & Janecek S. 2012. Sequence fingerprints of enzyme specificities from the glycoside hydrolase family GH57. Extremophiles 16: 497–506.
- Blesak K. & Janecek S. 2013. Two potentially novel amylolytic enzyme specificities in the prokaryotic glycoside hydrolase α -amylase family GH57. Microbiology **159**: 2584–2593.
- Cantarel B.L., Coutinho P.M., Rancurel C., Bernard T., Lombard V. & Henrissat B. 2009. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 37: D233–D238.
- Carvalho C.C., Phan N.N., Chen Y. & Reilly P.J. 2015. Carbohydrate-binding module tribes. Biopolymers 103: 203–214.
- Chai Y.Y., Rahman R.N., Illias R.M. & Goh K.M. 2012. Cloning and characterization of two new thermostable and alkalitolerant α -amylases from the *Anoxybacillus* species that produce high levels of maltose. J. Ind. Microbiol. Biotechnol. **39**: 731– 741.
- Crooks G.E., Hon G., Chandonia J.M. & Brenner S.E. 2004. WebLogo: a sequence logo generator. Genome Res. 14: 1188– 1190.
- Da Lage J.L., Binder M., Hua-Van A., Janecek S. & Casane D. 2013. Gene make-up: rapid and massive intron gains after horizontal transfer of a bacterial α-amylase gene to Basidiomycetes. BMC Evolutionary Biology 13: 40.
- Da Lage J.L., Danchin E.G. & Casane D. 2007. Where do animal α -amylases come from? An interkingdom trip. FEBS Lett. **581:** 3927–3935.
- Da Lage J.L., Feller G. & Janecek S. 2004. Horizontal gene transfer from Eukarya to bacteria and domain shuffling: the α -amylase model. Cell. Mol. Life Sci. **61**: 97–109.
- D'Amico S., Gerday C. & Feller G. 2000. Structural similarities and evolutionary relationships in chloride-dependent α -amylases. Gene **253:** 95–105.
- Felsenstein J. 1985. Confidence-limits on phylogenies an approach using the bootstrap. Evolution **39:** 783–791.
- Ficko-Blean E., Stuart C.P. & Boraston A.B. 2011. Structural analysis of CPF_2247, a novel α-amylase from *Clostridium* perfringens. Proteins **79**: 2771–2777.
- Finore I., Kasavi C., Poli A., Romano I., Toksoy Oner E., Kirdar B., Dipasquale L., Nicolaus B. & Lama L. 2011. Purification, biochemical characterization and gene sequencing of a thermostable raw starch digesting α-amylase from *Geobacillus thermoleovorans* subsp. stromboliensis subsp. nov. World J. Microbiol. Biotechnol. **27**: 2425–2433.
- Fritzsche H.B., Schwede T. & Schulz G.E. 2003. Covalent and three-dimensional structure of the cyclodextrinase from *Flavobacterium* sp. no. 92. Eur. J. Biochem. 270: 2332–2341.
- Henrissat B. 1991. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 280: 309–316.
- Hondoh H., Saburi W., Mori H., Okuyama M., Nakada T., Matsuura Y. & Kimura A. 2008. Substrate recognition mechanism of α -1,6-glucosidic linkage hydrolyzing enzyme, dextran glucosidase from *Streptococcus mutans.* J. Mol. Biol. **378**: 913–922.

