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Review

Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder 
characterized by progressive cognitive decline, amyloid-β (Aβ) 
plaques and the formation of neurofibrillary tangles (NFTs) 
composed of hyperphosphorylated tau. Increasing evidence 
has demonstrated that the damage of cell plays an important 
role in AD. Cell death is a critical phenomenon for physiological 
functions, which promotes AD pathogenesis. Programmed 
cell death, including necroptosis, pyroptosis, autophagy, and 
ferroptosis, have been discovered that have unique biological 
functions and pathophysiological characteristics. Here, we 
review the available evidence detailing the mechanisms of 
programmed microglial death, including pyroptosis, autophagy, 
and ferroptosis. We also highlight the role of programmed 
death of microglia during the process of AD and focus on the 
connection between the disease and cell death. 

Key words: Alzheimer’s disease, cell death, microglia, autophagy, 
ferroptosis, pyroptosis.

Introduction

AD is a neurological condition characterised 
by progressive decline in cognition, with 
concomitant functional decline. The main 

pathological hallmarks of Alzheimer’s disease are the 
aggregation of beta amyloid peptides into extracellular 
plaques and hyperphosphorylated tau proteins into 
intracellular neurogenic fiber tangles, accompanied by 
neuroinflammation, gliosis and neurodegeneration (1). 
Based on 2020 Alzheimer’s Disease Facts and Figures 
(2), more than 5.8 million Americans have AD dementia 
today, which is the most common form of dementia 
worldwide (2). Despite remarkable advances in 
unraveling the biological underpinnings of AD during the 
last 25 years, no drugs have been found that can slow the 
progression of AD while promising preclinical trials have 
repeatedly ended in failure to translate into treatments for 
AD patients (3).   

Cell death is a critical phenomenon for physiological 
functions such as immunity, development, and tissue 
homeostasis. Programmed cell death is a distinct 

biochemical pathway in which cells die to elicit various 
physiological outcomes and functions as a defense 
mechanism against various infections, diseases, and 
microorganisms (4). Programmed cell death is well 
known as a type of cell death during the earlier period. 
Recently, regulated pathways of cell death, including 
necroptosis, pyroptosis, autophagy, and ferroptosis 
(5), have been discovered that have unique biological 
functions and pathophysiological characteristics (6, 
7). Cell death is inseparable from the progression of 
inflammation in AD. Regardless of the types of death, 
they all promote the occurrence and development of 
inflammation. Hyperphosphorylated tau protein 
aggregates into NFTs, which is a major pathological 
hallmark of AD. It is proved that hyperphosphorylation 
of tau may result in dysfunction of autophagy, ferroptosis 
and pyroptosis (8-10). On the contrary, the damage of 
cell, including autophagy, ferroptosis and pyroptosis, can 
exacerbate the progression of tau hyperphosphorylation, 
which aggravates the inflammatory state of AD.

Microglia are immune cells in the brain that participate 
in maintaining immune defense of the nervous 
system (11, 12). Microglia are modified macrophages 
that compose approximately 10%–12% of total cells 
(13) and are considered instigators of damage and 
guardians of brain homeostasis, playing vital roles 
in both neuroprotection and neurodegeneration (14). 
However, there is no systematic description of the effect 
of programmed microglial death on the nervous system. 

In this review, we evaluate the association between 
programmed microglial death and AD, and we discuss 
the role of NFTs and tau in explaining how cell death 
might contribute to AD. The findings are contextually 
framed by evidence that activation of the innate immune 
system alters central nervous system mechanisms 
and increases cell damage, possibly driving onset and 
progression of AD. Inhibiting the progressive of cell death 
could be targets for the prevention of AD. 

