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A b s t r a c t

The spatial location of sources of seismic waves is one of the first

tasks when transient waves from natural (uncontrolled) sources are analysed

in many branches of physics, including seismology, oceanology, to name a

few. It is well recognised that there is no single universal location algorithm

which performs equally well in all situations. Source activity and its spa-

tial variability in time, the geometry of recording network, the complexity

and heterogeneity of wave velocity distribution are all factors influencing

the performance of location algorithms. In this paper we propose a new

location algorithm which exploits the reciprocity and time-inverse invari-

ance property of the wave equation. Basing on these symmetries and using a

modern finite-difference-type eikonal solver, we have developed a new very

fast algorithm performing the full probabilistic (Bayesian) source location.

We illustrate an efficiency of the algorithm performing an advanced error

analysis for 1647 seismic events from the Rudna copper mine operating in

southwestern Poland.

Key words: hypocenter location, probabilistic inverse theory, error analy-
sis, time reversal mirroring, numerical methods.

1. INTRODUCTION

Determining the spatial location (hypocenter) and origin time of the source of
seismic waves is one of the first tasks undertaken when the waves from un-
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controlled sources are analyzed (Aki and Richards 1985, Gibowicz and Ki-
jko 1994). Depending on the type of event, different location techniques are
used. If recorded waveforms for the event at hand exhibit well defined and
sharp waves onsets, the event is usually located by seeking a point in space
for which numerically predicted wave onset times fit the observed ones (Aki
and Richards 1985, Bulland 1976, Thurber and Rabinowitz 2000). This can be
accomplished by any optimization technique (Aki and Richards 1985, Thurber
and Rabinowitz 2000). The price for simplicity and numerical efficiency of such
approach is, however, a lack of reliable estimation of the location errors. Within
this optimization-based approach, the most popular method of error evaluation
is a linearization of the forward modelling procedure around the optimum lo-
cation found and calculation of the covariance matrix (Husen and Hardebeck
2010, Menke 1989, Pavlis 1992). The diagonal elements are then interpreted as
squares of the location errors for each coordinate, respectively, and the “hori-
zontal part” of the covariance matrix gives a nice looking “error ellipse” con-
fidence region - a region around the solution found where the epicenter is sup-
posed to be located within obtained errors. However, as it has been pointed out,
for example, by Bai et al. (2006), Husen et al. (1999), Lomax et al. (2001),
Wiejacz and Debski (2001), in realistic situations this estimation of location er-
rors is too simplified and often unrealistic. The reason is that the cornerstone of
the method linearization of the forward modelling relation leads to a quadratic
misfit function which is a good choice only when all uncertainties pertaining
location procedure (data errors, modelling errors) are Gaussian. This is often
not the case (Husen and Hardebeck 2010, Lomax et al. 2009, Rudzinski and
Debski 2012).

To evaluate the location errors in a more systematic way, a probabilistic,
also called Bayesian, inversion technique must be used (Tarantola 2005). The
approach relies on exploring the space of all possible source locations and as-
signing to each point in this space (i.e., each possible location) a probability
of being the true hypocenter location (Debski 2010, Sambridge and Mosegaard
2002, Tarantola 2005). This a posteriori probability can then be used for any
analysis of location errors using standard statistical methods (Debski 2010,
Lehmann and Casella 1998).

For completness it is worth mentioning the third method of error estimation
which is based on the direct Monte Carlo simulation (Giovambattista and Barba
1997, Husen and Hardebeck 2010). The method relies on adding the Monte
Carlo generated “noise” to the synthetic data calculated for the formerly found
optimum location and relocating the event using these “noisy” data. The size
of a “cloud” of the obtained solutions is used as an estimator of the location
errors. However, as pointed out by Debski (2004), this approach reduces to the
above-mentioned probabilistic approach if the “noise” is generated according
to the probability distribution of joint modeling and observational errors.
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The probabilistic approach to hypocenter location provides the most com-
plete information about the solution found (see, e.g., Lomax et al. 2009, Taran-
tola 2005). However, the method is computationally demanding as it requires an
exhaustive exploration of the 3 or 4-dimensional model space. Even the use of
modern, efficient Markov Chain Monte Carlo based methods (Chib and Green-
berg 1995, Debski 2010, Gilks et al. 1995, Lomax et al. 2009) does not allow
to employ this approach in applications requiring prompt results. The new per-
spective for using probabilistic approach are opened by using the time reversal
and reciprocity principles of the wave equation together with finite-difference
type forward modelling solvers. In this case, as we shall discuss latter on, one
can avoid an explicit sampling of the a posteriori distribution – the most time
consuming part of the probabilistic inversion requiring tens of thousends for-
ward modellings by performing an “implicit” sampling through an examination
of the a posteriori distribution over the finite grid used by the forward modelling
solver. This reduces a number of required forward modelings from thousands
to only a few – a number of used seismic stations. In this paper we descibe such
an algorithm. We call it TRMLOC.

The paper is structured as follow. Firstly, after a short description of the
source location task the proposed algorithm is described. Next, two basic ele-
ments of the algorithm, namely probabilistic inversion technique and the FSM
algorithm are discussed. Next, the algorithm is compared to other popular meth-
ods and its performance is illustrated by analyzing 1647 mining induced seismic
events from Rudna (Poland) deep copper mine. The conclusions and general
discussion ends up the paper.

