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Lebesgue points and Cesaro summability of
higher dimensional Fourier series over a cone

FERENC WEISZ*

To the memory of Professor Ldszlé Leindler
Communicated by L. Molndr

Abstract. We introduce a new concept of Lebesgue points, the so-called w-
Lebesgue points, where w > 0. As a generalization of the classical Lebesgue’s
theorem, we prove that the Cesaro means oy, f of the Fourier series of a multi-
dimensional function f € L;(T%) converge to f at each w-Lebesgue point
(0 <w<a)asn— oco.

1. Introduction

It was proved by Lebesgue [10] that the Fejér means [2] of the trigonometric Fourier
series of a one-dimensional integrable function converge almost everywhere to the

function, i.e.,
n

of@:= 3 (1= M) Fwer - s
k=—n

~

for almost every x € T, where T denotes the torus and f(k) is the kth Fourier
coefficient. More exactly, Lebesgue [10] introduced the concept of the so-called
Lebesgue points and verified that almost every point is a Lebesgue point and the
preceding convergence holds at every Lebesgue point. The set of Lebesgue points
contains all continuity points of f. Some years later M. Riesz [15] generalized this
theorem for the Cesaro means of one-dimensional integrable functions.
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In the two-dimensional case Marcinkiewicz and Zygmund [12]| proved that the
Fejér means
no

Ty na f (2, Y) Z Z ( L )(1 ‘k2|)f(k ky )1 thaez

ki=—n1 ka=—n2

of a function f € L1(T?) converge almost everywhere to f as n — oo, provided that
n is in a cone, i.e., 771 < ny/ng < 7 for some 7 > 1.

In this paper, we generalize these results to Cesaro means of multi-dimensional
functions and partly characterize the set of convergence. The Cesaro summability
was investigated in a great number of papers and books (see, e.g., Leindler [11], Gat
[4-6], Goginava [7-9], Simon [16,17], Nagy, Persson, Tephnadze and Wall [13,14],
Weisz [20,21] and Zygmund [24]). We generalize the Lebesgue points and introduce
the so-called w-Lebesgue points, where w > 0. It is known that almost every point
is an w-Lebesgue point of f € L;(T9) and if f is continuous at x, then z is also an
w-Lebesgue point of f. We introduce a new maximal function M¥ f and show that
the Cesaro means ¢2 f of f € Li(T%) can be estimated by M f pointwise. Next
we prove that if M“ f(z) is finite and z is an w-Lebesgue point of f € L;(T%), then

Jim o2 () = f(a), (1.1)

whenever n is in a cone. This implies the convergence of the Cesaro means almost
everywhere.

After T have submitted the paper, the reviewer called my attention to the
paper of Gabisoniya [3]. There he introduced another concept of Lebesgue points for
functions of two variables. However, not every continuity point of f is a Lebesgue
point of f (see Remark 1). This means that our definition is different from the
definition of Gabisoniya. In the two-dimensional case, he proved in [3] that almost
every point is a Lebesgue point of f € L1(T?) as well as the convergence (1.1).

2. Maximal functions and Lebesgue points

Let us fix d € N. For a set Y # 0, let Y¢ be its Cartesian product Y x --- x Y
taken with itself d times. We briefly write L% (X%) (w > 0) instead of the weighted
Lebesgue space Ly (X%, \) equipped with the norm

1/p
iz = ([ W@+ lah=rae) ™ q<p<o)

with the usual modification for p = co and with X = R or X = T, where A is the
Lebesgue measure and T = [—m, 7] is the torus. If w = 0, then we get back the
usual L,(R?) spaces. Clearly, L,(R%) D L% (R).
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Lebesgue points and Cesaro summability 507

For some w > 0 and f € L;(T%), we define the HardyLittlewood maximal

function
9—wllill 2" 2'dh
MY f(z) ;== sup h CTAEN / / flx —t)|dt.

ieNd, h>0 (2 2i1h 2idh

If w = 0, we obtain the strong Hardy—Littlewood maximal function. Moreover, if
w =0 and ¢; = - - - = 44, then the usual Hardy-Littlewood maximal function.
In [22], we proved the next two inequalities:

sup PAMME [ > p) < C||fllp,ray  (f € La(T?)) (2.1)

and, for 1 < p < o0,
IMEFIL, < Coll flln, ey (f € Lp(T?)). (2:2)

In this paper the constants C and C}, may vary from line to line.
Based on the definition of MY, let

g-wlill, 2 21h
UYf(x) = su / / (x—1t) x)| dt.
r f( ) ieNd,PiL>O 2h d2” ”1 2i1 h 2idh ( )|

2k h<r, k=1,...,
For w > 0, a point x € T is called an w-Lebesgue point of f € Ly (T%) if
. w _
lim U f(x) =

Different versions of Lebesgue points were considered in Gabisoniya [3] and Skopina
[18,19] for two dimensions. If w = 0, then this definition is equivalent to the strong
Lebesgue points, i.e.,

: 1 M B

If in addition i1 = - - - = i4, then it is equivalent to the usual Lebesgue points, i.e.,

) 1 h h B
gggmw/ﬁ~/;uu—w—fu»w—o

For the concept of the usual Lebesgue and strong Lebesgue points, see, e.g., Fe-
ichtinger and Weisz [1] and the references therein. Every wo-Lebesgue point is an
w1-Lebesgue point (0 < wy < wy < 00), because ULt f < U*2 f. Obviously, if f is
continuous at x, then x is an w-Lebesgue point of f. The next theorem was proved
in [22].