Autophagy

Three types of autophagy have been reported: 
macroautophagy, micro autophagy, and chaperone-
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mediated autophagy. Among them, macro autophagy 
is the most widely studied and well described of the 
three types (15). Some studies have shown that macro 
autophagy is the main pathway of intracellular 
degradation (16). Autophagy, which acts as a protective 
mechanism, maintains normal cellular function 
and homeostasis by degrading engulfed substances 
(17). Autophagy is involved in the degradation 
and elimination of damaged, denatured, aged or 
dysfunctional organelles, denatured proteins, and 
other biological macromolecules through a process that 
provides the energy necessary for cell survival and repair 
(18). Autophagy is a cellular catabolic process involving 
the sequestration of misfolded proteins and damaged 
cytoplasmic organelles by a double-membrane structure 
known as an autophagosome and the degradation of 
the engulfed contents via fusion with a lysosome (12). 
Therefore, this autophagy-lysosomal pathway plays an 
important role in maintaining normal cellular function 
and intracellular homeostasis. Accumulating evidence 
indicates that autophagy is closely associated with 
inflammasomes, and these factors mutually influence 
each other. In neurodegenerative diseases, microglial 
autophagy is impaired and downregulated (19). The 
transformation from the M1 to the M2 phenotype can 
protect the body from excessive inflammatory injury, 
and one of the mechanisms affecting macrophage 
polarization is autophagy (20). The phosphatidylinositol 
3-kinase (PI3K)-mTOR pathway is important in 
regulating macrophage polarization. Activation of the 

PI3K-mTOR pathway can increase M2 polarization 
while inhibition of PI3K or mTOR exerts the opposite 
effect (21). However, microglial autophagy transforms 
microglia from a proinflammatory state to a favorable 
anti-inflammatory state and inhibits NOD-like 
receptor family, pyrin domain containing 3 (NLRP3) 
inflammasome-mediated inflammatory responses, acting 
as negative regulators (22). Ma’ (23) results indicate 
that the overactivation of autophagy is responsible 
for the M1 polarization of microglia and promotes 
microglial apoptosis. Emerging evidence indicates that 
overactivation of the NLRP3 inflammasome in microglia 
is a driving factor that exacerbates pathology and 
ultimately accelerates neuronal death and the progression 
of neurodegenerative diseases (24, 25). In mammalian 
cells, microglial autophagy has been demonstrated to be 
critical for microglial activation in vitro, and the inhibition 
of microglial autophagy results in the upregulation 
of proinflammatory cytokines, causing increased M1 
microglial activation (26-28), (Figure 1).

Cognitive Decline

One of the reasons causes cognitive decline of AD is the 
sequential functional modifications of the mitochondrial 
dysfunction, including inflammation, impaired energy 
metabolism, oxidative stress and synaptic dysfunction 
(29, 30). The significance of autophagy dysfunction in 
AD pathophysiology is now appreciated due to evidence 
reporting dysfunctional autophagy in the AD leading to 
neuronal degeneration (31-33).

Figure 1. Autophagy pathway

The energy sensors mTORC1 and AMPK control autophagy activation via the ULK1 complex. Various stress conditions stimulate ULK1 complex phosphorylation of the 
VPS34-Beclin-1 complex. Following activation, the ULK1 and PI3KC3 complex regulate the formation of the autophagosomes. The resulting LC3-I is activated and binds 
on the autophagosome and is esterified to form LC3-II. Finally, the mature autophagosome fuses with lysosomes to autolysosomes, and regulates the polarity of microglia.
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In autophagy-deficient AD mice, Nilsson et al, reported 
an important reduction associates with intraneuronal 
Aβ accumulation increasing in Aβ metabolism, which 
further enhances neurodegeneration and memory 
impairment (34). Abubakar ’s research revealed that 
improved memory function, demonstrated via Morris 
water maze test, was associated with reduced Aβ levels 
and related pathology (35). Glatigny et al. showed that 
the induction of novel stimuli increases autophagy by 
fostering synaptic plasticity in hippocampal neurons. In 
addition, they showed that restoring autophagy levels in 
old hippocampi reverses memory deficits (36). 

Given the extensive observations showing autophagic 
alterations in the brain of AD patients or in different 
mouse models of AD, it is now well accepted that 
improving of the autophagic flux ameliorates cognitive 
impairment in AD mouse models (37-39). Restoration 
of neuronal mitophagy was found sufficient to 
ameliorate the cognitive decline in an AD mouse model 
by preventing synaptic failure (40). Thus, the cognitive 
decline of AD is related to the autophagy closely, which 
may inhibit the progress of cognitive decline, in brain.

NFTs and tau 

Extracellular amyloid plaque deposits, composed of 
Aβ peptides, as well as intracellular accumulation of 
NFTs, consisting of hyperphosphorylated tau (p-tau) 
protein are regarded as the characters of AD (41). Major 
pathological hallmarks of AD include intracellular 
deposition of neurofibrillary tangles (NFTs), which were 
associated with paired helical filaments (PHF), p-tau, 
and extracellular accumulation of Aβ peptide in the 
senile plaques (42, 43). Data show that Aβ peptides and 
tau protein accumulation, the principal hallmarks of 
AD, can be influenced due to autophagy dysregulation 
(44). Studies suggest that dysfunction of the autophagy-
lysosome system promotes the formation of tau oligomers 
and accumulation of insoluble tau species (9). 