2. LOCATION ALGORITHMS

Let us assume that to locate a given source the arrival times tobsi i = 1 · · ·Ns

are read from waveforms recorded by Ns sensors (geophones, seismometers,
piezoceramic transducers, etc.). Let tthi (m) denote the theoretically predicted
arrival time of waves originating at the point m and recorded by ith sensor
where the location parameters m = (�r, to) include three spatial coordinates
( �r = (x, y, z) ) and the origin time of the event to , so

tthi (m) = to +Δi(�r) (1)

where Δi(�r) is the propagation time from the source to a given sensor.
Finding the hypocenter location can now be formulated as the optimization

task (Aki and Richards 1985): searching for the model mml which minimizes
the differences between observed ( tobsi ) and predicted (tthi (m)) travel times.
The solution can be obtained by means of any convenient numerical optimiza-
tion algorithm.
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To complete the location task, an error analysis should be performed in or-
der to evaluate the reliability of the solution. The most popular approach to this
task is based on the linearizion of the optimized function S(m) around the
solution mml and calculation of the covariance matrix (Gibowicz and Kijko
1994). However, this simple method is often not reliable. It fails if observational
and/or modeling errors have nontrivial statistics, the recording network geome-
try is complicated or the velocity model has a complex structure (Lomax 2005,
Lomax et al. 2009, Rudzinski and Debski 2012).

Another, probabilistic approach to the source location task relies on assign-
ing to each model m (point in space and time) the a posteriori probability of
m being the true source location (Debski 2010, Lomax et al. 2009, 2000). The
advantage of this approach is the possibility of full and exhaustive error and
resolution analysis (Debski 2010). In the simplest case, the a posteriori prob-
ability density σ(m) assigned to model m reads (Debski 2010, Mosegaard
and Tarantola 2002)

σ(m) =
1

Z
f(m)L(m) (2)

where Z is the normalization factor called evidence, f(m) is the probability
density function describing the a priori estimation of the source location. The
second term, traditionally called the likelihood function, is defined as follows

L(m) = exp (−S(m)) , (3)

where
S(m) = ||tthi (m)− tobsi || (4)

is the so-called misfit function and || · || is a norm in the data space. The choice
of a given norm ( l1, l2, Cauchy, etc.) reflects our expectations about errors
statistics, existence of outliers, systematic bias, etc (Debski 2010).

Various numerical estimators, like the maximum likelihood model (mml )
which maximizes σ(m), the average model (mavr ), the covariance matrix,
etc. can easily be calculated from σ(m). The technique is very general but it
requires exhaustive sampling of the model space to determine the characteristics
of σ(m). Consequently, the approach is computationally demanding even if the
very efficient Markov Chain Monte Carlo sampling technique (Debski 2010,
Gilks et al. 1995, Lomax et al. 2009) is used.

The new possibilities of the full probabilistic seismic data inversion for
hypocenter coordinates open when the time reversal mirroring technique is em-
ployed. This technique, carefully analyzed in laboratory experiments (see, e.g.,
Fink 1997, Ulrich et al. 2008), by numerical simulations (see, e.g., Kremers
et al. 2011, Scalerandi et al. 2009, Steiner and Saenger 2012), and theoretical
investigations (see, e.g., Masson et al. 2014, Tromp et al. 2005, Ulrich et al.
2009) has already found application in seismic prospecting (see, e.g., Gajewski
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and Tessmer 2010, Witten and Artman 2011) and location of seismic tremors
(see, e.g., Artman et al. 2010, Larmat et al. 2008, O‘Brien et al. 2011). Com-
baining this technique with a modern eikonal solver has lead us to the proposi-
tion of the new TRMLOC location algorithm which enables very fast Bayesian
inversion of travel time onset data for hypocenter location.

3. TRMLOC ALGORITHM

The wave equation (Aki and Richards 1985) describing the propagation of seis-
mic waves exhibits two very important features. First of all, being a second-
order partial differential equation with even time derivatives, the equation is in-
variant under time reversal. Thus, if only the boundary conditions do not depend
on time, the solutions for forward and back propagation of waves in time are
identical. Secondly, the equation exhibits spatial reciprocity invariance, which
means that wave propagation between two arbitrary points is invariant with re-
spect to the exchange of these points: the seismogram from the source located at
point A and recorded at point B is the same as the seismogram from the source
set at B and recorded at A. Combining both properties of the wave equation has
enabled construction of a very simple and efficient numerical algorithm used
for an analysis presented in this paper. It relies on putting the virtual sources
at the receiver locations (reciprocity principle) and simulating propagation of
seismic waves from such virtual sources adopting the recorded real signals with
reversed time as their temporal signature: the last arriving signal is “re-sent” as
the first one. Due to complicated interference, the re-sent signals not only focus
in the point where the real source ruptured and at the origin time of the rupture
but also provide very important information on the kinematics and dynamics
of the rupture process (Fink et al. 2000, Fink and Tanter 2010, Kremers et al.
2011).

