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A b s t r a c t  

In this study, we present a practical implementation of prestack 
Kirchhoff time migration (PSTM) on a general purpose graphic process-
ing unit. First, we consider the three main optimizations of the PSTM 
GPU code, i.e., designing a configuration based on a reasonable execu-
tion, using the texture memory for velocity interpolation, and the applica-
tion of an intrinsic function in device code. This approach can achieve a 
speedup of nearly 45 times on a NVIDIA GTX 680 GPU compared with 
CPU code when a larger imaging space is used, where the PSTM output 
is a common reflection point that is gathered as I[nx][ny][nh][nt] in ma-
trix format. However, this method requires more memory space so the 
limited imaging space cannot fully exploit the GPU sources. To over-
come this problem, we designed a PSTM scheme with multi-GPUs for 
imaging different seismic data on different GPUs using an offset value. 
This process can achieve the peak speedup of GPU PSTM code and it 
greatly increases the efficiency of the calculations, but without changing 
the imaging result. 

Key words: GPGPU, offset splitting, parallelization, PSTM, texture 
memory. 
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1. INTRODUCTION 
Seismic exploration is an important area of geophysical research, which aims 
at determining subsurface structures to detect where oil and gas can be found 
and recovered. Prestack Kirchhoff time migration (PSTM) is one of the most 
popular migration techniques used for seismic data processing because of its 
simplicity, efficiency, feasibility, and target-orientated properties (Bevc 
1997). However, the practical application of PSTM to tasks during large 3D 
surveys is still computationally intensive. To accelerate the processing of 
migration, the parallel processing of prestack time migration has been im-
plemented routinely on distributed parallel computers (Schleicher and Cope-
land 1993, Chen et al. 1993), as well as on PC clusters (Morton et al. 1999, 
Hellman 2000, Dai 2005). In recent years, many other devices have also 
been used to accelerate PSTM such as FPGAs (He et al. 2005). 

Recently, programmable graphics processor units (GPUs) have evolved 
into a computing workhorse. GPUs possess multiple cores with a very high 
memory bandwidth, which makes them useful resources for graphics and 
non-graphics processing (NVIDIA 2012). Potentially, GPUs can achieve 
hundreds or even thousands of GFLOPS, whereas general CPUs are only ca-
pable of dozens of GFLOPS at present. NVIDIA’s computed unified device 
architecture (CUDA) provides a C-like programming model for exploiting 
the massively parallel processing power of NVIDIA’s GPU (NVIDIA 2013), 
and it is now employed widely for many parallel computation applications 
(Lu et al. 2013, Capuzzo-Dolcetta and Spera 2013, Westphal et al. 2014). 
Some studies have also used NVIDIA GPUs to accelerate PSTM. In particu-
lar, Liu et al. (2009) discussed the possibility of parallel computation with 
NVIDIA GPUs. Shi et al. (2011) proposed a method for accelerating PSTM 
on GPUs by splitting the PSTM procedure into four consequence kernels ac-
cording to the GPU memory limitations, as well as considering the floating 
point error problem, which may lead to differences when comparing PSTM 
with CPU computations. 

In this study, we propose the possible application of computing with 
PSTM on GPUs by combining the characteristics of GPU and PSTM algo-
rithms. First, we consider three key optimization points, i.e., designing a con-
figuration that achieves a reasonable execution, using texture memory for 
velocity interpolation, and employing faster intrinsic functions. After analyz-
ing the efficiency of this method, we also propose a multi-GPU scheme that 
employs a splitting offset to keep the GPU busy. Our test results demonstrate 
that the proposed method achieves a great speedup. 

2. REVIEW  OF  PSTM 
PSTM (Fig. 1) uses seismic traces that originate from a source S, which are 
received  at R as input data.  The variable, h,  is an offset  of the distance  be- 
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Fig. 1. PSTM scheme. 

tween the source and receiver pair, where the 3D imaging space is a uniform 
common midpoint (CMP) on the ground surface and an imaging point in the 
depth direction. However, it expresses the depth using a two-way travel 
time, T. For an imaging point, O, in the T direction, the imaging value for a 
certain input trace is the amplitude of the input trace at time t, i.e., the seis-
mic wave travel time from S to O and then back to the surface for O to R. 
The travel time can be calculated by the straight ray equation: 
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where T is the two-way travel time, t0 is the vertical time from the surface to 
the imaging point, x is the distance from the source or receiver to the imag-
ing CMP, and � is the root squared mean velocity of the imaging point, 
which is obtained by the velocity analysis method in seismic processing and 
it is interpolated to all of the imaging points. 