It has been reported that tau secretion is promoted 
by autophagy inducers and knockdown of beclin-1 
(45). Besides, the accumulation of hippocampal 
phosphorylated tau is responsible for abnormal 
mitophagy funct ion,  mitochondrial  dynamics 
hippocampal-based learning and memory impairments 
in tau mice (46). It has been reported that the 
phosphorylated tau can also interact with VDAC1 and 
Drp1, likely leading to mitochondrial dysfunction and 
abnormal mitophagy, ultimately possibly leading to 
damage and cognitive decline (47, 48).

Aβ

Autophagy is closely related to the metabolism of 
Aβ, and autophagy is an important regulator of its 
production and clearance. The precursor protein of Aβ, 
APP, and the γ-secretase that cleaves APP are highly 

enriched in autophagosomes. Many studies have shown 
that Aβ secretion is significantly reduced in autophagy-
deficient mouse models (49). This result was also 
verified in AD patients, where patients with severely 
impaired autophagy showed a significant decrease in 
learning ability and cognitive function (50). Induction of 
autophagy recovery accelerates Aβ clearance and restores 
cognitive function. Autophagy can influence Aβ clearance 
by affecting multiple stages of Aβ (51). It was shown that 
healthy microglia can wrap and degrade Aβ through 
autophagosomes, but the expression of autophagy-related 
proteins NBR1 and ATG7 was reduced in microglia of 
5XAD mice, and the degradation of Aβ was impaired 
in 5xFAD microglia, further suggesting the necessity of 
autophagy in microglia for the degradation of Aβ (52).

Ferroptosis

Ferroptosis, which mainly occurs in the brain (53, 54), is 
defined as an iron-dependent form of regulated cell death 
that occurs through the lethal accumulation of lipid-
based reactive oxygen species (ROS) when glutathione 
(GSH)-dependent lipid peroxide repair systems 
are compromised (55). Cellular accumulation of lipid 
peroxidation products and lethal ROS are characteristics 
of ferroptosis and ultimately result in oxidative stress 
and cell death. The peroxidation of proteins, nucleic 
acids, and lipids is promoted when intracellular iron 
accumulation generates ROS and causes oxidative 
stress via the Fenton reaction, which is the key process 
that propagates ferroptosis (56-58). Morphologically, 
ferroptosis is mainly characterized by shrunken 
mitochondria with increased membrane density and 
normal-sized nuclei, as well as diminished or vanished 
mitochondrial cristae and ruptured outer membranes 
(59). A wealth of evidence underscores the tight link 
between ferroptosis and the nervous system. There are 
three hallmarks of ferroptosis that were highlighted by 
Dixon and Stockwell: the loss of lipid peroxide repair 
capacity by the phospholipid hydro peroxidase GPX4, 
which was identified as a key regulator of ferroptosis 
in cancer cells (60); the availability of redox-active iron; 
and the oxidation of PUFA-containing phospholipids 
(61). Among them, it is accepted that the fundamental 
characteristic of ferroptosis is lipid peroxidation (62). As 
GPX4 is a central protector against the formation of lipid 
hydroperoxides (63), and its degradation is a mandatory 
signaling event in the execution of ferroptotis cell death 
(60, 64, 65). Ferroptosis widely exists in various parts of 
the central nervous system, such as the cerebral cortex, 
hippocampus, striatum, and spinal cord (59). Ferroptosis 
has been implicated in several neurological diseases, such 
as neurodegenerative diseases, hemorrhagic stroke and 
ischemic stroke (66, 67).