- Hostinova E., Janecek S. & Gasperik J. 2010. Gene sequence, bioinformatics and enzymatic characterization of α -amylase from Saccharomycopsis fibuligera KZ. Protein J. **29:** 355–364.
- Janecek S. 1994. Sequence similarities and evolutionary relationships of microbial, plant and animal α -amylases. Eur. J. Biochem. **224:** 519–524.
- Janecek S. 2002. How many conserved sequence regions are there in the α-amylase family? Biologia 57 (Suppl 11): 29–41.
- Janecek S. & Kuchtova A. 2012. In silico identification of catalytic residues and domain fold of the family GH119 sharing the catalytic machinery with the α -amylase family GH57. FEBS Lett. **586**: 3360–3366.
- Janecek S., Svensson B. & MacGregor E.A. 2011. Structural and evolutionary aspects of two families of non-catalytic domains present in starch and glycogen binding proteins from microbes, plants and animals. *Enzyme Microb. Technol.* 49: 429–440.
- Janecek S., Svensson B. & MacGregor E.A. 2014. α-Amylase an enzyme specificity found in various families of glycoside hydrolases. Cell. Mol. Life Sci. 71: 1149–1170.
- Kelley L.A. & Sternberg M.J.E. 2009. Protein structure prediction on the Web: a case study using the Phyre server. Nat. Protoc. 4: 363–371.
- Kelly R.M., Dijkhuizen L. & Leemhuis H. 2009. Starch and α glucan acting enzymes, modulating their properties by directed evolution. J. Biotechnol. **140**: 184-193.
- Kuriki T. & Imanaka T. 1999. The concept of the α -amylase family: structural similarity and common catalytic mechanism. J. Biosci. Bioeng. 87: 557–565.
- Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H., Valentin F., Wallace I.M., Wilm A., Lopez R., Thompson J.D., Gibson T.J. & Higgins D.G. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948.
- Lei Y., Peng H., Wang Y., Liu Y., Han F., Xiao Y. & Gao Y. 2012. Preferential and rapid degradation of raw rice starch by an α-amylase of glycoside hydrolase subfamily GH13_37. Appl. Microbiol. Biotechnol. 94: 1577–1584.
- Letunic I. & Bork P. 2007. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics 23: 127–128.
- Leveque E., Janecek S., Belarbi A. & Haye B. 2000. Thermophilic archaeal amylolytic enzymes. Enzyme Microb. Technol. 26: 2–13.
- Li C., Du M., Cheng B., Wang L., Liu X., Ma C., Yang C. & Xu P. 2014. Close relationship of a novel Flavobacteriaceae α -amylase with archaeal α -amylases and good potentials for industrial applications. Biotechnol. Biofuels **7:** 18.
- Liu Y., Lei Y., Zhang X., Gao Y., Xiao Y. & Peng H. 2012. Identification and phylogenetic characterization of a new subfamily of α-amylase enzymes from marine microorganisms. Mar. Biotechnol. (NY) 14: 253–260.
- Lombard V., Golaconda Ramulu H., Drula E., Coutinho P.M. & Henrissat B. 2014. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42: D490–D495.
- Long C.M., Virolle M.J., Chang S.Y., Chang S. & Bibb M.J. 1987. α-Amylase gene of *Streptomyces limosus*: nucleotide sequence, expression motifs, and amino acid sequence homology to mammalian and invertebrate α-amylases. J. Bacteriol. **169**: 5745–5754.
- MacGregor E.A., Janecek S. & Svensson B. 2001. Relationship of sequence and structure to specificity in the α -amylase family of enzymes. Biochim. Biophys. Acta **1546**: 1–20.
- Majzlova K., Pukajova Z. & Janecek S. 2013. Tracing the evolution of the α-amylase subfamily GH13_36 covering the amylolytic enzymes intermediate between oligo-1,6-glucosidases and neopullulanases. Carbohydr. Res. 367: 48–57.
- Matsuura Y., Kusunoki M., Harada W. & Kakudo M. 1984. Structure and possible catalytic residues of Taka-amylase A. J. Biochem. 95: 697–702.
- Mehta D. & Satyanarayana T. 2014. Domain C of thermostable α amylase of *Geobacillus thermoleovorans* mediates raw starch adsorption. Appl. Microbiol. Biotechnol. **98**: 4503–4519.

