
Acta Geophysica
vol. 64, no. 4, Aug. 2016, pp. 1051-1063

DOI: 10.1515/acgeo-2016-0033

__
Ownership: Institute of Geophysics, Polish Academy of Sciences;
© 2016 Liu and Li. This is an open access article distributed under the Creative Commons
Attribution-NonCommercial-NoDerivs license,
http://creativecommons.org/licenses/by-nc-nd/3.0/.

Practical Implementation
of Prestack Kirchhoff Time Migration

on a General Purpose Graphics Processing Unit

Guofeng LIU1,2 and Chun LI1

1Key Laboratory of Geo-detection, China University of Geosciences,
Ministry of Education, Beijing, China; e-mail: liugf@cugb.edu.cn

2State Key Laboratory of Continental Tectonics and Dynamics, Institute of Geology,
Chinese Academy of Geological Sciences, Beijing, China

A b s t r a c t

In this study, we present a practical implementation of prestack
Kirchhoff time migration (PSTM) on a general purpose graphic process-
ing unit. First, we consider the three main optimizations of the PSTM
GPU code, i.e., designing a configuration based on a reasonable execu-
tion, using the texture memory for velocity interpolation, and the applica-
tion of an intrinsic function in device code. This approach can achieve a
speedup of nearly 45 times on a NVIDIA GTX 680 GPU compared with
CPU code when a larger imaging space is used, where the PSTM output
is a common reflection point that is gathered as I[nx][ny][nh][nt] in ma-
trix format. However, this method requires more memory space so the
limited imaging space cannot fully exploit the GPU sources. To over-
come this problem, we designed a PSTM scheme with multi-GPUs for
imaging different seismic data on different GPUs using an offset value.
This process can achieve the peak speedup of GPU PSTM code and it
greatly increases the efficiency of the calculations, but without changing
the imaging result.

Key words: GPGPU, offset splitting, parallelization, PSTM, texture
memory.

G. LIU and C. LI

1052

1. INTRODUCTION
Seismic exploration is an important area of geophysical research, which aims
at determining subsurface structures to detect where oil and gas can be found
and recovered. Prestack Kirchhoff time migration (PSTM) is one of the most
popular migration techniques used for seismic data processing because of its
simplicity, efficiency, feasibility, and target-orientated properties (Bevc
1997). However, the practical application of PSTM to tasks during large 3D
surveys is still computationally intensive. To accelerate the processing of
migration, the parallel processing of prestack time migration has been im-
plemented routinely on distributed parallel computers (Schleicher and Cope-
land 1993, Chen et al. 1993), as well as on PC clusters (Morton et al. 1999,
Hellman 2000, Dai 2005). In recent years, many other devices have also
been used to accelerate PSTM such as FPGAs (He et al. 2005).

Recently, programmable graphics processor units (GPUs) have evolved
into a computing workhorse. GPUs possess multiple cores with a very high
memory bandwidth, which makes them useful resources for graphics and
non-graphics processing (NVIDIA 2012). Potentially, GPUs can achieve
hundreds or even thousands of GFLOPS, whereas general CPUs are only ca-
pable of dozens of GFLOPS at present. NVIDIA’s computed unified device
architecture (CUDA) provides a C-like programming model for exploiting
the massively parallel processing power of NVIDIA’s GPU (NVIDIA 2013),
and it is now employed widely for many parallel computation applications
(Lu et al. 2013, Capuzzo-Dolcetta and Spera 2013, Westphal et al. 2014).
Some studies have also used NVIDIA GPUs to accelerate PSTM. In particu-
lar, Liu et al. (2009) discussed the possibility of parallel computation with
NVIDIA GPUs. Shi et al. (2011) proposed a method for accelerating PSTM
on GPUs by splitting the PSTM procedure into four consequence kernels ac-
cording to the GPU memory limitations, as well as considering the floating
point error problem, which may lead to differences when comparing PSTM
with CPU computations.