Recent studies have shown that iron accumulation in 
microglia also contributes to microglial dysfunction and 
Aβ accumulation (68). (Figure 2)
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Cognitive Decline

Several studies have observed the excess brain iron 
accumulation was associated with accelerated cognitive 
decline in AD patients (69). Iron rises in the brain with 
aging and may be pathological because it is associated 
with cognitive decline prior to disease (70, 71). The 
increasing of iron occurs as early as the mild cognitive 
impairment stage of AD and contributes to longitudinal 
outcomes (72, 73). It was found out that there is a large 
amount of activated iron-containing microglia around 
Aβ plaques (74, 75). The brain iron burden is elevated 
in AD patients, combined with Aβ positron emission 
tomography (PET), which indicates that brain iron load is 
positively associated with Aβ deposition-related cognitive 
decline, suggesting that cognitive function damage may 
exacerbate due to iron combine with Aβ. The pathologic 
mechanism could be that iron promotes the production 
of free radicals and oxidative stress and possibly also 
involves ferroptosis (76, 77). 

The maintenance of glutathione GSH is a key 
antioxidant element in brain redox homeostasis (78). 

In the AD model, N-acetyl cysteine (NAC) can protect 
neurons’ function and improving learning and memory 
deficits via increasing GSH levels (79). A recent study 
indicated that deficiency of ferroportein (Fpn) in principal 
neurons in neocortex increased iron levels and induced 
AD-like hippocampal atrophy and memory deficits, while 
restoring Fpn expression could effectively ameliorate the 
memory loss and ferroptosis in AD model mice (80).

NFTs and tau 

Aging and changes in iron metabolism are associated 
with the development of Aβ plaques and NFTs (81). Iron 
and ferritin are found within plaques, NFTs, and blood 
vessels in AD (82). Svobodová et al. (83) demonstrated 
in an APP/PS1 transgenic mice model that free iron and 
ferritin accumulation follows amyloid plaque formation 
in the cerebral cortex area. Actually, iron deposition 
has been involved in the misfolding process of the Aβ 
plaques and NFTs (8). Additionally, iron is related to the 
development of tau protein, which is present through 
the induction and regulation of tau phosphorylation 

Figure 2. Ferroptosis

System xc- transports intracellular Glu to the extracellular space and extracellular Cys2 into the cell, which is then transformed into Cys for GSH synthesis. Excess irons 
are the basis for ferroptosis execution. Circulated iron was combined with transferrin in the form of Fe3+, and then it entered into cells by TFR1. Iron in Fe3+ form was 
deoxidized to iron in Fe2+ by iron oxide reductase STEAP3. Ultimately, Fe2+ was released into a labile iron pool in the cytoplasm from the endosome mediated.
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(8, 84). It is possible that this surface trafficking of APP 
may be impaired by the hyperphosphorylation and 
aggregation of tau (thus lowering the soluble fraction of 
tau) during AD pathogenesis (8, 85). Tau loss preceded 
iron accumulation, and APP treatment lowered iron (86). 
The evidence suggests that iron interacts with tau to 
cause neurodegeneration in AD and related conditions; 
conversely, tau maintains cellular iron homeostasis, 
however a putative role of an iron-tau interaction in 
ferroptotis stress needs further investigation.

Aβ

In AD, neuroinflammation exacerbates Aβ deposition. 
Lipid metabolites in iron death trigger inflammation, 
which in turn mutually promotes iron death by increasing 
iron deposition. Iron is involved in Aβ plaque deposition, 
and iron accumulation accelerates Aβ plaque deposition 
(69). Iron dysregulation increases the production 
of ROS and is one of the prominent manifestations of 
AD pathology. Excessive increase in ROS promotes 
the development of Aβ. As reported by Kristin et al. 
Aβ induces strong ROS production in BV2 microglia 
via NADPH oxidase. Intracellular iron depletion 
inhibits Aβ-induced ROS. Aβ plaques are surrounded 
by microglia overexpressing HO-1 (87). Fernández-
Mendívil’s study showed that (88) overexpression of 
HO-1 in microglia under inflammatory conditions leads 
to toxic accumulation of iron leading to iron death. In 
addition, mitochondrial contraction serves as one of 
the unique markers of iron death, and mitochondrial 
dysfunction is associated with Aβ accumulation. The level 
of iron in the brain is closely linked to both translation 
and processing of APP.

