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Review

Abstract
In the past years, neuroinflammation has been widely 
investigated in Alzheimer ’s disease (AD). Evidence from 
animal, in vivo and post-mortem studies has shown that 
inflammatory changes are a common feature of the disease, 
apparently happening in response to amyloid-beta and tau 
accumulation. Progress in imaging and fluid biomarkers now 
allows for identifying surrogate markers of neuroinflammation 
in living individuals, which may offer unprecedented 
opportunities to better understand AD pathogenesis and 
progression. In this context, inflammatory mediators and glial 
proteins (mainly derived from microglial cells and astrocytes) 
seem to be the most promising biomarkers. Here, we discuss 
the biological basis of neuroinflammation in AD, revise the 
proposed neuroinflammation biomarkers, describe what we 
have learned from anti-inflammatory drug trials, and critically 
discuss the potential addition of these biomarkers in the AT(N) 
framework. 

Keywords: Alzheimer’s disease, astrocyte, biomarker, microglia, 
neuroinflammation. 

Introduction

Since its first description in 1906, Alzheimer’s 
disease (AD) has been consistently associated 
with amyloid-beta (Aβ) plaques and tau 

neurofibrillary tangles. The pathological potential of glial 
cells has also been described, but less mentioned, by Alois 
Alzheimer’s original reports (1). Neuroinflammation was 
later associated with the disease’s pathological process, 
likely playing a fundamental role in potentiating Aβ and 
tau pathologies in the brain (2).   

In the last years, AD diagnosis shifted from a clinical 
construct to a biological definition, allowing for 
identifying pre-symptomatic AD stages – the so-called 
preclinical AD. The National Institute on Aging – 
Alzheimer ’s Associacion (NIA-AA) 2018 proposed a 
research framework based on biomarkers, independently 

from clinical presentations - the AT(N) system (3). It 
essentially defines AD according to the biomarker 
positivity for Aβ (A), Tau (T), and neurodegeneration 
(N). Moreover, this dynamic system may incorporate 
novel candidate biomarkers to provide information about 
additional pathophysiological mechanisms represented 
by other letters. Hampel and colleagues propose using 
the letter “X” to represent an additional group of 
promising pathological markers, with neuroinflammation 
being of high interest (4).

Neuroinflammation in AD is typically associated 
with glial changes in the brain. This complex process 
includes microglial cells and astrocytes associated with a 
cascade of inflammatory mediators and modulators (2). A 
growing body of evidence suggests that the inflammatory 
process may occur in the early stages of AD, potentiating 
the accumulation of insoluble Aβ and tau (5). It is thought 
that inflammatory changes are a response to Aβ and 
tau pathologies, but one cannot rule out that they are 
triggering the deposition of Aβ and tau in the brain 
(6-8). Also, early inflammation might protect against 
protein accumulation, which could explain why some 
studies have shown conflicting results (9, 10). Thus, 
biomarkers of neuroinflammation may become useful 
for early diagnosis, prognosis, and potential drug-target 
engagement in the secondary prevention of AD. 

In this review, we explore the biological basis of 
neuroinflammation in AD, especially the roles of 
microglial cells and astrocytes, and provide detailed 
information on current biomarkers of neuroinflammatory 
changes. We also describe advances and contributions of 
anti-inflammatory drug trials and discuss the potential 
of adding biomarkers of neuroinflammation in the AT(N) 
framework.

Neuroinflammation Biomarkers in the AT(N) Framework Across the 
Alzheimer’s Disease Continuum
A. Bieger1, A. Rocha1, B. Bellaver1,2, L. Machado1, L. Da Ros1, W.V. Borelli3, J. Therriault4,5,6, A.C. Macedo4,5,6, 
T.A. Pascoal2, S. Gauthier4,5,6, P. Rosa-Neto4,5,6, E.R. Zimmer1,3,5,7,8

1. Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; 2. Department of Neurology and Psychiatry, 
University of Pittsburgh, Pittsburgh, PA, USA; 3. Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Universidade Federal do Rio Grande 
do Sul, Porto Alegre, Brazil; 4. Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research 
Unit, Douglas Research Institute, Le Centre intégré universitaire de santé et de services sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal; Department of Neurology 
and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Canada; 5. Department of Neurology and Neurosurgery, McGill 
University, Montréal, Québec, Canada; 6. Montreal Neurological Institute, Montréal, Québec, Canada; 7. Department of Pharmacology, Universidade Federal do Rio 
Grande do Sul, Porto Alegre, Brazil; 8. Brain Insitute of Rio Grande do Sul, PUCRS, Porto Alegre, Brazil 

Corresponding Author: Dr. Eduardo R. Zimmer, PhD, BPharm, Assistant Professor Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil, 90035-003, e-mail: 
eduardo.zimmer@ufrgs.br, Phone: +55 51 3308-5558, Website: www.zimmer-lab.org
 

J Prev Alz Dis 2023;3(10):401-417
Published online May 3, 2023, http://dx.doi.org/10.14283/jpad.2023.54



402

NEUROINFLAMMATION BIOMARKERS IN THE AT(N) FRAMEWORK ACROSS THE ALZHEIMER’S DISEASE CONTINUUM

The biology of neuroinflammation

To understand the biology of neuroinflammation, we 
first need to discuss the basic concepts of inflammation. 
According to the Nature Portfolio, inflammation is “a 
biological response to harmful stimuli, such as pathogens, 
damaged cells or irradiation. It is a protective attempt by 
the organism to remove injurious stimuli and to initiate 
the healing process. It is characterized by pain, redness, 
heat, swelling and disturbance of function” (11). These 
cardinal signs of inflammation were described in the 
first century by the Roman encyclopedist Aulus Celsus. 
The absence of signs of inflammation in diseases of the 
central nervous system (CNS) was historically behind 
the dogma of the brain as an “immune-privileged” organ 
(12, 13). This idea changed in the last decades when 
histopathological studies identified neuroinflammatory 
changes in the brain. Currently, neuroinflammation 
refers mainly to the dynamic responses of microglia 
and astrocytes and has been associated with 
neurodegenerative disorders such as AD (14).

As for the brain, it is important to differentiate the 
adaptive immune response, a core feature of multiple 
sclerosis and autoimmune encephalitis, from the innate 
immune response, mostly as seen in neurodegenerative 
diseases (15). The first involves adaptive immune cells 
such as T and B lymphocytes and NK cells, along with 
myeloid cells like monocytes, invading the CNS through 
the blood-brain barrier (BBB) and directly provoking local 
modifications. On the other hand, the innate response 
involves mostly microglia and astrocytes becoming 
active/reactive in response to various stimuli. In an 
attempt to halt hazardous threats, this response happens 
by promoting local alterations in tissue homeostasis, 
phagocytosis and degradation of small aggregates, as 
well as the release of signaling and toxic molecules (16). 
Clinical evidence suggests that innate and adaptive 
immnune responses occur in AD and seem dependent on 
the disease stage (17). 