In this study, we propose the possible application of computing with
PSTM on GPUs by combining the characteristics of GPU and PSTM algo-
rithms. First, we consider three key optimization points, i.e., designing a con-
figuration that achieves a reasonable execution, using texture memory for
velocity interpolation, and employing faster intrinsic functions. After analyz-
ing the efficiency of this method, we also propose a multi-GPU scheme that
employs a splitting offset to keep the GPU busy. Our test results demonstrate
that the proposed method achieves a great speedup.

2. REVIEW OF PSTM
PSTM (Fig. 1) uses seismic traces that originate from a source S, which are
received at R as input data. The variable, h, is an offset of the distance be-

 PSTM ON GPGPU

1053

Fig. 1. PSTM scheme.

tween the source and receiver pair, where the 3D imaging space is a uniform
common midpoint (CMP) on the ground surface and an imaging point in the
depth direction. However, it expresses the depth using a two-way travel
time, T. For an imaging point, O, in the T direction, the imaging value for a
certain input trace is the amplitude of the input trace at time t, i.e., the seis-
mic wave travel time from S to O and then back to the surface for O to R.
The travel time can be calculated by the straight ray equation:

 � � � �
2

2 2
0 0 2

0

, , (,) ,
, ,
xT x y t t x y

v x y t
�
 (1)

where T is the two-way travel time, t0 is the vertical time from the surface to
the imaging point, x is the distance from the source or receiver to the imag-
ing CMP, and � is the root squared mean velocity of the imaging point,
which is obtained by the velocity analysis method in seismic processing and
it is interpolated to all of the imaging points.

The output of the PSTM for an imaging CMP is called a common reflec-
tion gather (CRP), which is used to update � in Eq. 1 until we obtain a better
image of the subsurface. In Fig. 2 panel (a) is the CRP of a CMP. Stacking
all of the traces in this gather can yield the imaging trace of the CMP, while
combining all of the CMPs produces the final imaging profile (Fig. 2c),
which is a 2D seismic PSTM imaging profile that depicts the geological
structure of the subsurface.

In addition to this PSTM kernel, all input seismic traces require an anti-
aliasing process (Lumley et al. 1993) and an amplitude-preserving weight
(Sun and Martinez 2002). The pseudo-code for Algorithm 1 (Table 1) shows
how one seismic trace is processed for PSTM imaging.

G. LIU and C. LI

1054

Fig. 2: (a) CRP gather of a midpoint, (b) imaging trace of a midpoint after stacking
the CRP gather, and (c) final imaging section obtained by PSTM.

Table 1
Algorithm 1: PKTM kernel

Input: velocity model v[ix][iy][it]
 seismic data trace [ih][it] source at S(x, y) and receiver at R(x, y)
 other migration parameters: time interval dt, etc.
Output: common reflection gather I[ix][iy][ih][it]

Anti-aliasing processing for input trace;
 for (ix = 0; ix < nx; ix++) // CMP in x direction
 for (iy = 0; iy < ny; iy++) // CMP in y direction
 for (it = 0; it < nt; it++)
{ //imaging point in t direction
 calculate the travel time t with Eq. 1;
 I[ix][iy][ih][it]+ = weight * trace [t/dt]; }

The conventional approach implements parallel processing of Algo-

rithm 1 on a low-cost PC cluster using the message passing interface, where
each node calculates all of the imaging points that belong to the same CMPs
and they share the same input trace each time. The processing time is longer
than the communication time, so the time elapsed is inversely proportional to
the number of CPUs, and thus using more CPU nodes can reduce the time
elapsed and improve the efficiency (Dai 2005). In this study, we propose a
complete GPU solution for PSTM.

3. PARALLELIZATION OF PSTM ON GPU
3.1 Hardware and real seismic field data
We used a 3.07 MHz Intel (R) core (TM) i7 CPU with 24 GB of DDR3
memory, which was connected to an NVIDIA GTX 680 GPU, where the

 PSTM ON GPGPU

1055

main system comprised 2 GB of global memory, eight multiprocessors (MP)
and 192 CUDA cores per MP, the total number of registers available per
block was 65 536, the maximum number of threads per MP was 1024, and
we used CUDA version 5.0. The field seismic data used for testing com-
prised a 20 GB subse+t of a real 3D dataset with 1 681 920 traces, where
each trace had 3000 samples with intervals of 2 ms. The 3D imaging volume
had 3000 imaging points with a 2 ms time interval for a CMP. The CMP
number in the X direction (the crossline) ranged from 0 to 1000, and the
CMP number in the Y direction (the inline) was defined as necessary.