The existing application of the above-described time reversal technique
for hypocenter location consists of two steps, namely back propagation (“re-
sending”) of recorded signals and scanning of the model (location) space in
order to find the optimum location where all the back-propagated signals posi-
tively interfere (O‘Brien et al. 2011). The algorithm used in this paper extends
the above idea in two aspects. First of all, instead of searching for a point at
which the largest positive interference occurs, we propose to construct the a
posteriori probability density based on the differences of the back-propagated
observational data. Secondly, for the location of sources with well determined
time onsets on a given set of sensors, we do not need to perform a full waveform
back propagation. Instead, we can consider only the wavefronts whose propa-
gation in time is described by the much simpler to solve eikonal equation (Aki
and Richards 1985) for which modern fast algorithms like the Fast Sweeping
Method (Zhao 2005), the Fast Marching Method (Sethian 1999) or the more tra-
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ditional finite difference approaches (Podvin and Lacomte 1991, Vidale 1990)
can be used.

We propose to construct the a posteriori probability density using the dif-
ferential misfit function S̄(m)

S̄(m) =
1

2Ns

∑
i,k;i�=k

||tim − tkm|| (5)

based on the difference of the back propagated wavefronts from all considered
sensors. In this equation, tim and tkm stand for waveform onsets recorded by
i-th and k-th receivers, respectively, and back-propagated to the point m. Ns

is the number of the receivers used (number of available observational data) and
1/2 takes into account the symmetry of the sum. Following this assumption, we
postulate the a posteriori probability distribution as

σ(m) = const.f(m) exp
(−S̄(m)

)
(6)

The physical intuition behind the above definition of S(m) is quite clear.
In an ideal case (no noise, exact forward modelling) all back-propagated travel
times should be equal to the source origin time ( to ) at the true hypocenter
location point. Thus, the condition for the hypocenter location is the equality
of all back-propagated arrival times. Due to the presences of observational and
modeling errors, this condition cannot in general be directly fulfilled and thus a
reasonable solution is to look for the point in space where S(m) gets minimum.
Let us note that, as follows from Eq. 1, the origin time to does not enter S(m)
and thus an original 4D inversion is reduced to 3D problem: a search for the
hypocenter’s spatial coordinates only.

The idea of using the differential-time form of the misfit function is by no
means new and can be traced back in time to Zhou (1994) and Matsu’ura (1984).
In various forms it has already been implemented in different optimization-
based location algorithms under various names, among which the equal differ-
ence time (EDT) is the most popular (see, e.g., Font et al. 2004, Lomax et al.
2009, Zhou 1994). The EDT formulation relies on searching the point m for
which hyperbolic surfaces defined by the condition

Δi(m)−Δj(m) = tobsi − tobsj (7)

intersect for all pairs of stations ( i, j ). This condition can be rewritten as tobsi −
Δi(m) = tobsj −Δj(m) for all ( i, j ), which is actually the condition of equality
of all back-propagated observational time onsets at the hypocenter location. The
advantage of using the EDT-type differential misfit function relies in removing
of origin time from inversion procedure (Matsu’ura 1984) and also lower sen-
sitivity of location results to velocity model (Font et al. 2004, Rudzinski and
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Debski 2011, Waldhauser and Ellsworth 2000, Zhou 1994). Additionally, in the
developed algorithm, it has also allowed to perform an implicit sampling of the
a posteriori distribution, as discussed latter on. The EDT type misfit function
is the cornerstone of the modern relative location methods, namely the double
differences and extended double differences techniques (Rudzinski and Debski
2012, Waldhauser and Ellsworth 2000).

Finding the minimum of S(m ) will provide the hypocenter location, so
S(m ) can serve as the cost function for any optimization-based location algo-
rithm. Much less obvious is whether this misfit function can also be used within
the probabilistic inversion framework for generating the likelihood function ac-
cording to Eq. 6. The problem is that the “true” likelihood function L(m) de-
fined by the probabilistic inverse theory is actually a convolution of probabil-
ity distributions of observational and modelling errors (Debski 2010, Tarantola
2005). Thus, from the statistical point of view, it describes the statistic of sum
of errors. Apparently the function L(m) defined by S̄(m) is not such a statis-
tic. It is rather the statistic of sum of differential errors so the question is if the
errors estimated by using this proxy of the likelihood function are not system-
atically biased. Although this point has not been clarified yet, the differential
misfit function has already been implemented in some probabilistic location al-
gorithms (Lomax et al. 2000, Rudzinski and Debski 2011) and we use it also in
the TRMLOC algorithm.