Theorem 1. For w > 0, almost every point x € T? is an w-Lebesque point of
f € Li(TY).
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3. Restricted Cesaro summability

For a# —1,-2,...and n € N, let
4o (n—i—a) (a+1)(a+2)--(a+n)

" n n!

Then Ay =1, AY = 1 and AL =n+ 1 (n € N). The kth Fourier coefficient of a
d-dimensional integrable function f € L;(T¢) is defined by

N 1 —1k- d
— 1K Z
ft) = o [ f@e e ez,
where u - x := 22:1 upzy for x = (z1,...,74) € R and u = (uy,...,uq) € R To

obtain better convergence properties, we consider Cesaro summability.

Let f € L1(T%), n = (n1,...,nq) € N¢ and a = (a1,...,aq) € RL. The nth
rectangular Cesaro means o0 f of the Fourier series of f and the Cesaro kernel K¢
are introduced by

d
O'T(ff(x) Z:ﬁ Z Z HA2L717|kl\f(k)elkT

Hi:l ni—1 |k |<ny [ka|<ng i=1
and
@ ——
K3(t) = > X HAm—l €
Hz 1 anl |k1\<n1 \k?d|§7ld1 1

respectively. It is easy to see that

af( ) / f.l?—t)Ka( )dt and KO‘ Ka1® L@ K

ng’

27r

where the functions K¢ are the one-dimensional Cesaro or (C, ) kernels. If o; = 1
for all 7, then we get back the rectangular Fejér means.
For the one-dimensional Cesaro kernels, it is known (see Zygmund [24]) that

a : 1

and sup,,cy [ |[KS| dX < C, where n € N,0 < o < 1and t € (—m, 7). In this paper,
we study the convergence of o0 f over a cone and the corresponding restricted
maximal operator

oty f = sup |og fl,
n€ER?
where 7 > 1 is fixed and the cone is given by

Ri:={reR:: 77t <u;/z; <7i,j=1,...,d}.

Acta Scientiarum Mathematicarum 87:3-4 (2021) (© Bolyai Institute, University of Szeged



Lebesgue points and Cesaro summability 509

4. Restricted convergence at Lebesgue points

For w > 0, the weighted Herz space E (R?) contains all functions f for which
Ifllg o= > - 30 20 0] flg e < oo,
k1=0 kqg=0
where Q 1= Qg, X --- X Qk, (k € N9) and
Qi={rcR:2" 1 < || < 2'n} (1 € Ny), Qo := (—m, 7).

If w = 0, we get back the usual Herz spaces. Obviously, L; (RY) D> L¥(R%) D E¥ (R?).
In the next proofs, we will use the functions

R (t) := min{1, [t|* '} (t €R) and h®:=h" @ - @ h*.
We get from (3.1) that

1 t C n;
1 ”K%)( )‘<— i { »,—]}ZCh“ft teR). (4.1
’[’LJ ( ( ) n] ~ n] min n] |t|aj+1 ( ) ( ) ( )
It is easy to see that
17| B, (re) = H 117 || e, (&) < Ca,s (4.2)
whenever w < min(e;,j =1,...,d). First we will estimate pointwise the restricted

maximal operator by the maximal function M f.

Theorem 2. Suppose that 0 < w < a; <1 for all j =1,...,d. For all f € L1(T%)
and z € T, o8 f(x) < CM¥ f(x).

Proof. Observe that

o ()] =

f(m—t)( i KO ) t)dt‘

(de

= — (L a K2)(t)] dt,
d Z Z ‘/Qk'l(nl) /de(7Ld) ‘f(x )||( (=m,m) )( )|

k1=0 kqa=0

where Qi(n;) = {z € R : 27w /n; < |z| < 2'7/n;} (i € Ny) and Qo(n;) :=
(=m/nj,m/n;). Then

02 (& / -~/' £ — )| dix
d Z Qrq (n1) Qky(na)

k1=0 kq=0

X sup |(L—mmya K5 ()]
tEQk, (n1) XX Qg (na)
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—o >

/ |f(z—t)]dtx
k1=0 kq=0 Qk,y (n1) Qr,y (na)

X sup ‘(1(7,”’#)4](&) (tl td)‘

tEQk, X X Qk, ni nd

Choose s € N such that 2°7! < 7 < 2%, Using the fact n € R? and (4.1), we

conclude
. 2k1ten /ny 2kateom /n,
o f) ;0 kdzo/Q’ﬂ*STr/m /2’”“”/"1 el (4.3)
X Hhalczklloo-
Consequently,

|Uaf | <C Z Z 9(k1+- +kd)(1+w)wa( ) sup |ha<t)|

kim0  kq—=0 LEQs
= Oty M F(2).