- Mok S.C., Teh A.H., Saito J.A., Najimudin N. & Alam M. 2013. Crystal structure of a compact α -amylase from *Geobacillus* thermoleovorans. Enzyme Microb. Technol. **53**: 46–54.
- Nakao M., Nakayama T., Kakudo A., Inohara M., Harada M., Omura F. & Shibano Y. 1994. Structure and expression of a gene coding for thermostable α-glucosidase with a broad substrate specificity from *Bacillus* sp. SAM1606. Eur J Biochem 220: 293–300.
- Oslancova A. & Janecek S. 2002. Oligo-1,6-glucosidase and neopullulanase enzyme subfamilies from the α -amylase family defined by the fifth conserved sequence region. Cell. Mol. Life Sci. **59**: 1945–1959.
- Palomo M., Pijning T., Booiman T., Dobruchowska J.M., van der Vlist J., Kralj S., Planas A., Loos K., Kamerling J.P., Dijkstra B.W., van der Maarel M.J., Dijkhuizen L. & Leemhuis H. 2011. *Thermus thermophilus* glycoside hydrolase family 57 branching enzyme:crystal structure, mechanism of action, and products formed. J. Biol. Chem. **286**: 3520–3530.
- Park K.H., Jung J.H., Park S.G., Lee M.E., Holden J.F., Park C.S. & Woo E.J. 2014. Structural features underlying the selective cleavage of a novel exo-type maltose-forming amylase from *Pyrococcus* sp. ST04. Acta Crystallogr. D Biol. Crystallogr. **70**: 1659–1668.
- Puspasari F., Nurachman Z., Noer A.S., Radjasa O.K., van der Maarel M.J.E.C. & Natalia D. 2011. Characteristics of raw starch degrading α-amylase from *Bacillus aquimaris* MKSC 6.2 associated with soft coral *Sinularia* sp. Starch – Stärke 63: 461–467.
- Puspasari F., Radjasa O.K., Noer A.S., Nurachman Z., Syah Y.M., van der Maarel M., Dijkhuizen L., Janecek S. & Natalia D. 2013. Raw starch-degrading α -amylase from *Bacillus aquimaris* MKSC 6.2: isolation and expression of the gene, bioinformatics and biochemical characterization of the recombinant enzyme. J. Appl. Microbiol. **114:** 108–120.
- Ranjani V., Janecek S., Chai K.P., Shahir S., Noor R., Abdul Rahman Z.R., Chan K.G. & Goh K.M. 2014. Protein engineering of selected residues from conserved sequence regions of a novel *Anoxybacillus* α-amylase. Sci. Rep. 4: 5850.
- Saitou N. & Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.
- Sharma A. & Satyanarayana T. 2013. Microbial acid-stable α amylases: characteristics, genetic engineering and applications. Process Biochem. **48**: 201–211.
- Shatsky M., Nussinov R. & Wolfson H.J. 2004. A method for simultaneous alignment of multiple protein structures. Proteins 56: 143–156.
- Sivakumar N., Li N., Tang J.W., Patel B.K. & Swaminathan K. 2006. Crystal structure of AmyA lacks acidic surface and provide insights into protein stability at poly-extreme condition. FEBS Lett. 580: 2646–2652.
- Stam M.R., Danchin E.G., Rancurel C., Coutinho P.M. & Henrissat B. 2006. Dividing the large glycoside hydrolase family 13 into subfamilies:towards improved functional annotations of α -amylase-related proteins. Protein Eng. Des. Sel. **19:** 555–562.
- Stanley D., Farnden K.J.F. & MacRae E.A. 2005. Plant αamylases: functions and roles in carbohydrate metabolism. Biologia 60 (Suppl.16): 65–71.
- Svensson B. 1994. Protein engineering in the α -amylase family: catalytic mechanism, substrate specificity, and stability. Plant Mol. Biol. **25:** 141–157.
- UniProt Consortium 2014. Activities at the Universal Protein Resource (UniProt). Nucleic Acids Res. 42: D191–D198.
- van der Maarel M.J., van der Veen B., Uitdehaag J.C., Leemhuis H. & Dijkhuizen L. 2002. Properties and applications of starch-converting enzymes of the α-amylase family. J. Biotechnol. 94: 137–155.
- van Zyl W.H., Bloom M. & Viktor M.J. 2012. Engineering yeasts for raw starch conversion. Appl. Microbiol. Biotechnol. 95: 1377–1388.
- Watanabe H., Nishimoto T., Kubota M., Chaen H. & Fukuda S. 2006. Cloning, sequencing, and expression of the genes encoding an isocyclomaltooligosaccharide glucanotransferase

and an α -amylase from a *Bacillus circulans* strain. Biosci. Biotechnol. Biochem. **70:** 2690–2702.

- Watanabe K., Hata Y., Kizaki H., Katsube Y. & Suzuki Y. 1997. The refined crystal structure of *Bacillus cereus* oligo-1,6glucosidase at 2.0 Å resolution: structural characterization of proline-substitution sites for protein thermostabilization. J. Mol. Biol. **269**: 142–153.
- Zhang D., Li N., Lok S.M., Zhang L.H. & Swaminathan K. 2003. Isomaltulose synthase (PaII) of *Klebsiella* sp. LX3. Crystal structure and implication of mechanism. J. Biol. Chem. 278: 35428–35434.
- Zona R., Chang-Pi-Hin F., O'Donohue M.J. & Janecek S. 2004. Bioinformatics of the family 57 glycoside hydrolases and identification of catalytic residues in amylopullulanase from *Thermococcus hydrothermalis*. Eur. J. Biochem. **271**: 2863–2872.

Received September 7, 2015 Accepted October 30, 2015