Microglial cells, the brain-resident immune cells, 
are continuously active and change their phenotypes 
in response to inflammatory stimuli. Indeed, microglia 
play a complex role in the trajectories of AD, acquiring 
multiple phenotypes through the activation of different 
pathways (18). For a long time, microglial responses were 
considered exclusively detrimental to AD progression. 
However, more recently, protective subtypes of microglial 
responses were identified in AD (19). While there is still 
room for discussion about the protective/detrimental 
role of microglia in AD, it seems clear that its activation 
is stage-dependent and that multiple phenotypes may 
co-exist in particular disease stages. Activated microglia 
have been extensively studied in immune surveillance, 
debris phagocytosis, regulation of neuronal apoptosis, 
synaptic plasticity, and pruning. Depending on 
the original insult, microglia can recognize abnormal 
molecules, become activated into heterogeneous 

morphologies,  and promote a context-specif ic 
response. This response usually involves internalizing 
and degrading molecules using different endocytic 
pathways and releasing pro-inflammatory factors, such 
as cytokines, chemokines, and reactive oxygen species 
(ROS). It is proposed that repeated exposure to hazardous 
stimuli might cause microglia to become aberrantly 
active, sustaining noxious conditions to the CNS and, 
eventually, leading to, or accelerating, neurodegeneration 
(20, 21). 

Astrocytes, an abundant glial cell type in the human 
brain, carry many important physiological roles in 
the CNS, such as regulation of synaptic function, 
maintenance of the BBB, calcium signaling, energy 
supply to neurons, homeostasis of neurotransmitters 
and ions, and release of gliotransmitters (22). Along 
with these homeostatic roles, astrocytes can also 
respond to inflammatory stimuli by becoming reactive. 
Reactive astrogliosis refers to molecular, functional, 
and morphological changes that may impact the 
brain environment during pathological stimuli, such 
as hypoxia, cytokines, misfolded proteins, low glucose 
supply, neurotransmitter imbalance, and ROS (23-26). 
Reactive astrocytes have been reported in numerous 
diseases and are typically observed in post-mortem AD 
brains, colocalizing with Aβ and tau pathologies (27). 
While reactive astrocytes were initially considered a 
homogeneous population, nowadays, there is a consensus 
that astrocytes assume multiple phenotypes in response 
to different pathological stimuli (26, 28). The interplay 
between microglial cells and astrocytes deserves attention 
since microglia can trigger astrocyte reactivity, increasing 
the release of cytokines and chemokines and generating 
more ROS (29). In addition to this orchestrated response, 
in vitro studies demonstrated that astrocytes can 
independently react to inflammatory insults by activating 
classical inflammation-related pathways (30, 31). 
However, unlike microglia, astrocytes are not primarily 
inflammatory cells, and their repertoire of functions is 
broader. Thus, it is important to highlight that astrocyte 
responses are not always associated with inflammatory 
changes. 

Interestingly, activated microglia and reactive 
astrocytes colocalize with Aβ plaques and tau tangles 
in post-mortem studies, suggesting that inflammation 
is associated with AD core pathological features. 
Additionally, it was shown that misfolded proteins act 
as danger-associated molecular patterns, triggering 
microglial activation and astrocyte reactivity via surface 
and toll-like receptors (32). In addition, the recent 
genetic risk factors described for AD are mainly from 
inflammatory pathways, strengthening the theory of 
an amyloid-inflammatory cascade in the disease 
pathogenesis (33). Another important hypothesis in the 
genesis of neurodegenerative diseases is inflammaging 
(34). It proposes that an impairment in any of the 
highly interconnected seven pillars of aging - stem cell 



403

JPAD  - Volume 10, Number 3, 2023

regeneration, metabolism, inflammation, proteostasis, 
macromolecular damage, stress, and epigenetics - 
affects all other pillars. The insidious disruption in this 
aging network builds up to a persistent state of low-
grade inflammation, chronically activating the immune 
system and accelerating senescence. It is proposed that 
inflammaging byproducts in the periphery can enter the 
CNS and trigger proinflammatory states in glial cells, 
eventually leading to neurodegeneration (35, 36). Thus, 
the inflammatory component of AD cannot be neglected 
and deserves further investigation. To date, a few indirect 
fluid and imaging biomarkers of neuroinflammation 
have been investigated and provided the initial basis for 
understanding the role of neuroinflammation in AD. 

Biomarkers of neuroinflammation in AD

Fluid biomarkers

Microglia

In the brain, the triggering receptor expressed on 
myeloid cells 2 (TREM2) is almost uniquely expressed 
by microglia and is mostly upregulated on by 
these cells around amyloid plaques in AD. Secretase 
shedding of the receptor ectodomain gives rise to 
soluble TREM2 (sTREM2), which can be detected in 
the blood and cerebrospinal fluid (CSF). An increase in 
sTREM2 proteolytic shedding seems directly related to 
decreased TREM2 activity (37). The activation of TREM2 

in animal models has produced controversial results, 
either ameliorating pathological phenotypes (38) or 
exacerbating AD pathology’s spreading (39).

The sTREM2 has been increasingly explored as 
a biomarker of AD, however, its performance in 
discriminating between clinical diagnoses is still under 
investigation. While some studies observed increased 
significant differences between cognitively unimpaired 
(CU) and AD dementia individuals’ (40, 41) other reports 
found no alterations (42-48). However, CSF sTREM2 
levels seem to fluctuate according to changes in the 
hallmarks of AD pathology. Specifically, CSF sTREM2 
levels decrease in response to CSF Aβ1-42 (49, 50) but 
increase in response to CSF tau elevation (total tau 
or phosphorylated tau) (50), suggesting it is a stage-
specific biomarker. Additionally, high levels of sTREM2 
are associated with high levels of neurofilament light 
chain (NfL), and with an increased CSF/plasma albumin 
ratio, which indicates lower BBB integrity (42). Cross-
sectional studies pointed to a protective effect of sTREM2 
in mild cognitive impairment (MCI), as individuals with 
higher sTREM2 present a higher gray matter volume in 
the bilateral inferior and medial temporal cortices and 
precuneus as in the left supramarginal gyrus (48).

Longitudinal studies were key to better understanding 
the dynamic changes in microglial states. In line with 
this, it was demonstrated that higher baseline levels 
of sTREM2 are associated with slower gray matter 
volumetric loss in parahippocampal gyrus, left 
fusiform cortex, left middle temporal gyrus, and left 
lateral occipital cortex (51). Baseline CSF sTREM2 

Figure 1. Temporal progression of neuroinflammation fluid biomarkers in Alzheimer’s disease

Hypothetical curves of fluid neuroinflammatory biomarkers across the AD continuum. Plasma biomarker findings from previous studies are represented by rectangles, while 
CSF biomarker findings are represented by ellipses. The dotted lines show hypothetical relative biomarker abnormalities and are not based on previous studies. Curves are 
color-coded, with orange indicating astrocyte biomarkers and blue indicating microglia biomarkers. It’s important to note that the magnitudes of other biomarkers presented 
in the graph are relative to their own normal range and should not be compared across different biomarkers. Abbreviations: AD – Alzheimer’s disease; MCI – mild cognitive 
impairment; CSF – cerebrospinal fluid; sTREM2 – soluble triggering receptor expressed in myeloid cells 2; YKL-40 – chitinase-3-like protein 1; GFAP – glial fibrillary acidic 
protein; S100B – calcium-binding protein B
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levels predicted longitudinal memory decline but not 
longitudinal worse executive functioning (42, 43, 52). 
Importantly, individuals with presymptomatic AD with 
a steeper longitudinal increase in sTREM2 presented a 
slower rate of cognitive decline (53). Similarly, higher 
sTREM2 levels are associated with slower clinical decline 
in the dementia stage of AD (54, 55). A higher annual 
increase in sTREM2 is associated with a diminished 
annual rate of Aβ accumulation in presymptomatic 
carriers of pathogenic variants (53) and individuals 
across the AD continuum (56). The temporal changes of 
microglial activation fluid biomarkers in AD can be seen 
in Figure 1.  