The output of the PSTM for an imaging CMP is called a common reflec-
tion gather (CRP), which is used to update � in Eq. 1 until we obtain a better 
image of the subsurface. In Fig. 2 panel (a) is the CRP of a CMP. Stacking 
all of the traces in this gather can yield the imaging trace of the CMP, while 
combining all of the CMPs produces the final imaging profile (Fig. 2c), 
which is a 2D seismic PSTM imaging profile that depicts the geological 
structure of the subsurface. 

In addition to this PSTM kernel, all input seismic traces require an anti-
aliasing process (Lumley et al. 1993) and an amplitude-preserving weight 
(Sun and Martinez 2002). The pseudo-code for Algorithm 1 (Table 1) shows 
how one seismic trace is processed for PSTM imaging. 
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Fig. 2: (a) CRP gather of a midpoint, (b) imaging trace of a midpoint after stacking 
the CRP gather, and (c) final imaging section obtained by PSTM. 

Table 1 
Algorithm 1: PKTM kernel 

Input: velocity model  v[ix][iy][it] 
     seismic data trace  [ih][it]  source at  S(x, y)  and receiver at  R(x, y) 
     other migration parameters: time interval dt, etc. 
Output: common reflection gather  I[ix][iy][ih][it] 

Anti-aliasing processing for input trace;  
     for (ix = 0; ix < nx; ix++) // CMP in x direction  
     for (iy = 0; iy < ny; iy++) // CMP in y direction 
     for (it = 0; it < nt; it++) 
{ //imaging point in t direction 
     calculate the travel time t with Eq. 1; 
      I[ix][iy][ih][it]+ = weight * trace [t/dt]; } 

 
The conventional approach implements parallel processing of Algo-

rithm 1 on a low-cost PC cluster using the message passing interface, where 
each node calculates all of the imaging points that belong to the same CMPs 
and they share the same input trace each time. The processing time is longer 
than the communication time, so the time elapsed is inversely proportional to 
the number of CPUs, and thus using more CPU nodes can reduce the time 
elapsed and improve the efficiency (Dai 2005). In this study, we propose a 
complete GPU solution for PSTM. 

3. PARALLELIZATION  OF  PSTM  ON  GPU 
3.1 Hardware and real seismic field data 
We used a 3.07 MHz Intel (R) core (TM) i7 CPU with 24 GB of DDR3 
memory, which was connected to an NVIDIA GTX 680 GPU, where the 
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main system comprised 2 GB of global memory, eight multiprocessors (MP) 
and 192 CUDA cores per MP, the total number of registers available per 
block was 65 536, the maximum number of threads per MP was 1024, and 
we used CUDA version 5.0. The field seismic data used for testing com-
prised a 20 GB subse+t of a real 3D dataset with 1 681 920 traces, where 
each trace had 3000 samples with intervals of 2 ms. The 3D imaging volume 
had 3000 imaging points with a 2 ms time interval for a CMP. The CMP 
number in the X direction (the crossline) ranged from 0 to 1000, and the 
CMP number in the Y direction (the inline) was defined as necessary. 

3.2 Profiling the PSTM CPU code 
Profiling the PSTM CPU code can help to find hotspots and bottlenecks. We 
used the GUN tool gprof to generate the profile of the seismic field data 
where the imaging space was equal to 1000 CMPs in the crossline direction, 
with four inlines. The profiling results (Fig. 3) showed that the PSTM kernel 
completed nearly 98% of the work with a relatively small amount of code. 
This value increased when the imaging space was larger. Based on Amdahl’s 
law (Amdahl 1967), the maximum speedup, S, of PSTM is: 

 1

(1 )
S

PP
N

�
	 


 , (2) 

where P is the fraction of the total serial execution time required by the por-
tion of code that can be parallelized and N is the number of processors on 
which the code runs in parallel. When 97% of the running time for PSTM 
was parallelized, the maximum speedup was > 50, thereby demonstrating 
that GPU parallelization is a worthwhile procedure. 

Fig. 3. PSTM kernel runtime percentage for a specific imaging space. 

3.3 Parallelization strategy for PSTM on a GPU 
According to Algorithm 1, the processing of each imaging point is inde-
pendent. Thus, we can parallelize the three loops, where the CMPs in the X 
and Y directions can be computed in parallel by blocks in the grid. The 
CMPs in the X direction are calculated by blockidx.x and the CMPs in the Y 
direction are calculated by blockidx.y. The imaging point of each CMP is 
parallelized by threads for each block, where the thread structure of the 
PSTM is shown in Fig. 4. 
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Fig. 4. Thread structure of PSTM. 