Pyroptosis

Pyroptosis is a proinflammatory form of programmed 
cell death that triggers an inflammatory response 
upon infection or other stimuli (89). Pyroptosis 
features rapid plasma membrane rupture and the 
release of proinflammatory intracellular contents such 
as interleukin 1β (IL-1β) and interleukin 18 (IL-18) 
(90). Pyroptosis is regarded as a critical host defense 
mechanism against intracellular pathogenic bacteria 
by releasing these organisms into the extracellular 
environment, where they can be killed by neutrophils (91-
93). Pyroptosis is dependent on inflammatory caspases 
(caspase-1 and caspase-4/5/11) and is accompanied 
by inflammation. Canonical pyroptosis is executed by 
cleaved caspase-1, which not only causes cell lysis but 
also mediates the proteolytic cleavage and release of 
IL-1β and IL-18 (94). Chang’s (89) data demonstrated 
that intensive pyroptosis and increased caspase-1 activity 
indeed occurred in activated microglia after cardiac arrest, 
along with elevated levels of IL-1β and IL-18. This finding 
shows the inseparable connection between pyroptosis, 

caspase-1, IL-1β, and IL-18. Furthermore, recent studies 
have reported that gasdermin D (GSDMD) is the 
executioner of pyroptosis (95). After being cleaved by 
caspase-1, the GSDMD N-terminal domain (GSDMD-N) 
can form pores in the plasma membrane. Holes in the cell 
membrane cause the loss of cell integrity. IL-1β and IL-18 
are released through these pores, thereby perpetuating 
the inflammatory response.

In addition, ATP acts as a canonical activator 
that induces NLRP3 inflammasome activation in 
macrophages, leading to caspase-1/GSDMD-mediated 
pyroptosis. Zeng’s (93) study showed that ATP was 
able to induce alternative pyroptosis in macrophages 
in which NLRP3-mediated rapid pyroptosis was 
blocked, highlighting another interplay between the 
pyroptosis and apoptosis pathways. When the oxygen 
level decreases, mitochondria produce a large amount 
of ROS in response to hypoxia, which is a key stimulus 
that promotes the activation of NLRP3 inflammasomes. 
NLRP3 inflammasome activation can also activate 
caspase-1, resulting in pyroptosis. Poh et al. (96) 
provided evidence to support that the inflammatory 
response induced by inflammasome activation through 
proinflammatory mediators such as both IL-1β and IL-18, 
damage-associated molecular patterns (DAMPs) (i.e., 
HMGB1 and IL-1α) and inflammasome components 
released into the extracellular environment caused 
pyroptosis in microglial cells (Figure 3).

Cognitive Decline

In the AD brain and AD transgenic mice, the 
expression of several pyroptosis-related proteins, 
including NLRP1, NLRP3 and caspase-1, is increased, 
and inhibiting pyroptosis alleviated the recognition 
dysfunction of APP/PS1 mice (97, 98). NLRP3 deficiency 
in AD model results in the rescue of memory deficits 
and a decrease of Aβ deposition (99). So, NLRP3 
inflammasome-mediated pyroptosis may provide a 
progressive memory loss of AD. It has been reported that 
NLRP3 inflammasome activation is caused by the action 
of cathepsin B released from the lysosome rather than the 
direct actions of Aβ (100). These findings were confirmed 
by a separate study showing that cathepsin B inhibitors 
improve the memory deficit in transgenic AD mice (101).

Recently, studies have shown that neuroinflammation 
inhibition can regulate the cognitive function of AD 
(102). Several studies have demonstrated that pyroptosis 
plays an important role in mediating the occurrence 
of neuroinflammation (103). To evaluate whether 
disturbing pyroptosis might affect cognitive function, 
Li et al. assessed spontaneous alternation in the Y-maze 
as a measure of spatial memory, and a significant 
improvement in spatial memory disorder was shown in 
the caspase inhibitor treated models (10).
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NFTs and tau 

Numerous  s tudies  have  po in ted  out  tha t 
overexpression of IL-1β aggravates AD pathogenesis, 
owing to tau hyperphosphorylation (104), which inhibits 
long-term potentiation and affects synaptic plasticity 
(105). IL-1β can increase the phosphorylation of tau 
proteins (106). IL-18 shares structural similarities with 
proteins in the IL-1 family, which can also modulate the 
hyperphosphorylation of tau protein by increasing the 
expression of kinases involved in tau phosphorylation 
(10). Recently, a study by Ising and co-workers showed 
that NLRP3 acted as a link between Aβ plaques and NFTs 
formation (25). These authors demonstrated that the 
injection of Aβ-containing APP/PS1 brain homogenates 
induced tau hyperphosphorylation in tau22 mice, but not 
in tau22 mice deficient for NLRP3, indicating that NLRP3 
was an important mediator of Aβ-induced tau pathology. 
What’s more, li’s study also discovered that suppressing 
the activity of caspase resulted in a remarkable reduction 
of pyroptosis-related proteins and significantly inhibited 
the hyperphosphorylation of tau proteins (10).