Astrocytes

The glial fibrillary acidic protein (GFAP) is an 
intermediate filament protein of astrocytes. Because it has 
been considered a canonical marker of reactive astrocytes 
for a long time, it was the first astrocyte protein explored 
as a biomarker in AD. Initial studies on CSF GFAP in 
AD date from the 90s and have already pointed to a 
significant increase in GFAP levels in patients with AD 
dementia compared to CU controls (57, 58). GFAP in 
the CSF seems to have diagnostic value and correlated 
with disease severity (59). However, CSF GFAP does 
not seem sensitive enough to detect the early phases of 
dementia, as no differences were found between CU and 
MCI Aβ-positive (60, 61). However, an association was 
observed between CSF GFAP and Aβ pathology in CU 
individuals, as assessed by PET and CSF biomarkers 
(62, 63). It is important to consider that an age-related 
increase in CSF GFAP levels was observed in CU 
individuals, contributing to the idea that GFAP is an 
unspecific marker (57, 64). Additionally, CSF GFAP levels 
are increased in other neurodegenerative conditions, such 
as frontotemporal lobe dementia (65, 66), Creutzfeldt-
Jakob disease (67), Parkinson’s disease (65), and vascular 
dementia (58).

The recent development of ultrasensitive techniques 
allowed the detection of brain-derived proteins in the 
blood in low concentrations. Surprisingly, plasma GFAP 
seems to better predict AD pathology than CSF GFAP 
(60, 61, 65), detecting amyloid load before symptoms 
onset. Part of the explanation of plasma GFAP’s better 
performance compared to CSF relies on sample stability. 
Specifically, GFAP in the blood is less vulnerable to 
freeze-thaw cycles, making it a better matrix than CSF 
(68). Specifically, studies in CU older individuals at risk 
for AD (i.e., Aβ-positive) showed that plasma GFAP 
associates with Aβ (69, 70). Additionally, individuals with 
autosomal dominantly inherited familial AD (mutation 
carriers) have higher levels of plasma GFAP, even in 
the presymptomatic phase, compared to non-mutation 
carriers (71). Plasma GFAP is associated with Aβ but 
not tau pathology (61, 72), which might explain why 
plasma GFAP is a better marker of early AD pathology. 

It was demonstrated that plasma GFAP increases the 
ability of other plasma biomarkers to distinguish between 
Aβ-negative and Aβ-positive individuals (69). Increased 
plasma GFAP levels are also associated with other 
biological findings in AD, such as decreased cortical 
thickness (72, 73), decreased hippocampal volume (73), 
and white matter hyperintensity (72, 74).

Longitudinal studies also point the prognostic utility 
of plasma GFAP. Initial findings showed that plasma 
GFAP measures in MCI can predict conversion to AD 
within a five-year window (75). Plasma GFAP can also 
be combined with other AD plasma biomarkers to add 
predictive value in detecting clinical progression (76). A 
recent study demonstrated that plasma GFAP levels were 
associated with a greater risk of clinical AD incidence 
more than a decade before diagnosis (77). Higher baseline 
GFAP levels were associated with a steeper rate of decline 
in cognitive domains (76, 78). Like CSF GFAP, plasma 
GFAP seems to increase as a function of aging (69). 

YKL-40 is a secreted glycoprotein expressed in several 
tissues and involved in immune system activation. In the 
brain, it is mainly produced by reactive astrocytes during 
neuroinflammatory conditions (79). Through numerous 
studies, CSF YKL-40 levels are increased in MCI and AD 
(80-82), but its role in AD pathophysiology is still poorly 
understood. Notably, only ~10% of astrocytes express 
YKL-40 in the human cortex and hippocampus (79). Thus, 
YKL-40 measures likely reflect a more specific astrocyte 
population than GFAP. Additionally, temporal analysis 
of AD biomarkers shows that CSF YKL-40 levels increase 
later than other biomarkers, which might indicate that 
this biomarker changes in response to AD pathology 
(i.e., Aβ and tau) (83). However, it was estimated that in 
individuals with familial AD, CSF YKL-40 levels start to 
increase at least 15 years prior to symptoms onset (84). 
These apparently contradictory findings might highlight 
important pathological differences between sporadic and 
familial AD cases.

In addition, CSF YKL-40 levels increase with age, 
with a steeper elevation observed in at-risk APOE ε4 
carriers (85-87). Although neuropathological studies have 
identified YKL-40–positive astrocytes in clusters near 
Aβ plaques, its levels in the CSF are more related to tau 
(either fluid or PET biomarkers) than Aβ pathology in 
CU and cognitively impaired (CI) individuals (79, 88-90). 
Interestingly, CSF YKL-40 seems to positively associate 
with hippocampal atrophy and cognitive impairment 
in individuals in the AD continuum (88); however, in 
CU individuals, CSF YKL-40 was associated with higher 
grey matter volumes and [18F]Fluorodeoxyglucose ([18F]
FDG) metabolism (91), which might represent a transient 
astrocytic response to AD pathology in the early stages 
of the disease. Longitudinal studies corroborate cross-
sectional findings demonstrating the YKL-40 association 
with brain atrophy and cortical thickness (92). Baseline 
levels of both YKL-40 in MCI predicted progression to AD 
with a hazard ratio of 3 (82). 
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neurodegenerative conditions, as already demonstrated 
in frontotemporal dementia (93), and Creutzfeldt-Jakob 
disease (79). Additionally, in individuals with behavioral 
variant FTD, the presence of positive AD biomarkers 
is associated with higher levels of YKL-40 compared 
to those with negative AD biomarkers (87). Similarly, 
it was observed that YKL-40 is only increased in Lewy 
body dementia presenting AD as a co-pathology (47), 
suggesting that the increase is driven by AD-related 
neurodegeneration.

YKL-40 is significantly produced outside of the brain 
(e.g., macrophages, chondrocytes, vascular smooth 
muscle cells, and some types of cancer cells), which might 
make it difficult to use plasma YKL-40 as a proxy of 
brain neuroinflammation. Indeed, studies observed only 
a modest correlation between CSF and plasma YKL-
40 levels (94, 95). Differently from CSF, studies diverge 
about the utility of plasma YKL-40 for distinguishing 
between CU and AD individuals. Additionally, no 
correlation between plasma YKL-40 and Aβ42, tau, 
p-tau181, or cortical amyloid load was observed (95). 
Finally, because plasma YKL-40 is increased in several 
non-neurodegenerative diseases, adding numerous 
confounding factors, its utility as a plasma AD biomarker 
might be limited.