Having defined the a posteriori distribution σ(m) we have to explore
the space of model parameters in order to obtain various characteristics of
σ(m) including the position of the global maximum, checking an existence
of secondary maxima, etc. This is the most demanding numerical part of
any probabilistic inversion. However, in case of the location task the model
space which has to be sampled is exactly the same space (3D configuration
space) as that over which the forward modelling operator acts. This opens
a possibility of performing an implicit sampling of the a posteriori distri-
bution simultaneously with solving the forward problem. The idea is as fol-
lows. Assume that the forward modeling method used to calculate Δi(m)
is able to provide the back-in-time propagated observed time onsets for a
set (for example, regular grided) of spatial points. Then, according to Eq. 5,
the a posteriori distribution σ(m) can be immediately calculated with min-
imum numerical computations for all grid points. This way we have sam-
pled σ(m) at all these points. If the points form a dense enough, regular set,
we end up with the well sampled σ(m) so we do not need any additional
sampling indispensable in the classical probabilistic inversion. We call this
mechanism the implicit sampling. The forward modeling techniques fulfill-
ing the above requirement are the all wave equation or eikonal solvers based
on the finite difference, finite element, spectral elements, or similar numer-
ical methods (Sethian 1999, Virieux et al. 2009). Thus, summarizing the
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• Discretize space m = (Xi, Yj , Zk), i, j, k = 1, 2, . . .
• Set the a priori density function f(m)
• Repeat for each receiver (in parallel)

– back propagate observed time onsets tobsi using eikonal (FSM) solver on

defined spatial grid

• Calculate S(m) = 1
2Ns

∑
i,k;i�=k

(tim − tkm)2/C2
p

• Determine σ(m) = const.f(m) exp (−S(m))
• Calculate statistical estimators mml, mavr, Δm, evidence, entropy, etc.

• If needed, perform inspection of the full σ(m) or marginal a posteriori distri-

butions

Fig. 1. The basic steps of the TRMLOC algorithm.

above consideration we propose the algorithm whose flowchart is shown in
Fig. 1.

One very important feature of the algorithm is its high speed, as will be
demonstrated later on, which follows from:

• reducing inverse problem from 4D to 3D by eliminating event’s origin
time from inversion,

• employing the modern finite-difference very fast eikonal solver,
• avoiding explicit sampling of the model space: σ(m) is evaluated at each

grid nodes simultaneously with forward modelings,
• parallelization of the algorithm.

Let us also note that the backward propagation of the observed time onsets
through the back-in-time forward modeling has to be performed only Ns times
- as many as the number of sensors is used. This is a direct advantage of using
the time-reversal and reciprocity invariance principle.

Actually, the TRMLOC algorithm is very similar to the algorithm NLloc
developed by Lomax et al. (2000). Both approaches use the probabilistic inverse
approach, eikonal solvers for forward modelling and similar EDT-based likeli-
hood function. The main differences arise from using different eikonal solvers
(NLloc uses the method of Podvin and Lacomte (1991) while TRMLOC the
Fast Sweeping Method) and from different implementation of the a posteriori
pdf sampler.

The very important element of the TRMLOC algorithm is the eikonal solver
which enables very efficient calculation of the wavefront positions in the en-
tire 3D domain for a general velocity model. Constructing the TRMLOC al-
gorithm, two finite-difference type eikonal solvers were considered, namely the
Fast Marching Method (FMA) developed by Sethian (1999) and the Fast Sweep-
ing Method (FSM) developed by Zhao (2005). The FMA algorithm exhibits
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numerical complexity of the order of N log(N), where N is the number of
all grid nodes and is optimal for complex velocity models (Sethian 1999). The
FSM method is faster for smooth velocity models with numerical complexity
proportional to N but it is over-performed by FMA in cases of complex ve-
locity models. TRMLOC has been designed for a local/regional analysis when
velocity models are relatively smooth so the FSM technique has been selected.
Since this algorithm is practically unknown to seismological community we
give here its detailed description restricting ourselves to 2D case for the sake of
compactness.

3.1 Eikonal solver: Fast Sweeping Method
Under the high frequency approximation the full wave equation can be split into
the eikonal equation describing spatial propagation of wavefronts and transport
equation describing changes of wave amplitudes. As we are interested here in
travel times modeling, we consider only the eikonal equation which together
with the boundary condition at source location Γ reads

∇T · ∇T =
1

v2
T |Γ = 0

(8)

where T describes wavefront position in space originating from the source at
Γ and v denotes velocity. This is a special case of the Hamiltonian-Jacobi, hy-
perbolic type nonlinear equation for which the term on right-hand side is always
positive. For numerical purpose, such equation can be discretized by using the
first-order Godunov upwind type discretization (Sethian 1999, Zhao 2005), For
internal grid points this finite difference scheme leads to the following discrete
approximation of Eq. 8

[
(Ti,j − Txmin)

+
]2

+
[
(Ti,j − Tymin)

+
]2

= h2s2ij (9)

where i, j are indexes of the grid point xi,j = (xi, yj), h is the grid size (for
simplicity, the quadratic grid is assumed), sij is the value of slowness at grid
point (xi,j) ( sij = 1/vij) , and the following shorthand notation is used:

Txmin = min(Ti−1,j , Ti+1,j), Tymin = min(Ti,j−1, Ti,j+1) (10)

and

(x)+ =

{
x, x > 0
0, x ≤ 0

(11)

The Fast Sweeping Algorithm proposed by Zhao (2005) is using the above
discretization and solves the resulting system of nonlinear equation iteratively
as follows:
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• Initialization: a large positive value is assigned to all Ti,j . Then, for all
grid points (xs

i,j) within the source of waves (it can be a single grid node
for a point-like seismic source model or an extended area Γ for the finite
source model) the boundary condition T (xs) = 0 is set.

• Iterations with alternating sweeping: the following procedure is repeated
until the conversion to stable solution is reached.