3.2 Profiling the PSTM CPU code
Profiling the PSTM CPU code can help to find hotspots and bottlenecks. We
used the GUN tool gprof to generate the profile of the seismic field data
where the imaging space was equal to 1000 CMPs in the crossline direction,
with four inlines. The profiling results (Fig. 3) showed that the PSTM kernel
completed nearly 98% of the work with a relatively small amount of code.
This value increased when the imaging space was larger. Based on Amdahl’s
law (Amdahl 1967), the maximum speedup, S, of PSTM is:

 1

(1)
S

PP
N

�
	

 , (2)

where P is the fraction of the total serial execution time required by the por-
tion of code that can be parallelized and N is the number of processors on
which the code runs in parallel. When 97% of the running time for PSTM
was parallelized, the maximum speedup was > 50, thereby demonstrating
that GPU parallelization is a worthwhile procedure.

Fig. 3. PSTM kernel runtime percentage for a specific imaging space.

3.3 Parallelization strategy for PSTM on a GPU
According to Algorithm 1, the processing of each imaging point is inde-
pendent. Thus, we can parallelize the three loops, where the CMPs in the X
and Y directions can be computed in parallel by blocks in the grid. The
CMPs in the X direction are calculated by blockidx.x and the CMPs in the Y
direction are calculated by blockidx.y. The imaging point of each CMP is
parallelized by threads for each block, where the thread structure of the
PSTM is shown in Fig. 4.

G. LIU and C. LI

1056

Fig. 4. Thread structure of PSTM.

One approach that improves the GPU performance is keeping the multi-
processors on the device as busy as possible, which has two main features.
First, when choosing the number of blocks per grid, the grid size should be
larger than the number of multiprocessors so all of the multiprocessors have
at least one block to execute. Furthermore, there should be multiple active
blocks per multiprocessor so the blocks can keep the hardware busy. This
condition can be fulfilled easily, because the number of imaging CMPs in
the X and Y directions is much greater than the number of device multipro-
cessors. Second, when choosing the block size, it is important to remember
that multiple concurrent blocks can reside on the multiprocessor, so the oc-
cupancy (the ratio of the number of active warps per multiprocessor relative
to the maximum number of possible active warps) is not determined by the
block size alone. In particular, a large block size does not imply a higher oc-
cupancy. For example, it may lead to pressure on a number of registers per
multiprocessors and shared memory usage. In the PSTM kernel, the main
pressure is the number of registers, which is 31 in the PSTM kernel. If the
block size is 128 threads, then based on the GTX 680’s maximum register
number per multiprocessor, there are 15 active blocks, which is greater than
the eight maximum active blocks calculated using the maximum threads per
block of 1024; therefore, we can achieve an occupancy of > 99%. According
to the NVIDIA programming guide, many factors are involved in selecting
the block size and thus some experimentation is required. Therefore, we pro-
vide the block size as a program parameter in the PSTM, which is decided
by the user. Furthermore, we can apply –maxrregcount at the compilation
time to balance the usage of registers and local memory, which is more ex-
pensive to access. Figure 5 shows the results of an experiment using GTX

 PSTM ON GPGPU

1057

Fig. 5. Comparison of the computing time with different threads and registers.

Fig. 6. Comparison of the GPU and CPU computing times with different imaging
spaces.

680 with an imaging space of 1000 CMPs for the seismic data mentioned
above, where we employed 16, 24, and 31 registers of PSTM elapsed time
versus different thread numbers per block. This first test was required to ob-
tain the most efficient register and thread pairs.