In the brain, S100B is mostly expressed in astrocytes 
with a minor expression in other glial cell types, such 
as oligodendrocytes (96). Despite the fact that S100B 
biological functions are still not precisely described, it 
is known that under non-pathological conditions, 
small amounts of this protein are released and present 
neurotrophic effects. However, its increased release by 
reactive astrocytes seems to enhance neuroinflammation 
(97). The S100B expression is not confined to the CNS, and 
because many non-neural cell types produce and release 
S100B, the use of blood measures of this biomarker as a 
proxy of brain pathology is limited. In this context, only 
a moderate correlation between plasma and CSF S100B 
was observed (98). Thus, the CSF measures of S100B may 
represent a more reliable measure of reactive astrogliosis. 

However, findings regarding CSF S100B in AD are 
contradictory (90, 98-101). A few studies demonstrated 
a moderate increase in CSF S100B in AD, especially in 
patients with mild to moderate AD (CDR = 1-2) (99, 
100). However, no differences between CU and AD 
were observed in later studies (101, 102). In fact, our 
recent meta-analysis synthesized the literature findings 
about changes in CSF S100B levels in AD and found 
no significant differences compared to healthy controls 
(80). Additionally, no associations between S100B and 
CSF Aβ1-42 levels were observed in AD patients (103), 
and no difference was found in S100B levels between 
CU Aβ-negative and CU Aβ-positive individuals (104). 
Finally, as observed for other astrocyte biomarkers, levels 
of CSF S100B were increased in other neurodegenerative 
diseases, such as Lewy body dementia and Parkinson’s 
disease (98). The temporal changes in fluid biomarkers of 

reactive astrocytes across the AD continuum is depicted 
in Figure 1.

Other fluid biomarkers of inflammation

Other inflammatory fluid biomarkers measured in AD 
are non-cell and non-disease specific such as cytokines, 
chemokines, and growth factors. Cytokines are a 
heterogeneous group of proteins that can be synthesized 
and secreted by most cells in the human body. Cytokines 
can be classified as pro- or anti-inflammatory according 
to their response to a foreign threat. The coordinated 
and time-limited action of these inflammatory mediators 
is key to eliminating the invading pathogens and 
re-establishing the body’s homeostasis. Although several 
pro-inflammatory proteins [e.g., interleukin (IL) 6, IL-1β 
and transforming growth factor beta (TGF- β)] were 
already found around Aβ plaques in the AD brain (105), 
their changes represent unspecific alterations of the 
immune system. Because numerous peripheral factors 
might affect CSF cytokine levels, studies measuring 
these proteins in body fluids are heterogeneous. 
Their use as a biomarker in AD seems limited due to 
several confounding factors (106). Finally, the lack of 
longitudinal studies evaluating cytokine expression/
release undermines the interpretation of these cytokines 
as prognostic markers in AD.

PET Biomarkers

Microglia

Due to its response to pathological alterations in 
the AD brain, especially in the early stages, microglial 
changes are promising imaging biomarkers of 
neuroinflammation. PET imaging targeting microglia has 
been a challenge because of the complexity of microglial 
responses and the inability of the exams to capture 
different microglial phenotypes (107, 108). Currently, 
a few molecular targets have been proposed to assess 
microglial alterations using PET: 18kDa translocator 
protein (TSPO), colony-stimulating factor-1 receptor 
(CSF1R), cannabinoid receptor type 2 (CB2R), P2Y12 
receptor (P2Y12R), P2X7 receptor (P2X7R), and TREM1 
and TREM2. From the ones described above, the most 
widely investigated PET microglial target is the TSPO.

In the brain, TSPO is present in the outer mitochondrial 
membrane of microglial cells, astrocytes, and endothelial 
cells. Under pathological conditions, TSPO is upregulated 
in microglial cells. Thus, TSPO-PET has been proposed 
as a marker of microglial activation (109). Indeed, the 
TSPO-PET signal is increased in vulnerable regions of 
AD. The [11C](R)PK11195-PET, the first TSPO tracer, 
presents high binding in AD-related brain regions such 
as frontal, temporal, parietal, and occipital cortices and 
hippocampus in dementia stages (110). Fan et al. (2015) 
(111) observed a persistent increase in the TSPO density at 
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different stages of the disease in a 17-month longitudinal 
study. 

The second-generation of TSPO tracers also identified 
increased binding in AD patients. AD participants 
that underwent [11C]DPA713-PET imaging presented a 
widespread increase in binding potential (BPND) values 
compared to young and older healthy controls, whereas 
[11C](R)PK11195 binding increase was restricted to only 
a few regions in the same patients (112). In another 
study, higher [11C]DAA1106 binding was observed in 
MCI individuals that developed dementia within 5 
years. However, it was unable to predict the clinical 
outcome in terms of the type of dementia due to similar 
patterns of [11C]DAA1106 uptake in AD and Lewy body 
dementia converters (113). Conversely, [11C]PBR-28-PET 
had conflicting results. Kreisl et al (2016) (114) observed 
higher binding in cortical regions of AD patients. 
However, in a similar study (115), AD patients displayed 
displayed a trend for increased uptake in some brain 
regions, but they were not significant. It should be noted 
that a common single-nucleotide polymorphism (rs6971) 
in exon 4 of the TSPO gene is responsible for a significant 
variation of binding affinity of the second generation 
TSPO radiopharmaceuticals, which may undermine its 
use without genetic testing. A new generation of TSPO 
radiotracers has been recently developed aiming to avoid 
the need of genetic testing (116). The [18F]GE-180, a third-
generation TSPO tracer, showed increased PET signal in 
cortical areas compared to healthy controls, supporting 
the hypothesis of increased microglial activation in AD 

(40, 117). The [11C]ER176 presents favorable kinetics (118), 
high signal-to-noise ratio, and volume of distribution 
stability (119), however, no data with AD patients is 
available yet. In summary, TSPO tracers have been useful 
to identify TSPO overexpression in the human brain, 
but the lack of specificity for microglial cells is a limiting 
factor that should be carefully considered and debated 
(120, 121).

The selectivity of microglial PET tracers has been a 
matter of debate, with multiple targets being explored. 
In this context, the CSF1R is only expressed on 
the cell surface of microglia and macrophages (122). 
At the moment, only a few CSF1R tracers have been 
developed, such as [11C]CPPC and [11C]AZ683. The [11C]
CPPC-PET consistently identified higher binding in the 
cortex, hippocampus, and cerebellum of a mouse model 
of amyloidosis (16-month-old APP mice), suggesting 
its capability of detecting microglial changes (123). 
No human PET studies with these tracers have been 
conducted so far, but histological analysis in post-mortem 
tissue confirmed increased CSF1R density in the AD brain 
(124, 125).