Aβ

A previous study described that Aβ accumulates in 
AD brain to form characteristic plaques, which then 
activate NLRP3 inflammatory vesicles that trigger 
cellular scorching via the NLRP3/caspase-1/GSDMD 
signaling pathway, ultimately leading to elevated levels 
of inflammatory factors IL-1β and IL-18 (107). In addition, 
Aβ secretion of IL-1β is dependent on NLRP3, ASC and 
caspase-1 activity and requires release of histone B from 
damaged lysosomes (108). In addition, aberrant activation 
of microglia-specific NLRP3 leads to microglia Aβ 
phagocytosis dysfunction during the pathology of AD. In 
a mouse model of AD, intracellular activation of NLRP3 
inflammasomes was observed to promote M1 phenotype 
microglia activation, leading to Aβ accumulation and 
higher cognitive impairment[109]. Inhibition of NLRP3 
inflammatory vesicle activation reduces Aβ-induced 
neuroinflammation in microglia and thus treats AD (110).

Conclusion and Perspectives

Microglial death is a complex process involving 
physiological and pathological activities in the body 

Figure 3. Pyroptosis

In the canonical model of pyroptosis, inflammasome sensor proteins recognize cellular stressors, including those from bacteria, viruses, toxins etc. These stressors activate 
inflammasome sensors indirectly, such as NLRP3. NLRP3 subsequently activates caspase-1 via the adaptor protein ASC. Caspase-1 processes and activates IL-1β and IL-18, 
and also cleaves GSDMD to release the membrane pore-forming GSDMD-N domain. GSDMD-N pores promote the release of activated IL-1β and IL-18. Cytosolic LPS binds 
Caspase-4/5/11 to trigger their cleavage of GSDMD, but not IL-1β and IL-18. 
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and is regulated by a variety of factors. And AD, as one 
of the most commonly diseases around the world, has 
bothered human all the time. We are just beginning to 
understand how microglia function in health and are 
altered in AD. The way of microglial death perhaps plays 
a significant role in the proceeding of AD. In the early 
stage of the disease, the excess brain iron accumulation is 
occurred with accelerated cognitive decline in AD. During 
the development of AD, microglial autophagy plays 
an important role in the removal of misfolded protein 
aggregates, the clearance of damaged mitochondria 
and their resultant ROS, and the degradation of the 
NLRP3 inflammasome or its components. Additionally, 
NLRP3 inflammasome-mediated pyroptosis may also 
provide a progressive memory loss of AD. Studies 
have indicated that the targeted inhibition of NLRP3 
inflammasome overactivation at different levels by 
NLRP3 inflammasome inhibitors or autophagy inducers 
could inhibit the occurrence or development of cognitive 
decline caused by AD. Intracellular accumulation 
of neurofibrillary tangles (NFTs), consisting of p-tau 
protein are regarded as the characters of AD. It is 
reported that iron deposition has been involved in the 
misfolding process of the Aβ plaques and NFTs. The 
accumulation of phosphorylated tau is responsible for 
abnormal mitophagy function, mitochondrial dynamics 
hippocampal-based learning and memory impairments 
in tau mice. The overexpression of IL-1β aggravates AD 
pathogenesis, owing to tau hyperphosphorylation. On 
the contrary, IL-1β can increase the phosphorylation of 
tau proteins, which would increase the severity of AD. 
Studies also discovered that suppressing the activity 
of inflammation resulted in a remarkable reduction of 
pyroptosis-related proteins and significantly inhibited the 
hyperphosphorylation of tau proteins. These microglial 
death modes are inextricably linked with the phenotypic 
conversion of microglia, energy metabolism, and the 
occurrence and development of neurological diseases, like 
AD. 

The modes mentioned in this review of cell death 
attract widespread attention. To sum up, programmed 
cell death might be a risk factor for AD. Programmed 
cell death may be a biologically plausible mechanism for 
AD pathogenesis, and the effects of cell damage about 
AD provide a framework with which to understand how 
microglia might contribute to the early, and possibly the 
later, course of AD. Therefore, further understanding of 
microglial death can provide more reliable evidence for 
the clinical treatment of AD.
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