One approach that improves the GPU performance is keeping the multi-
processors on the device as busy as possible, which has two main features. 
First, when choosing the number of blocks per grid, the grid size should be 
larger than the number of multiprocessors so all of the multiprocessors have 
at least one block to execute. Furthermore, there should be multiple active 
blocks per multiprocessor so the blocks can keep the hardware busy. This 
condition can be fulfilled easily, because the number of imaging CMPs in 
the X and Y directions is much greater than the number of device multipro-
cessors. Second, when choosing the block size, it is important to remember 
that multiple concurrent blocks can reside on the multiprocessor, so the oc-
cupancy (the ratio of the number of active warps per multiprocessor relative 
to the maximum number of possible active warps) is not determined by the 
block size alone. In particular, a large block size does not imply a higher oc-
cupancy. For example, it may lead to pressure on a number of registers per 
multiprocessors and shared memory usage. In the PSTM kernel, the main 
pressure is the number of registers, which is 31 in the PSTM kernel. If the 
block size is 128 threads, then based on the GTX 680’s maximum register 
number per multiprocessor, there are 15 active blocks, which is greater than 
the eight maximum active blocks calculated using the maximum threads per 
block of 1024; therefore, we can achieve an occupancy of > 99%. According 
to the NVIDIA programming guide, many factors are involved in selecting 
the block size and thus some experimentation is required. Therefore, we pro-
vide the block size as a program parameter in the PSTM, which is decided 
by the user. Furthermore, we can apply –maxrregcount at the compilation 
time to balance the usage of registers and local memory, which is more ex-
pensive to access. Figure 5 shows the results of an experiment using GTX  
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Fig. 5. Comparison of the computing time with different threads and registers. 

Fig. 6. Comparison of the GPU and CPU computing times with different imaging 
spaces. 

680 with an imaging space of 1000 CMPs for the seismic data mentioned 
above, where we employed 16, 24, and 31 registers of PSTM elapsed time 
versus different thread numbers per block. This first test was required to ob-
tain the most efficient register and thread pairs. 

In PSTM, the root squared mean velocity at the imaging point t0 plays an 
important role in the imaging accuracy. Thus, a velocity analysis is per-
formed with sparse CMP points and some other points such as the red dots 
shown in Fig. 6. Traditionally, during the imaging process, the discrete ve-
locity must be interpolated first for all of the imaging points and then passed 
to the GPU using global memory, which is expensive to access because it 
needs a relatively large memory space. In our method, we use texture to per-
form the velocity model transfer and the read-only texture memory space is 
cached. Therefore, a texture fetch costs only one device memory read for a 
cache miss; otherwise, it costs one read from the texture cache. Furthermore, 
threads in the same warp that read texture addresses located close together 
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will obtain the best performance. Using a function, such as tex3D(), can also 
provide other capabilities, such as interpolation, and thus based on this char-
acteristic, we can use the texture memory directly for velocity interpolation. 
This is less expensive to access than global memory and it can save more 
memory space for the imaging results. 

The method used to execute instructions often permits low-level optimi-
zations, which can be useful, especially in code that is run frequently, such 
as the PSTM kernel. This may involve trading precision for speed when it 
does not affect the end result, such as using intrinsic instead of regular func-
tions, and including runtime math operations with prepended underscores, 
e.g., __sinf(),__fmul_rz(). These types of function are mapped directly to the 
hardware level. They are faster but they have somewhat lower accuracy. 
When the imaging space of PSTM is 1000, there are 128 threads for a block. 
We found that if we do not use the intrinsic functions, the number of regis-
ters increases to 55 without increasing any variables, which is also a problem 
that affects the efficiency. 

Many possible optimizations can be considered, such as having all read-
only input data using the texture memory and employing a constant memory 
for the transparency function parameters of the device kernel. The final aim 
is to maximize the use of hardware by maximizing bandwidth and keeping 
the multiprocessors on the device as busy as possible. Following GPU paral-
lelization, the PSTM kernel can be summarized according to the pseudo-
code of Algorithm 2 (Table 2). 

Table 2 
Algorithm 2: GPU PTKM kernel 

Input: seismic data trace  [ih][it]  source at  S(x, y)  and receiver at  R(x, y) 
     other migration parameters: time interval dt, etc. 
Output: common reflection gather  I[ix][iy][ih][it] 

Anti-aliasing processing for input trace;  
     ix = blockIdx.x // CMP in x direction  
     iy = blockIdx.y // CMP in y direction 
     for (it = threadidx.x; it < nt; it = it+blockDim.x){ //imaging point in t direction 
           v = tex3D(vel_tex, it, blockidx.x, blockidx,y); 
           calculate the travel time t with Eq. 1; 
           I[ix][iy][ih][it]+ = weight * trace [t/dt]; } 

 
The final GPU PSTM codes were tested with real seismic field data. The 

number of CMPs in the crossline direction was 1000 and the CMPs in the in-
line direction were selected from 1 to 20, where each CMP had 3000 imag- 
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Fig. 7. Speedup in the time elapsed on a GPU compared with one thread on a CPU 
with different image spaces. 