The CB2R is a key player in the endocannabinoid 
system but is very little expressed in in the homeostatic 
brain. The upregulation of C2BR occurs in microglial cells 
as a response to immune activation. However, the [11C]
NE40, a novel PET tracer for CB2R, identified overall 
lower CB2R availability in AD mouse model brains, 
which remains to be better explored. The authors suggest 
that CB2R plays an important role in microglial functions 

Figure 2. Temporal progression of neuroinflammation imaging biomarkers in Alzheimer’s disease

Hypothetical curves of imaging neuroinflammatory biomarkers across the AD continuum. Neuroimaging biomarkers from previous studies are represented by polygons. 
The dotted lines show hypothetical relative biomarker abnormalities and are not based on previous studies. Curves are color-coded, with orang indicating astrocyte 
biomarkers and blue indicating microglia biomarkers. It’s important to note that the magnitudes of other biomarkers presented in the graph are relative to their own normal 
range and should not be compared across different biomarkers. Abbreviations: AD – Alzheimer’s disease; MCI – mild cognitive impairment; TSPO – 18 kDa translocator 
protein; I2-BS – imidazoline2 binding sites; MAO-B – monoamine oxidase B.
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related to initiation, maintenance, and removal of Aβ 
plaques (126).

Purinergic receptors are also explored as potential 
targets for imaging microglial cells with PET. P2Y12R 
is a cell-surface protein expressed by microglia in the 
brain, its expression in other brain cells remains unclear 
(127). Under neuroinflammatory conditions, activated 
microglia overexpresses PRY12R. To date, three PET 
tracers have been synthesized, but their BBB permeability 
needs to be improved. Similarly, P2X7R is expressed in 
microglial cells, oligodendrocytes and Schwann cells 
(128). In brain autoradiography experiments, a P2X7 
analogue, [11C]SMW139, showed no difference between 
AD and healthy individuals (129). Finally, although no 
clinical study has used PET imaging with TREM tracers, 
a few advances have been made using novel TREM1 and 
TREM2 tracers in animal models of neurodegenerative 
disorders (124, 130). The temporal changes in imaging 
biomarkers targeting microglial activation in AD can be 
seen in Figure 2.  

Astrocytes

Although considered the brain’s homeostatic 
cells, astrocytes can also play important roles in 
neuroinflammation. Astrocyte reactivity has been 
evaluated using different molecular targets such as 
monoamine oxidase B (MAO-B), imidazoline2 binding 
sites (I2-BS), acetate metabolism, and the organic anion 
transporter 1C1 (OATP1C1).

The first astrocyte-enriched target to have a PET tracer 
developed was MAO-B. This enzyme is located in the 
outer mitochondrial membrane and is mainly responsible 
for catalyzing the oxidative deamination of amines. In the 
brain, MAO-B is primarily found in astrocytes and radial 
glia, but also, in a smaller amount, in monoaminergic 
neurons (131, 132). MAO-B seems to be upregulated 
in reactive astrocytes (133), but it is important to note 
that this does not seem to be the case for all reactive 
astrocytes, but rather for a subpopulation of these cells 
(134, 135). Using tritiated MAO-B inhibitors, Saura et al., 
found MAO-B increased activity – up to three-fold – in 
cortical and hippocampal plaque-associated astrocytes 
(136).

The first radiotracer for MAO-B used in AD research 
was [11C]Deuterium-L-Deprenyl ([11C]DED). [11C]
DED was first developed as [11C]-L-Deprenyl and later 
improved with the addition of deuterium, which reduces 
the tracer rate of trapping and improves sensitivity to 
changes in MAO-B. L-Deprenyl is an irreversible inhibitor 
oxidized by MAO-B to produce a reactive intermediate 
that covalently binds to the enzyme (137). Initial 
autoradiographic and PET studies using L-Deprenyl or 
[11C]DED seemed to point to a significant and widespread 
increase in MAO-B in the brain of AD patients compared 
to healthy controls. However, subsequent, more 
consistent evidence has suggested that this increase 

occurs earlier in the disease course, in prodromal AD 
stages. For example, an autoradiographic study in AD 
patients using [3H]-L-Deprenyl identified a significant 
increase in MAO-B activity in gray matter regions, such as 
the frontal and temporal cortices, basal ganglia, thalamus, 
and white matter in comparison to controls (138). On 
the other hand, a much more recent autoradiographic 
study using [11C]-L-Deprenyl only identified an increase 
in its binding in AD versus age-matched controls in the 
temporal cortex and white matter (139). 

A similar outcome was also observed in PET studies. In 
the first PET work (140), a higher [11C]DED binding was 
observed in the parietal, temporal, and medial temporal 
lobe in AD patients compared to healthy controls. It is 
important to note that this study used [11C]DED slopes/
intercept rate values as a measurement of radiotracer 
binding (considered a suboptimal measure) and that the 
group of AD patients analyzed included moderate to 
severe dementia (MMSE Score = 14.4 ± 2.07), different 
from subsequent studies, which used mild dementia cases 
(MMSE Score = 24.4 ± 5.7). Cross-sectional studies from 
Prof. Nordberg’s group using an optimized PET analysis 
did not find differences between AD and controls. But, 
more interestingly, they identified an increased [11C]
DED binding in the prodromal stages of AD. A peak 
in [11C]DED binding was observed in MCI Aβ-positive 
patients (141) and presymptomatic autosomal dominant 
Alzheimer’s disease (ADAD) mutation carriers (142). 
Moreover, a longitudinal work (over a mean period of 2.8 
± 0.6 years) observed an initial higher [11C]DED binding 
in presymptomatic stages of ADAD, which declined as 
amyloid load increased. The same decline in MAO-B 
levels was not seen in sporadic AD patients, which 
increased in MCI Aβ-positive patients and remained 
unchanged during the study (143). These findings suggest 
that (i) the astrocyte response in ADAD and sporadic 
AD may be distinct; or (ii) may result from a short study 
follow-up period since it has been already observed that 
ADAD might have an accelerated rate of evolution in 
comparison to sporadic AD (144). 

Despite being, by far, the most used PET radiotracer 
to investigate changes in astrocytes in AD, [11C]DED 
findings still have to be reproduced in larger and more 
diverse AD populations. One advancement that would 
potentially help is the development of an equivalent 
radiotracer using the [18F] isotope. Several radiotracers 
have been developed with this purpose, such as DL-4-
[18F]fluorodeprenyl (145), [18F]fluororasagilineD2 (146) 
and [18F]fluorodeprenyl-D2 (147). However, most of 
the DED fluorinated analogous radiotracers presented 
undesired characteristics such as brain permeable 
radiometabolites, poor brain uptake or complex 
radiosynthesis. 

Other molecules with affinity to MAO-B, but not 
analogous to DED, have also been developed. The [11C]
SL25.1188 (148), a reversible MAO-B radiotracer, has 
already gone through its first-in-human clinical studies, 
and efforts to produce a fluorinated analogous have 
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already begun (149, 150). Another interesting reversible 
MAO-B radiotracer being developed is the [18F]SMBT-
1 (151), which was originally designed to detect Tau 
tangles, but was found to bind MAO-B with high affinity 
(152). [18F]SMBT-1 was developed via lead optimization 
from  [18F]THK-5351 and already showed promising 
results on its first human trials, which included a few 
MCI and AD patients (153). In a more recent work, [18F]
SMBT-1-PET (154) was investigated in a higher number of 
patients across the AD continuum, showing an increase in 
cortical brain regions in the Aβ-positive groups, including 
Aβ-positive cognitively unimpaired (CU) individuals. 
Further studies, especially with a higher number of AD 
and MCI patients, are necessary to corroborate these 
encouraging findings.