In PSTM, the root squared mean velocity at the imaging point t0 plays an
important role in the imaging accuracy. Thus, a velocity analysis is per-
formed with sparse CMP points and some other points such as the red dots
shown in Fig. 6. Traditionally, during the imaging process, the discrete ve-
locity must be interpolated first for all of the imaging points and then passed
to the GPU using global memory, which is expensive to access because it
needs a relatively large memory space. In our method, we use texture to per-
form the velocity model transfer and the read-only texture memory space is
cached. Therefore, a texture fetch costs only one device memory read for a
cache miss; otherwise, it costs one read from the texture cache. Furthermore,
threads in the same warp that read texture addresses located close together

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

Tim
e(

s)

Cmp Number

GPU time Cpu time

G. LIU and C. LI

1058

will obtain the best performance. Using a function, such as tex3D(), can also
provide other capabilities, such as interpolation, and thus based on this char-
acteristic, we can use the texture memory directly for velocity interpolation.
This is less expensive to access than global memory and it can save more
memory space for the imaging results.

The method used to execute instructions often permits low-level optimi-
zations, which can be useful, especially in code that is run frequently, such
as the PSTM kernel. This may involve trading precision for speed when it
does not affect the end result, such as using intrinsic instead of regular func-
tions, and including runtime math operations with prepended underscores,
e.g., __sinf(),__fmul_rz(). These types of function are mapped directly to the
hardware level. They are faster but they have somewhat lower accuracy.
When the imaging space of PSTM is 1000, there are 128 threads for a block.
We found that if we do not use the intrinsic functions, the number of regis-
ters increases to 55 without increasing any variables, which is also a problem
that affects the efficiency.

Many possible optimizations can be considered, such as having all read-
only input data using the texture memory and employing a constant memory
for the transparency function parameters of the device kernel. The final aim
is to maximize the use of hardware by maximizing bandwidth and keeping
the multiprocessors on the device as busy as possible. Following GPU paral-
lelization, the PSTM kernel can be summarized according to the pseudo-
code of Algorithm 2 (Table 2).

Table 2
Algorithm 2: GPU PTKM kernel

Input: seismic data trace [ih][it] source at S(x, y) and receiver at R(x, y)
 other migration parameters: time interval dt, etc.
Output: common reflection gather I[ix][iy][ih][it]

Anti-aliasing processing for input trace;
 ix = blockIdx.x // CMP in x direction
 iy = blockIdx.y // CMP in y direction
 for (it = threadidx.x; it < nt; it = it+blockDim.x){ //imaging point in t direction
 v = tex3D(vel_tex, it, blockidx.x, blockidx,y);
 calculate the travel time t with Eq. 1;
 I[ix][iy][ih][it]+ = weight * trace [t/dt]; }

The final GPU PSTM codes were tested with real seismic field data. The

number of CMPs in the crossline direction was 1000 and the CMPs in the in-
line direction were selected from 1 to 20, where each CMP had 3000 imag-

 PSTM ON GPGPU

1059

Fig. 7. Speedup in the time elapsed on a GPU compared with one thread on a CPU
with different image spaces.

Fig. 8. PSTM section based on real data: (a) migrated section with CPU; (b) migrat-
ed section with GPU, and (c) difference in a migrated trace.

ing points. The calculation times obtained with the GPU and CPU are shown
in Fig. 6. Figure 7 shows the speedup of the GPU compared with the CPU
code where only one thread was used on 3.07 GHz intel i7 processor with
different imaging spaces. These two figures demonstrate that the GPU code
achieved a speedup of 45 times compared with that of the CPU code, and a
larger imaging space reduced the time required significantly.

Figure 8 shows the inline migration results with 1000 CMPs, where pan-
el (a) depicts the CPU migrated result and panel (b) illustrates the GPU mi-
grated result, where it is difficult to see any difference between the two
sections. Panel (c) shows the difference in one trace with the same phase and
amplitude trend, which may be due to the floating point errors during GPU
computation and different velocity interpolation methods, although the re-
sults are acceptable in each case.