– At each grid point (xi,j) not set during the initializations the solution

T̃ is computed using current values of T at neighborhood points and
then Ti,j is updated us follows

Tnew
i,j = min

(
T cur
i,j , T̃

)
(12)

where the updating solution T̃ is the solution of Eq. 9 and reads

T̃i,j =

⎧⎪⎨
⎪⎩
min(Txmin, Tymin) + sijh |Txmin − Tymin| ≥ sijh,

Txmin+Tymin+
√

2s2ijh
2−(Txmin−Tymin)2

2 |Txmin − Tymin| < sijh,
(13)

– During one iteration the value of T̃ is recalculated four times with
different alternating orderings of grid sweeping:

a) i = 1 : Nx, j = 1 : Ny

b) i = 1 : Nx, j = Ny : 1
c) i = Nx : 1, j = 1 : Ny

d) i = Nx : 1, j = Ny : 1

. (14)

As follows from the above description, the proposed scheme shows the nu-
merical complexity of order O(kN) where N is the total number of the grid
nodes and k is a constant depending on the number of iterations.

The number of iterations to be performed depends on the complexity of
the velocity model. In many cases, if the velocity model is reasonably smooth
and without large velocity contrasts only a few (usually 2-3) iterations are suf-
ficient for convergence of the algorithm. The reason is that each sweep (Eq. 14)
provides the exact solution in one iteration for one spatial quarter, provided
the characteristics of the eikonal equation do not intersect (Zhao 2005). This is
the case of smooth velocity models. Moreover, the upwind Godunov difference
scheme enforces the causality of the solution (Sethian 1999), because the solu-
tion at a given grid point is determined by only those neighborhood points for
which T is smaller. This is exactly what happens (Heughen’s principle) during
an advancing of the wavefront. In consequence, the iteration procedure con-
verges very quickly and the solution is optimally accurate. However, we have to
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keep in mind that the used upwind scheme is based on the first order difference
stencil. This implies the first order accuracy of the method.

In Fig. 2 an example of a simulation of wavefront positions for the velocity
model of Rudna mine (vertical section) is shown. The ability of the algorithm
to model the complex wavefront structure, including reflection and refraction
effects, is clearly visible. The computation time for this simulation (2D grid
with N = 4 · 105 grid points) on 4 cores 2.4 GHz clocked Intel processor was
about 90 milliseconds.

Being based on general concepts of the modern probabilistic inverse theory,
the TRMLOC algorithm exhibits the same level of generality as any other, more
traditional Bayesian location algorithms, However, unlike the classical proba-
bilistic approaches, it performs implicit sampling simultaneously with the for-
ward modeling due to the use of the finite difference based eikonal solver and
EDT type of the misfit function.

The algorithm has also some limitations. First of all, the eikonal solver pro-
vides solutions only for the first arriving seismic phases (or the first arriving
P or S waves in case of elastic waves). Including other phases within TRM-
LOC is possible, but it requires using the full waveform modeling algorithms,
or multi-phases extensions to eikonal solver (Hauser et al. 2008, Rawlinson and
Sambridge 2004). In both cases, however, the numerical efficiency of the algo-
rithm is lost.
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Fig. 2. The vertical section of the synthetic velocity model and wavefront positions sim-

ulated by FSM technique from the hypothetic rockburst (star). Open triangles denote

seismometers of the underground seismic network operating in the mine.
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The next limitation of the algorithm is related to the fact that the spatial
resolution achieved by the algorithm is limited by the grid size used by the for-
ward modeling algorithm. Achieving higher resolution requires a finer spatial
grid but this increases the computation time linearly. Another problem con-
nected to the spatial grid is that the eikonal solver used by TRMLOC is the
first-order differential solver requiring quite fine grid for high numerical accu-
racy. Using higher-order solvers or more advanced front propagation techniques
(Zhang et al. 2005) may thus be advisable.

An accumulated experience gathered when using the TRMLOC algo-
rithm shows that the most time-critical part of the algorithm is calculation
of integrated statistical characteristics of the a posteriori distribution like
evidence, entropy, average model, etc. For a large grid, with the number of
nodes of order 108 it takes about 70-80% of the whole calculation time.
A remedy to this bottle-necked part of the algorithm is its redesigning us-
ing GPGPU technology which is extremely efficient in this type calcula-
tions (Kloc and Danek 2012). Further efficiency improvement is expected by
porting the algorithm, especially the forward modeling part, to the parallel
distributed computational platform, using, for example, MPI paralelization
schemata (Quinn 2008).

3.2 Algorithms comparison
While getting the solution of the location task is conceptually rather simple,
at least when the problem is formulated as the optimization task, estimating
the reliability of the obtained solution is already more problematic and ac-
tually determines an efficiency of all location algorithms. Here we present a
simple comparison of some popular algorithms based on counting the num-
ber of forward modelings (Nf ) necessary for obtaining the solution and ac-
companying error estimators. Although such a comparison is not quite fair
because different algorithms use different forward modeling techniques (ray
tracing, eikonal solver, waveform modeling, etc.) it well illustrates the gen-
eral feature, namely overall calculation times for different algorithms. In Ta-
ble 1 we summarize such information for some most popular location soft-
wares.