Another PET target for reactive astrocytes is the 
I2-BS, mostly found in astrocytes’ outer mitochondria 
membrane (155). Coincidently, it has been reported 
that I2-BS binding site is located in MAO-B (156). An 
autoradiography study with the radiotracer [11C]BU99008, 
which binds to I2-BS, showed that [11C]BU99008 and [11C]
DED have similar regional distribution, but [11C]BU99008 
has a higher specific binding in AD brains compared 
to CU individuals, (157). [11C]BU99008-PET studies in 
MCI and AD patients have identified a similar outcome 
to DED with an elevation on [11C]BU99008 uptake in 
Aβ-positive individuals; particularly, this elevation was 
superior in MCI than AD patients (158, 159). 

A different approach for imaging astrocytes is to use 
a radiolabeled molecule that, in the brain, is mainly 
transported or metabolized by these cells, which seems 
to be the case of acetate (160). Therefore, the radiotracer 
[11C]acetate has been suggested as a marker of astrocyte 
metabolism (161). In Aβ-positive MCI patients, it was 
observed that [11C]acetate uptake was significantly 
elevated in the medial temporal lobe (162). An additional 
work, showed that [11C]acetate uptake was elevated in 
AD-vulnerable brain regions, such as the entorhinal 
cortex and the hippocampus, if compared to healthy 
controls (163).

Moreover, an alternative tracer developed for imaging 
astrocytes is Sulforhodamine 101 N-(3-[18F]Fluoropropyl) 
sulfonamide ([18F]2BSRF101) (164). [18F]2BSRF101 was 
developed based on the fluorescent dye Sulforhodamine 
101 (SR101), which has been extensively used as an 
astrocyte marker. For a long time, the specific binding 
point or transporter of SR101 in astrocytes was unknown 
until the thyroid hormone transporter OATP1C1 (also 
known as SLCO1C1) was identified as the SR101-uptake 
transporter (165). It is important to note that SR101 is not 
specific to astrocytes, also labeling, to a minor degree, 
oligodendrocytes, although it is still dependent on 
SR101 uptake by astrocytes OATP1C1 transporters (166). 
[18F]2BSRF101 has not been tested in humans yet, but its 
binding was elevated in the cortex and hippocampus 
of the 3xTg, a mouse model that presents amyloid and 
tau pathologies. By contrast, no changes were found 

using [11C]DED in the same model, suggesting that 
[18F]2BSRF101-PET might bring additional information 
about the astrocyte heterogeneity in AD (167). The 
temporal changes in imaging biomarkers targeting 
astrocytes across AD continuum can be seen in Figure 2.

O t h e r  i m a g i n g  b i o m a r k e r s  o f 
neuroinflammation

Apart from the radiotracers primarily targeting 
glial cells, other available radiotracers targeting 
brain alterations may also be implicated in brain 
inflammatory changes such as glucose brain metabolism, 
cyclooxygenase (COX) isoenzymes, inducible nitric oxide 
synthase (iNOS) and ROS production.

The glucose brain metabolism has been widely 
investigated using the [18F]FDG tracer, a glucose 
analog molecule. In AD, a specific [18F]FDG-PET 
hypometabolism is seen in the later stages of the disease 
(for review, see Chételat, 2020 (168)). Interestingly, recent 
evidence identified a transient [18F]FDG-PET brain 
hypermetabolism in MCI patients (169). In parallel, 
correlations between glucose metabolism measured by 
[18F]FDG-PET and the astrocyte biomarkers, measured 
trough [11C]DED or plasma GFAP, have been found in 
ADAD patients (170) and sporadic AD patients (89). 
Indeed, studies have been consistently demonstrating 
that glial cells and inflammatory changes impact the 
brain [18F]FDG-PET signal. For instance, [18F]FDG-PET 
is sensitive to activation/deactivation of astrocytes and 
microglial cells (171-175). Thus, it is thought that [18F]
FDG-PET may capture neuroinflammatory changes in 
AD.

Another target  being used for  radiotracers 
development are the COX enzymes. COX-1 and COX-2 
are enzymes involved in forming prostaglandins and 
thromboxane (176). COX-1 is considered a housekeeping 
enzyme not induced by inflammation; however, a 
study observed an expression of COX-1 in microglia 
in association with Aβ plaques of AD patients. A pro-
radiotracer of ketoprofen, [11C]ketoprofen-methyl-
ester ([11C]KTP-Me), a  non-selective inhibitor of COX, 
however, did not find statistical differences in MCI 
and AD individuals compared to healthy controls. 
Although predominantly neuronal, COX-2 is increased 
during neuroinflammation and is associated with the 
immunomodulation of the brain tissue (177). Indeed, 
[11C]MC1 binding, a COX-2 tracer, was higher in the 
brain lesion site of rhesus macaques injected with 
lipopolysaccharide in the right putamen (178). However, 
[11C]MC1 has not been used in AD patients or models.

The iNOS enzyme has also been a target for 
radiotracers development. In the brain, iNOS is expressed 
by microglial cells, astrocytes, neurons, and endothelial 
cells (179, 180). The expression of iNOS is low in healthy 
or non-inflammatory states but it is stimulated by 
inflammatory stimuli (181). PET radiotracers targeting 
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Table 1. Radiotracers targeting neuroinflammation
Target Current Biological Interpretation Cerebral Cellular source of the signal Radiopharmaceuticals
TSPO Microglial activation Microglia, macrophages, astrocytes and 

endothelial cells.
[11C]PK11195
[18F]DPA-714
[11C]DPA-713
[18F]DPA
[18F]FEBMP
[11C]DAA1106
[18F]FEDAA1106
[18F]FEMPA
[11C]AC-5216
[18F]FEPPA
[11F]PBR06
[11C]PBR28
[18F]PBR111
[18F]GE-180
(S)-[ 18F]GE-387
[18F]GE-387
[11C]ER176
[11C]CB184
[11C]CB190
[11C]N′-MPB
[18F]LW223

CB2R Microglial activation Microglia and Neurons [11C]A-836339
[18F]2f
[18F]RS-126
[18F]RoSMA-18-d6
[18F]JHU94620
[11C]NE40
[11C]MA2
[18F]MA3

P2X7R Microglial activation Microglia, astrocytes, oligodendrocytes, 
neurons and endotelial cells

[11C]A-740003
[11C]GSK1482160
[18F]JNJ-64413739
[11C]JNJ-54173717
[11C]SMW139
[11C]JNJ-47965567

P2Y12R Microglial activation Microglia and macrophages [11C]JNJ-47965567
[11C]5
[11C]2