G. LIU and C. LI

1060

4. MULTI-GPU SCHEME FOR PSTM
The output of the PSTM is a CRP gather in the form of the matrix
I[nx]ny][nh][nt], where nx and ny are the surface CMP numbers in the cross-
line and sub-line directions, respectively, and nt are the imaging points in the
depth direction. The final imaging result includes another dimension, nh,
which is related to the input trace offset. In the imaging parameters, we usu-
ally define the offset bin with a minimum and maximum offset, and an offset
interval. Therefore, if the input trace is h, then ih is (h-minimum offset)/
(offset interval).

The GPU global memory is limited, where the GTX 680 has 2 GB, so it
must be split onto multi-GPUs when the imaging space is larger, as shown in
Fig. 9.

For the seismic field data tested in this study, if nx = 1000, nt = 3000,
and the offset number = 48, then the GTX 680 can calculate the sub-line
number for ny = 4 only once with each GPU. As shown in Figs. 7 and 8, it
is better to image a larger space to obtain a higher efficiency. Therefore, we
propose an alternative method to maximize the GPU efficiency using multi-
GPUs. Before image processing, we split the seismic data onto different
GPU nodes according to the offset range. When imaging, assuming that nh is
equal to the GPU node number, the inline ny of the imaging space is more
than 150 and different GPU nodes are calculated using different offset parts
of the same sub-line. After each node finishes imaging, all of the imaging re-
sults are collected from the different GPU nodes and the traces are sorted for
the CRP gather. Figure 10 shows a flowchart of our proposed method.

Fig. 9. Splitting the imaging space onto different GPU nodes.

 PSTM ON GPGPU

1061

Fig. 10. Flowchart of the proposed multi-GPU scheme.

In large industrial 3D surveys, the offsets of the input data often lack av-
erage distributions in a similar manner to joint processing for different sur-
veys, so the following steps are recommend: (i) sort the input trace into the
CMP offset order; (ii) split the data into several parts with the same trace
numbers according to the number of GPU nodes and send each of them to
the GPU nodes; (iii) compute the minimum and maximum offset for the data
on each GPU node and set the output offset bins; (iv) migrate all of the im-
aging space, where several steps may be required depending on the GPU
memory and offset number; (v) collect the migrated data from each GPU
node and sort them into the CMP offset gather, before stacking the same off-
set for a CMP gather, thereby completing the migration process and the out-
put is the CRP gather.

5. CONCLUSIONS
In this study, we proposed the practical implementation of PSTM on a GPU.
We considered three main optimizations, i.e., designing the configuration for
execution to maximize the occupancy and make the device as busy as possi-
ble, using texture memory for velocity transparency and interpolation to in-
crease the device bandwidth, and employing faster intrinsic functions for the
device kernel. We tested the code with 20 GB of real 3D seismic data on an
NVIDIA GTX 680 card, which obtained speedups greater than 45 times
compared with the CPU. Furthermore, more time was saved when the imag-
ing space was larger. To fully exploit GPUs, we recommend a scheme that

G. LIU and C. LI

1062

splits the offset onto different GPU nodes, before collecting and sorting to
obtain the CRP gather after completing the imaging process. This scheme
can be used for data imaging with large volumes. Many possible optimiza-
tions can be considered, which requires a large amount of work. However,
optimization is easier due to the development of appropriate hardware, and
thus the PSTM efficiency can be improved greatly.

Acknowledgmen t s . We would like to thank Dr. Michal Malinowski
for his comments and suggestions, which improved this paper significantly,
and we also thank the associate editor for his consideration. This study was
supported by the NSFC (grant No. 41104083), Beijing Higher Education
Young Elite Teacher Project, and Fundamental Research Funds for the Cen-
tral Universities.

R e f e r e n c e s

Amdahl, G. (1967), Validity of the single processor approach to achieving large-
scale computing capabilities. In: Proc. AFIPS ’67 (Spring), 18-20 April
1967, American Federation Information Processing Society, Vol. 30, 483-
485, DOI: 10.1145/1465482.1465560.

Bevc, D. (1997), Imaging complex structures with semirecursive Kirchhoff migra-
tion, Geophysics 62, 2, 577-588, DOI: 10.1190/1.1444167.

Capuzzo-Dolcetta, R., and M. Spera (2013), A performance comparison of different
graphics processing units running direct N-body simulations, Comput.
Phys. Commun. 184, 11, 2528-2539, DOI: 10.1016/j.cpc.2013.07.005.