The first raw in Table 1 lists the most popular location softwares which
solve the location tasks through the optimization procedure. The underlying
algorithms are very fast, especially due to the fact that they use fast ray-tracers
for point-to-point forward modelling. However, the reliability of the estimated
location errors can be questioned, especially in complex velocity settings. The
second listed group represents algorithms performing probabilistic location. All
of them provide possibilities of an exhaustive error analysis, but in general are
slower than those from the previous groups.
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T a b l e 1

Comparison of a number of forward modelings NF

performed by selected location algorithms

Method Implementation Modeling Sampling NF

Linearized Hypo71(A) ray tracer — K ×Ns

iterative HYPOELLIPSE(B) ray tracer — K ×Ns

inversion HypoInverse(C) ray tracer — K ×Ns

Probabilistic Rloc (E) ray tracer Metropolis ∼ 106

inversion NLloc(D) eikonal solver Gibbs, Oct-Tree Ns

TRMLOC eikonal solver implicit grid sampling Ns

Explanations: A – Lee and Lahr (1975), B – Lahr (1989), C – Klein (2002), D –

Lomax et al. (2000), E – Rudzinski and Debski (2012). Ns stands for number of

stations (data) used for hypocenter location and K is a constant which depends on a

number of iterations, velocity model, station distributions, etc., and typically ranges

between 10 and 50.

The most interesting is a comparison of NLloc and TRMLOC software as
both implement in a different way almost identical location algorithms. The
NLloc code provides a large flexibility (two different types of the misfit func-
tion and two different sampling methods), which makes it very versatile. On
the other hand, TRMLOC is more specialized (mining or local events loca-
tion) and uses only the EDT type misfit function (with l1, l2, and Cauchy
norms). The most important difference between NLloc and TRMLOC is that
NLloc performs classical, explicit sampling of the location space (3D or 4D)
using the modern Oct-Tree or Gibbs samplers. It requires generation and eval-
uation of ∼ 104 or more samples (Lomax et al. 2000) and the a posteriori
pdf is then retrieved from the samples distribution. On the other hand, TRM-
LOC performs implicit exhaustive grid sampling evaluating a posteriori pdf
for all grid nodes (typically ∼ 107 ) but it is done simultaneously with for-
ward modelling. Computational costs of this implicit sampling are comparable
to an additional forward modelling. The other difference is that NLloc saves the
forward modelling results on disk and then retrieves it when necessary, while
TRMLOC keeps them in the memory. Finally, the TRMLOC algorithm uses the
shared memory model of parallel computation via the OMP standard (Dagum
and Menon 2002, Quinn 2008) and can easily be ported to MPI and GPGPU
parallel computational models, while NLloc (version 6) does not support paral-
lel computations. In consequence of the above implementation differences, the
TRMLOC will typically run significantly faster than NLloc on modern comput-
ers with multi-core processors and large memories but will be over-performed
by NLloc on simpler computers.
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4. EXAMPLE: RUDNA COPPER MINE

The TRMLOC algorithm has been applied to locate a set of mining tremors
induced by mining activity in the Rudna copper mine. This mine, situated in
south-western Poland, runs a digital seismic network composed of 32 vertical
seismometers located underground at exploitation depths ranging from 550 to
1150 m. The sampling period is dt = 2 ms. We have analysed 1647 events
which occurred in two sections of the mine, between 2012 and 2014. The mag-
nitudes ML of the selected events is ranging from about 1.0 up to 3.5. The his-
togram of the magnitude distribution of the analysed events is shown in Fig. 3.
We have assumed the Gaussian form of the a priori function

f(m) = exp

(
− (x− xa)

2 + (y − ya)
2

C2
e

+
(z − za)

2

C2
z

)
(15)

with Cz = 500 and Ce = 2000 and the a priori solutions (xa, ya, za) were
provided by the mine. Choosing such values of Cz and Ce guarantees a very
weak a priori constraining of the final solution. The parameter Cp defining the
likelihood function was taken as Cp = 0.01 s. and its setting is discussed in
Debski (2015). Let us note at this point that parameters Cz and Ce quantify
the a priori expected location uncertainties with respect to the a priori loca-
tion (xa, ya, za) (Debski 2010). Finally, following the standard mining practice
we have used in this preliminary study the constant velocity model assuming
P-wave velocity V = 5900 m/s.

Using the mining data we have firstly verified the scaling property of the
TRMLOC algorithm with respect to the number of grid nodes used for calcu-
lations. For this analysis we have chosen another event of magnitude 3.6 which
occurred on 26 June 2010, and due to its energy was recorded by all 30 running
seismometers. Different grid sizes h, ranging from 10 up to 200 m, were used
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Fig. 3. Magnitude distribution of the analysed 1647 events.
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for data processing, keeping the search region (X × Y × Z) 10 km × 10 km
× 2 km the same for all grid settings. The computational efficiency of the al-
gorithm is determined by a few factors, namely the efficiency of the forward
modelling procedure, complexity of calculation of the a posteriori distribution
and finally, calculations of various characteristics of the a posteriori distribu-
tion. Since numerical efficiency of the FSM solver is O(N) and calculations
of the a posteriori distribution and its characteristic is also of order O(N), the
expected overall efficiency is also proportional to N. The calculations were
performed on 8 cores shared-memory computer with 2.4 GHz clock. The cal-
culations were performed 50 times for each grid size to avoid a bias introduced
by other tasks performed by operating system and the minimum computational
times were recorded. Their dependence on the total number of grid nodes N
and the grid size h is shown in Fig. 4. The theoretically predicted linear re-
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Fig. 4. The TRMLOC minimum computational time taken from an ensemble of 50 runs