Fig. 8. PSTM section based on real data: (a) migrated section with CPU; (b) migrat-
ed section with GPU, and (c) difference in a migrated trace. 

ing points. The calculation times obtained with the GPU and CPU are shown 
in Fig. 6. Figure 7 shows the speedup of the GPU compared with the CPU 
code where only one thread was used on 3.07 GHz intel i7 processor with 
different imaging spaces. These two figures demonstrate that the GPU code 
achieved a speedup of 45 times compared with that of the CPU code, and a 
larger imaging space reduced the time required significantly. 

Figure 8 shows the inline migration results with 1000 CMPs, where pan-
el (a) depicts the CPU migrated result and panel (b) illustrates the GPU mi-
grated result, where it is difficult to see any difference between the two 
sections. Panel (c) shows the difference in one trace with the same phase and 
amplitude trend, which may be due to the floating point errors during GPU 
computation and different velocity interpolation methods, although the re-
sults are acceptable in each case. 



G. LIU  and  C. LI 
 

1060

4. MULTI-GPU  SCHEME  FOR  PSTM 
The output of the PSTM is a CRP gather in the form of the matrix 
I[nx]ny][nh][nt], where nx and ny are the surface CMP numbers in the cross-
line and sub-line directions, respectively, and nt are the imaging points in the 
depth direction. The final imaging result includes another dimension, nh, 
which is related to the input trace offset. In the imaging parameters, we usu-
ally define the offset bin with a minimum and maximum offset, and an offset 
interval. Therefore, if the input trace is h, then ih is (h-minimum offset)/ 
(offset interval). 

The GPU global memory is limited, where the GTX 680 has 2 GB, so it 
must be split onto multi-GPUs when the imaging space is larger, as shown in 
Fig. 9. 

For the seismic field data tested in this study, if nx = 1000, nt = 3000, 
and the offset number = 48, then the GTX 680 can calculate the sub-line 
number for  ny = 4  only once with each GPU. As shown in Figs. 7 and 8, it 
is better to image a larger space to obtain a higher efficiency. Therefore, we 
propose an alternative method to maximize the GPU efficiency using multi-
GPUs. Before image processing, we split the seismic data onto different 
GPU nodes according to the offset range. When imaging, assuming that nh is 
equal to the GPU node number, the inline ny of the imaging space is more 
than 150 and different GPU nodes are calculated using different offset parts 
of the same sub-line. After each node finishes imaging, all of the imaging re-
sults are collected from the different GPU nodes and the traces are sorted for 
the CRP gather. Figure 10 shows a flowchart of our proposed method. 

Fig. 9. Splitting the imaging space onto different GPU nodes. 
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Fig. 10. Flowchart of the proposed multi-GPU scheme. 

In large industrial 3D surveys, the offsets of the input data often lack av-
erage distributions in a similar manner to joint processing for different sur-
veys, so the following steps are recommend: (i) sort the input trace into the 
CMP offset order; (ii) split the data into several parts with the same trace 
numbers according to the number of GPU nodes and send each of them to 
the GPU nodes; (iii) compute the minimum and maximum offset for the data 
on each GPU node and set the output offset bins; (iv) migrate all of the im-
aging space, where several steps may be required depending on the GPU 
memory and offset number; (v) collect the migrated data from each GPU 
node and sort them into the CMP offset gather, before stacking the same off-
set for a CMP gather, thereby completing the migration process and the out-
put is the CRP gather. 

5. CONCLUSIONS 
In this study, we proposed the practical implementation of PSTM on a GPU. 
We considered three main optimizations, i.e., designing the configuration for 
execution to maximize the occupancy and make the device as busy as possi-
ble, using texture memory for velocity transparency and interpolation to in-
crease the device bandwidth, and employing faster intrinsic functions for the 
device kernel. We tested the code with 20 GB of real 3D seismic data on an 
NVIDIA GTX 680 card, which obtained speedups greater than 45 times 
compared with the CPU. Furthermore, more time was saved when the imag-
ing space was larger. To fully exploit GPUs, we recommend a scheme that 
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splits the offset onto different GPU nodes, before collecting and sorting to 
obtain the CRP gather after completing the imaging process. This scheme 
can be used for data imaging with large volumes. Many possible optimiza-
tions can be considered, which requires a large amount of work. However, 
optimization is easier due to the development of appropriate hardware, and 
thus the PSTM efficiency can be improved greatly. 
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