CSF1R Microglial activation  Microglia and macrophages [11C]CPPC
[11C]GW2580

COX-1 Unspecific neuroinflammation Ubiquitous [11C]-KTP-Me
[11C]PS13
[18F]PS2

COX-2 Unspecific neuroinflammation Ubiquitous [11C]MCI
[18F]FMTP
[18F]TMI

TREM1 Microglial activation Microglia, monocytes and macrophages [124I]TREM1-mAb
TREM2 Microglial activation Microglia and macrophages [124I]mAb1729
MAO-B Reactive astrogliosis Astrocytes and Monoaminergic neurons [11C]DED

[11C]SL25.1188
[18F]SBMT-1
[18F]fluorodeprenyl-D2
DL-4-[18F]fluorodeprenyl
[11C]pargyline
[18F]fluororasagiline
[18F]fluororasagilineD2

I2BS Reactive astrogliosis Astrocytes and Monoaminergic neurons [11C]BU99008
[11C]FTIMD
[18F]FEBU (BU99018)

Acetate metabolism Reactive astrogliosis Astrocytes [11C]acetate
OATP1C1 Reactive astrogliosis Astrocytes [18F]2B-SRF101
Glucose metabolism Cell metabolism Astrocytes, neurons and microglia [18F]FDG
iNOS Unspecific neuroinflammation Ubiquitous [18F]FBAT

[18F]NOS
ROS Oxidative stress Ubiquitous [18F]ROStrace

[18F]oxROStrace
[18F]dihydromethidine
[11C]ascorbic acid
[11C]dehydroascorbic acid
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iNOS, such as [18F]NOS (182) and [18F]FBAT (183), are 
promising to track neuroinflammation, but have not yet 
been tested in AD patients.  

Additionally, ROS has also been a focus of PET 
radiotracers. ROS are a byproduct of physiological 
cellular functioning and are also signaling molecules. 
Abnormal ROS production or clearing and resulting 
oxidative stress are linked to aging and degenerative 
disease in general (184). Even though this is not a specific 
neuroinflammatory process, it can cause DNA damage 
and mitochondrial dysfunction (i) in neurons, promoting 
a proinflammatory environment through the production 
of damage-associated molecular patterns; and (ii) in glial 
cells, resulting in glial changes and cell death (185). The 
brain is especially prompt to oxidative stress-related 
damage because it is the most energetically active organ 
in the human body, meaning intense cellular metabolism 

and, consequently, intense ROS production. In the specific 
context of AD, along with mitochondrial production 
of ROS, there is evidence that Aβ plaques may also 
be a source of ROS production (186, 187). Some effort 
has been made to develop PET tracers that target ROS, 
such as [11C]Ascorbic acid, [11C]dehydroascorbic acid 
and [18F]dihydromethidine, but these tracers were not 
yet investigated in the context of AD (188, 189). On the 
other hand, [18F]ROStrace was associated with amyloid 
burden in a mouse model, and [64Cu]ATSM was shown 
to be related to Aβ accumulation in a preliminary study 
comparing individuals with early biomarker-evidenced 
of AD (190, 191). A list of proposed PET radiotracers 
targeting neuroinflammation is presented in Table 1.

Table 2. Ongoing clinical trials of neuroinflammation in AD (https://clinicaltrials.gov last accessed 07/11/2022) 
Study Drug Sample Mechanism Phase Completation 

date
Primary outcome

NCT04838301 Allopregnanolone Probable AD Maintenance of structural 
integrity

2 June 2025 Hippocampal volume

NCT05318976 XPro1595 Mild dementia and Aβ-
positive

Neutralization of soluble 
TNF

2 June 2023 Change in Early and Mild 
Alzheimer’s Cognitive Composite 
(EMACC)

NCT05321498 XPro1595 MCI due to AD and Aβ-
positive

Neutralization of soluble 
TNF

2 January 2023 Change in Early and Mild 
Alzheimer’s Cognitive Composite 
(EMACC) 

NCT05522387 XPro1595 Patients who completed 
another XPro1595 trial

Neutralization of soluble 
TNF

2 December 2025 Number of participants who 
experience adverse events and 
serious adverse events

NCT04795466 Canakinumab MCI due to AD or mild AD Immunomodulation with 
an anti IL- 1β monoclonal 
antibody

2 February 2026 Change from baseline in 
cognition as measured by the 
Neuropsychological Test Battery 
(NTB) total score

NCT05521477 Dietary Supplement: 
SLAB51 (probiotic)

MCI due to AD, Aβ-positive 
and APOEe4 carrier

Regulation of gut 
microbiota

NA September 
2023

Concentration of plasma AD 
biomarkers: Amyloid, Tau and NfL

NCT03435861 Neflamapimod Prodromal AD and Aβ-
positive

Inhibition of the alpha 
isoform of the mitogen-
activated serine/threonine 
protein kinase p38 MAPK

2 June 2021 
(delayed)

Brain inflammation assessed by 
[18F]-DPA714, Standard Uptake 
Value (SUV)

NCT05564169 Masitinib Dementia due to AD Inhibition of tyrosine 
kinase  that targets 
activated cells of the 
neuroimmune system

3 December 2025 Absolute change from baseline in 
ADAS-Cog-11 score

NCT05468073 Proleukin(IL-2) Progressive amnestic 
syndrome and positive for 
AD biomarkers

Non-specific 
immunomodulation 

2 September 
2026

Change from baseline CDR score at 
18 months

NCT04740580 GlyNAC Amnestic syndrome and tau 
positive

Correction of glutathione 
deficiency by 
supplementation of its 
precursors (glycine and 
cysteine)

1 May 2025 Change in ADAS-Cog, FDG-PET 
scan, TSPO-PET scan

NCT05004688 Bacillus 
Calmette-Guerin 
(BCG) vaccine

MCI due to AD or mild AD Non-specific 
immunomodulation

2 October 2023 Changes in blood and CSF 
biomarkers related to AD pathology 
and inflammation and in cognitive 
scores

NCT05551741 IBC-Ab002 Early AD Immunomodulation with 
an anti-PD-L1 monoclonal 
antibody

1 December 2024 Incidence of subjects with adverse 
events, serious adverse events

NCT04777409 Semaglutide MCI or mild dementia due to 
AD and Aβ-positive

Non-specific 
immunomodulation

3 August 2024 Change in the Clinical Dementia 
Rating 

NA= not applicable
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Neuroinflammatory biomarkers as prognostic 
markers 

Converging evidence suggests that the pathogenesis 
of neurodegenerative disorders begins years before 
symptom onset. Theoretically, a perfect marker of disease 
progression should track different stages since the earliest 
pathological alterations. In AD, prognostic biomarkers 
have promising clinical applications because drug 
therapies are supposed to start before symptoms (192). 
Indeed, AD biomarkers positivity has been consistently 
demonstrated in preclinical phases, which is thought 
to be the most suitable timing for disease-modifying 
treatments and secondary prevention strategies. Together 
with target engagement biomarkers, prognostic markers 
may also be a method to enrich participants’ inclusion in 
clinical trials with early AD.