as a function of number of grid nodes N (up) and grid spacing h (down). Theoretically

predicted linear dependence of computational time with N is clearly visible.
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lation between computational time and number of grid nodes is clearly seen.
Moreover, for all reasonable grid choices for which grid spacing h is smaller
than the desired location accuracy (20-50 m) the calculation times are about
1 min. This is a fully acceptable computational efficiency which allows to use
the algorithm in time critical application like a routine seismic data processing
in mines.

In the next step we have analysed the location accuracy estimated by the
diagonal elements of the a posteriori covariance matrix. The results are shown
in Fig. 5.

It is clearly visible from Fig. 5 that epicentral ( x and y ) coordinates are
much better resolved than the vertical one. This well known fact is a conse-
quence of an almost planar geometry of the seismic network operating by mine.
The horizontal location accuracy ranging in most cases between 10 and 30 me-
ters is quite satisfactory. In case of the depth component the location accuracy
is ranging typically between 100 and 300 m. As we discuss latter, on the largest

Fig. 5. The histogram of epicentral (up) and vertical (down) location errors for the anal-

ysed events.



W. DĘBSKI and P. KLEJMENT2398

vertical uncertainties are partially due to multi-modality of the a posteriori dis-
tribution and thus are overestimated by the used estimator (covariance matrix).
The dependence of the location errors upon a number of stations contributing
to the hypocenter location is shown in Fig. 6 While the horizontal errors are
almost independent of Ns (only a minor increase for small Ns can be ob-
served) the vertical location errors significantly decreases for large Ns. This
is not surprising, because even for a planar seismic network a larger horizontal
span of the contributing stations is efficiently enhancing the “vertical informa-
tion” in data (Debski 1996, Debski et al. 1997) by differentiating the ratio of
vertical-to-horizontal hypocenter-station distances.

Next, we have analysed the correlation between the hypocenter coordinates.
They are shown in Fig. 7 where the off-diagonal elements of the a posteriori
covariance matrix are shown.

The distinct feature visible in this figure is an existence of an overall small
correlations (at the level of ±0.2 ) for most of events. Besides, we can see that
for a number of events a large negative Rxy ∼ −0.4 correlation between x
and y coordinates has been reported. We interpret this as an effect of a par-
ticular (linear-like) station geometry for a given subset of events. Much more
interesting is an existence of the secondary maximum for the Rxz coefficients
around the value Rxz ∼ −0.8. This multi-modality of the Rxz distribution
suggests an existence of two classes of the solution. To verify this hypothesis we
have analysed all 1D a posteriori marginal probability density distributions and
we have found out that all solutions split generally into two classes. To the first
class belong solutions for which the P (z) distributions for the depth coordi-

Fig. 6. The histogram of the epicentral and the vertical location errors upon the number

of contributing seismic stations Ns. While the horizontal errors are almost indepen-

dent of Ns (only a minor increase for small Ns can be observed) the vertical location

errors significantly decrease for large Ns.
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Fig. 7. The histogram of the correlation coefficients between hypocenter coordinates.

In case of coefficients Rxy and Rxz, the existence of two peaks is clearly visible.
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Fig. 8. The examples of two types of solutions with unimodal marginal depth distribu-

tions P (z) (up) and two-modal distributions (down). While P (x) and P (y) distri-

butions exibits typically a Gaussian-type shape for all events, the P (z) splits into two

class: unimodal (up) and two-modal (down). For the visualization purpose, all distribu-

tions were independently normalized and shifted towards unified maximum positions

at zero.

nate are unimodal. The second class is formed by two-modal P (z) distribution
solutions. The distributions P (z) typical for both classes are shown in Fig. 8

Similar 2D marginal distributions for exemplary events are shown in Fig. 9
The reason of the existence of two-modal depth solutions is obviously the

planarity of the seismic underground network. For such a network geometry
one can expect an existence of solution above and below the network plane. A
possible remedy to this non-uniqueness problem (besides a rather costly hard-
ware enhancing of the network) is using a more realistic, at least 1D velocity
model differentiating between rock masses below and above the exploitation
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Fig. 9. The examples of two dimensional marginal distributions P (x, y) (upper row),

P (x, z) (middle row), P (y, z) (bottom row) for two classes of solutions: unimodal

(left column) and two-modal (right column). Local coordinate system is used.
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level. The next conclusion following the existence of the multi-modal solutions
is that for such a solution an error estimation by the covariance matrix is not jus-
tified (Debski 2010). In this case an error estimator “should measure” a width of
the main pick only, otherwise, we get an overestimation of the location errors.

Finally, the question arises whether the secondary maxima appear system-
atically below or above the primary depth solutions. To answer this question we
have calculated the skewness γ coefficient for 1D a posteriori marginal distri-
butions with respect to the position of the main pick. The results are shown in
Fig. 10.