Chen, T., and D. Hale (1993), Network parallel 3-D phase-shift migration. In: Ex-
panded Abstracts of the 63rd SEG Annual Meeting, Society of Exploration
Geophysicists, Tulsa, USA, 177-180, DOI: 10.1190/1.1822430.

Dai, H. (2005), Parallel processing of prestack Kirchhoff time migration on a PC
cluster, Comput. Geosci. 31, 7, 891-899, DOI: 10.1016/j.cageo.2005.02.
002.

He, C., C. Sun, M. Lu, and W. Zhao (2005), Prestack Kirchhoff time migration on
high performance reconfigurable computing platform. In: Expanded Ab-
stracts of the 75th Annual Meeting of the Society of Exploration Geophysi-
cists, 6-11 November, Houston, USA, 1902-1905, DOI: 10.1190/1.2148076.

Hellman, K.J. (2000), Distributed memory prestack Kirchhoff time migration: Paral-
lelization and scalability. In: Expanded Abstracts of the 70th Annual Meet-
ing of the Society of Exploration Geophysicists, 6-11 August 2000, Calgary,
Canada, 981-983, DOI: 10.1190/1.1816242.

 PSTM ON GPGPU

1063

Liu, G.F., H. Liu, B. Li, Q. Liu, and X.L. Tong (2009), Method of prestack time mi-
gration of seismic data of mountainous regions and its GPU implementa-
tion, Chin. J. Geophys. 52, 6, 1381-1388, DOI: 10.1002/cjg2.1463.

Lu, F., J. Song, W. Lin, Y. Pang, K. Ren, and P. Shi (2013), Efficient utilization of
launched threads on GPUs: The spherical harmonic transform as a case
study, Comput. Phys. Commun. 184, 11, 2494-2502, DOI: 10.1016/j.cpc.
2013.06.019.

Lumley, D.E., J.F. Claerbout, and D. Bevc (1993), Anti-aliased Kirchhoff 3-D mi-
gration: a salt intrusion example. In: Expanded Abstracts of the Annual
SEG Summer Research Workshop on 3-D Seismology, Society of Explora-
tion Geophysicists, 115-123.

Morton, S.A., J.R. Davis, H.L. Duffey, G.L. Donathan, and S.N. Checkles (1999),
Seismic processing on commodity supercomputers. In: Expanded Abstracts
of the 69th SEG Annual Meeting, 31 October – 5 November 1999, Houston,
USA, Society of Exploration Geophysicists, Tulsa, USA, 956-958, DOI:
10.1190/1.1821269.

NVIDIA (2012), CUDA compute unified device architecture programming guide
(v 5.0), NVIDIA Co., Santa Clara, USA.

NVIDIA (2013), GPU computing developer homepage, NVIDIA Co., Santa Clara,
USA, available from: http://developer.nvidia.com/object/gpucomputing.
html.

Schleicher, K., and J. Copeland (1993), Parallel one-pass 3-D migration. In: Ex-
panded Abstracts of the 63rd SEG Annual Meeting, Society of Exploration
Geophysicists, Tulsa, USA, 174-176, DOI: 10.1190/1.1822429.

Shi, X., C. Li, S. Wang, and X. Wang (2011), Computing prestack Kirchhoff time
migration on general purpose GPU, Comput. Geosci. 37, 10, 1702-1710,
DOI: 10.1016/j.cageo.2010.10.014.

Sun, C., and R.D. Martinez (2002), Amplitude preserving 3D prestack time migra-
tion for VTI media, First Break 19, 618-624.

Westphal, E., S.P. Singh, C.-C. Huang, G. Gompper, and R.G. Winkler (2014), Mul-
tiparticle collision dynamics: GPU accelerated particle-based mesoscale
hydrodynamic simulations, Comput. Phys. Commun. 185, 2, 495-503, DOI:
10.1016/j.cpc.2013.10.004.

Received 1 August 2014
Received in revised form 22 April 2015

Accepted 2 June 2015