Prognostic markers diverge from diagnostic markers 
in many aspects. Biomarkers of disease progression 
should be sensitive to cognitive deterioration and the 
pathological burden of the disease (193). Currently 
available evidence has pointed out a myriad of markers 
of disease progression, including neuroimaging, cognitive 
testing, and fluid markers. Peripheral biomarkers of 
neuroinflammation have been increasingly mentioned 
as promising prognostic markers due to their early 
identification in peripheral tissue in different conditions 
(194). However, current evidence of the validity of these 
markers is still under debate. In the following session we 
in-depth analyze the prognostic value and test accuracy of 
neuroinflammation biomarkers of AD.

Therapeutic targets of neuroinflammation

Recent advances in the biomarker field have 
allowed for classifying individuals in the AD spectrum 
before the onset of symptoms. The importance of 
using biomarkersto develop treatments that prevent 
the development of dementia was brought to light 
(195). Therapies targeting amyloid plaques, such as 
aducanumab (FDA-approved) and lecanemab (FDA-
approved), can remove amyloid aggregates (196). Still, it 
is unclear whether a single target will halt the progression 
of a complex disease like AD. Thus, there is a need to 
explore other treatment possibilities, including drugs 
targeting inflammatory changes. A list of ongoing clinical 
trials targeting neuroinflammatory pathways is presented 
in Table 2.

Some attention has been paid to this in the past. The 
ADAPT trial (197) was released in 2008, with negative 
results regarding preventing dementia onset using non-
steroidal anti-inflammatories celecoxib and naproxen. Not 
only no evidence for efficacy was achieved in delaying 
cognitive decline or preventing dementia onset, but 
the trial also held the possibility of naproxen use being 
associated with increased cognitive decline. The study 
was terminated because the intervention group showed 

increased cardiovascular risk.
Another attempt to halt disease progression in 

cognitively unimpaired individuals using NSAID 
naproxen was the INTREPAD trial. For this trial, 
a composite primary endpoint comprising cognitive, 
neurologic, and biomarker data was developed and 
used. As occurred in the ADAPT study, naproxen did not 
show good outcomes and was associated with important 
side effects (198). It is important to note that, even with 
limited statistical power, these studies were marked by a 
tendency for adverse results.

Other attempts to treat AD targeting inflammatory 
processes were made. For instance, minocycline was 
found to have an anti-neuroinflammatory effect, 
inhibiting microglia in animal studies, but clinical 
trials did not show clinical impact (199). Rosiglitazone, 
a PPAR inhibitor developed as an anti-diabetic, was 
also considered a good candidate to prevent AD due to 
its modulating neuroinflammatory response (200, 201). 
But, once again, results in clinical trials were not able to 
achieve its primary clinical outcome.

A possible explanation for previous failures is that anti-
inflammatory drugs impact both protective and harmful 
inflammatory states of glial cells (20). As we develop 
knowledge toward a more specific understanding of the 
inflammatory states of glial cells, more selective therapies 
may be developed to inhibit processes related to harmful 
phenotypes selectively. An example is the Etanercept, 
a TNF-α blocker that has been considered a plausible 
approach for reducing detrimental inflammation in AD 
202).

Another approach that has been recently explored 
is the use of drugs with pleiotropic effects that may 
be repurposed for AD prevention by acting on 
neuroinflammation. Pioglitazone, another PPAR inhibitor, 
is being studied despite the initial unsatisfactory results 
of similar drugs (203). Candesartan, an ACE inhibitor, is 
a potential candidate, with preclinical studies indicating 
immune modulation towards a more protective state in 
animal models of AD (204). Also, the anti-inflammatory 
effects of statins, a lipid-reducing class of drugs, has 
been gaining attention in the context of AD (205). 
Semaglutide, a GLP-1 receptor agonist, is entering phase 
3 evaluation for treating early AD (206). It is proposed 
that pleiotropic anti-inflammatory effects are behind its 
anti-dementia potential (207). Multiple phytotherapeutic 
and antioxidant drugs, such as resveratrol, omega-3 fatty 
acids, and folic acid, have been suggested as supplements 
to treating AD due to their anti-inflammatory potential 
(208-210). Even though these drugs tend to have little, 
unspecific effects, they are well-tolerated and safe 
interventions that may be further explored as adjuvant 
therapies.

In conclusion, no therapy targeting inflammation has 
effectively prevented or halted the cognitive decline in 
AD. Still, with an improved understanding of biological 
processes and biomarkers, a more specific approach may 
warrant a better response. With the recent advances in 
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Aβ-targeted therapies for AD, neuroinflammation may be 
a secondary target aiming for effective disease-modifying 
treatments. 

Neuroinflammation in the AT(N) framework

The AT(N) system is proposed to be dynamic and 
open for including novel biomarkers indicating 
additional pathophysiological processes in AD. The 
question is straightforward, are we ready to include 
neuroinflammation as an “Im” (microglial positivity), 
“Ia” (astrocytic positivity), “G” (glial positivity) or simply 
“I” (neuroinflammation)? First, they add little information 
as diagnostic tools compared to AD core biomarkers 
– Aβ and tau. Second, the biological interpretation of 
neuroinflammation imaging biomarkers is far from 

conclusive, relying on the overexpression of proteins in 
immune-associated cells. Also, these proteins are rarely 
specific to the cell type of interest. Third, as happens 
to fluid biomarkers, proteins that leak or are secreted 
by immune-associated brain cells are used as surrogate 
markers of neuroinflammation. Forth, similarly to 
systemic inflammatory biomarkers such as the C-reactive 
protein, biomarkers of neuroinflammation present 
low specificity for AD. In clinical research, however, 
neuroinflammation biomarkers have been useful in 
elucidating additional pathophysiological mechanisms 
and proposing therapeutic targets in AD. A summary 
of neuroinflammatory-related imaging targets and fluid 
proteins measured in AD can be seen in Figure 3.

Figure 3. Imaging and fluid biomarker targets for tracking neuroinflammation in Alzheimer’s disease

Schematic representation of cell-derived origins of imaging and fluid biomarkers of neuroinflammation in AD. Abbreviations: AD – Alzheimer’s disease; TSPO – 18 kDa 
translocator protein; I2-BS – imidazoline2 binding sites; MAO-B – monoamine oxidase B; sTREM2 – soluble triggering receptor expressed in myeloid cells 2; YKL-40 – 
chitinase-3-like protein 1; GFAP – glial fibrillary acidic protein; S100B – calcium-binding protein B; iNOS – inducible nitric oxidase; P2X7R – P2X7 receptor; ROS – reactive 
oxygen species; COX-1 – cyclooxygenase 1; COX-2 – cyclooxygenase 2; OATP1C1 – organic anion transporter 1C1; P2Y12R – P2Y12 receptor; CB2R – cannabinoid receptor 
type 2.
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Concluding remarks

In summary, neuroinflammatory markers of AD have 
potential clinical relevance. However, their role in clinical 
practice remains elusive. Large longitudinal, multicentric 
studies in diverse populations with AD core biomarkers 
associated with neuroinflammation biomarkers in the 
AD continuum are needed. In addition, it is necessary to 
advance these biomarkers’ biological interpretation. Thus, 
although promising, more evidence is needed to propose 
a new biomarker group representing neuroinflammation 
in the AT(N) framework.
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