Fig. 10. The distribution of the skewness coefficients for the 1D a posteriori marginal

distributions.
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The visible secondary pick in the skewness distribution of P (z) occurs at
the positive value of γ. It means that the secondary pick in two-modal solutions
is more frequently localised at larger depths than the main solution.

5. DISCUSSION AND CONCLUSIONS

Evaluation of the quality of inversion results is an important element while solv-
ing any inverse task in hand. With the classical approach, when the solution is
the optimum-fitting model, our ability of evaluation of inversion quality is very
limited and relies in practice on linearized approach. Many statistical tests and
methods have been developed along this line of reasoning (see, e.g., Brandt
1999). However, such an approach is more or less dependent on the particular
solution found, so the results of the error analysis are “model dependent”. The
new possibilities are opened by the probabilistic approach which theoretically
brings together all available uncertainties occurring during the inversion pro-
cess and provides the statistics of the a posteriori errors. However, the approach
is computationally demanding.

Exhaustive computations needed by the probabilistic inversion technique
are due to two factors: a need of the sampling of the a posteriori distribution
and the so-called “curse of dimensionality” effect (Curtis and Lomax 2001).
The first factor is connected with the fact that obtaining some characteristics of
the a posteriori distribution (average model, dispersion, etc.) requires inspec-
tion and evaluation of many models and thus many additional forward mod-
elings. The second element, namely the fact that the models contributing to
nonzero part of the a posteriori distribution forms a subset with a very small
volume with respect to the whole model space makes the efficient sampling
quite difficult (Mosegaard and Sambridge 2002). While building the TRMLOC
algorithm we have explored the fact that for the source location task the model
space (configuration space) is isomorphic with the space over which the forward
operator (eikonal solver) is defined. This enabled us, by using the time reversal
principle and the choice of the EDT-type likelihood function to make a calcula-
tion of the misfit function at all grid points having solved the forward problem
for all receivers. In consequence there was no need of an additional sampling of
the a posteriori pdf typical for classical Bayesian inversion. Obviously, a simi-
lar approach can be used in other situations when the model space coincides
with the domain over which the forward operator solution is defined. For ex-
ample, in case of the source location based on the full waveform inversion the
misfit function can be defined by a difference between cross-correlations or
more advanced measures (Kennett and Fichtner 2012) of the back propagated
waveforms. The method can further be generalized by using different fields
and different measures (Larmat et al. 2009, Ulrich et al. 2009) for construct-
ing the misfit/likelihood function. The important question arises, however, at
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this point whether a similar method of “implicit sampling” can be developed
for other time-reversal inverse problems when analyzed parameters are, for ex-
ample source moment tensor, source time function, etc. An analysis of this issue
will be presented elsewhere.

The important point of the developed algorithm is using the EDT type mis-
fit function within the probabilistic inversion. The concept of the EDT mis-
fit function is well established in seismology and its use within the classical,
optimization-based inversion technique has proved to be very successful. How-
ever, using the EDT misfit to define the likelihood function in probabilistic in-
version is by no means obvious. The reason is that the “true” likelihood function
is actually the probability density function describing the sum of modelling and
observational errors. Apparently, the likelihood-type function defined through
the EDT misfit function does not have this property. The open question is thus
if this difference is operationally important (eventually under which condition)
or not. Apparently the maximum likelihood solution which is equivalent to the
minimum of the misfit function is not influenced by this difference. However,
this in not the case of other moments, like for example variance of the a posteri-
ori distribution and thus some systematic bias can occur. This issue apparently
must be clarified.

Finally, let us note that the seismic source location task is a very special
type of inverse problem in which the model space is the same as the space over
which the forward operator acts. We have explored this identity in the TRM-
LOC algorithm to perform the implicit sampling of the a posteriori distribu-
tion and thus ensuring its very high numerical efficiency. We think that this
approach, when combined with time-reversal principle, can further be extend
to analyze different characteristics of seismic sources. The crucial point is the
observation that the seismic signals back-propagated to the hypocenter location
contain all information about the source as the originally recorded waveforms.
Thus, to perform the full waveform inversion for seismic source parameters we
do not need to use the originally recorded waveforms. Instead we can use the
back-in-time propagated signals at the hypocenter location. In consequence, the
most time consuming part of any full waveform inversion, namely the propa-
gation of seismic waves from hypocenter to recording stations performed many
times during inversion can be replaced by a single back-in-time seismic waves
propagation. Apparently, additional uncertainties are introduced with such an
approach and a lot of further analysis is necessary.

The developed algorithm has allowed us to make a nontrivial error analysis
for a set of 1647 events from Rudna copper mine. The most interesting result
of this analysis is demonstrating of an existence of a sub-class of two-modal
solutions. We have found out that in most cases the secondary maximum in
the a posteriori distributions occur at larger depths (often below the exploita-
tion level). Possibilities of such deeper, below the exploitation level, seismic
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events were discussed, for example, by Gibowicz and Kijko (1994), Gibowicz
and Lasocki (2001). In the light of the obtained results, a hypothesis of genera-
tion of seismic events in the footwall in Rudna copper mine cannot be ruled out.
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