Inequality (4.2) finishes the proof.
Inequalities (2.1) and (2.2) imply
Corollary 1. Suppose that 0 <w < aj <1 for all j =1,...,d. If f € L1(T%), then

sup pA(otsf > p) < C | fll g, (pay -
p>0

If1 <p<ooand f € L,(T%), then

1oty fll, < Coll Fllz, re)-
The usual density argument due to Marcinkiewicz and Zygmund [12] implies

Corollary 2. Suppose that 0 < w < a; <1 for all j =1,...,d. If f € L1(T?), then

lim off=f |a.e

n—o0, n€RZ
Now we partly characterize the set of convergence.

Theorem 3. Suppose that 0 < w < a; <1 forall j=1,...,d. If M® f(x) is finite
and x is an w-Lebesgue point of f € L1(T?), then

lim o0 f(x) = f(x).

n—oo, n€RY
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Proof. Since

we have

72 0@) = F@)] < Gz [ 19 =) = F@ (L amoB62) 1)

where
1 «
@)= S e @I ekl
( ﬂ-) :0 kq=0 le("ll) de(nd)
and
A () 4D SHID SIS SRS DO Z
771, ©Td kry=ro+1 7r =ro+1kx T =0

/ / F@— 1) — F@)](1nmaKS) ()] dt,
le(m de(nd)

where {rmy,...,mq} is a permutation of {1,...,d} and 1 < j <d.

Since z is an w-Lebesgue point of f, we can fix a number r < 1 such that
U%..f(z) < €, where 2°71 < 7 < 2% Let us denote by 7o the largest number i,
for which r/2 < 2¢/ny; < r. Observe that n € R? and k; < ro imply 2%+ /n; <
2r0ts Iny <128 (j=1,...,d). Denoting

[ [0 s@ia werd,

w(k1+ +kd) dG(2k1+S7r/nl 2kd+sﬂ-/n1) < f(ZL’)
(27T)d25d2k1+ kg —= T25 :

we get that

As in (4.3),

0 70 2k1+57r/n1 2kd+s7r/n1
~~/ F(e— 1) — f(2)]dix

—2kater /ny

x(IImwaQmm
j=1
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70 T0o d
<e Y Y G w25 ) (T ng) 1610, 1
k=0 ka=0 =1

d
<O 30 S pb ket iy g (T]ng) 51,
Jj=1

k1=0 kq=0

Since n € R, we conclude A;(z) < Ce ||hO‘HEw (ray < Cqe. Similarly,

Al) < G 2 > oy Z Z
1yeesTd Ky =ro+1 k,r —7‘[)+1k?
2k1+sn /n, 2katsr/n, d
z— 1) dt( ) h 10, [l
/;2k1+57r/n1 /_2kd+sﬂ/n1f( ‘ g H Qk”
and
G(2k1+57r/n1 deJrs’N/TLl)
kitetka), d w
9—w(k1 dp (27T)d25d2k1+ T <M f(x)+|f(z)]
Hence

nze ¥ S Yy Z

T1yeesTd k7r1:7'0+1 k7r =ro+1kx T4l =0
(k1 tka) (w+1) (SN (M“f(x) +[f(@)])-

Since M f(x) is finite and rqg — oo as ny — oo, we conclude that As(x) — 0 as

n — oo, which finishes the proof. -

A different version of this result was shown in Gabisoniya [3] for two dimensions.
Similar theorems are proved by the author [23] for the #-means generated by a single
function 0. However, those results and proofs do not contain the results for Cesaro
means. If f is continuous at a point x, then z is also an w-Lebesgue point. So we
obtain

Corollary 3. Suppose that 0 <w < a; <1 forallj=1,...,d. If M“ f(x) is finite
and f € L1(T?) is continuous at a point x, then

im oy f(x) = f(x).

n— oo, n€RY

The condition that M® f(x) is finite is important even if f is continuous at x.
Indeed, for two dimensions let

0 if x € [-m, 7| X [—¢,€];

4.4
lz1|70 if 2z € [-m, 72\ ([-7, 7] X [—e€,€]). (44

flx1, x2) :{
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Lebesgue points and Cesaro summability 513

Let € > 0 be small enough, w < § < 1,4, = 0 and h = 272, Then f is
obviously continuous at 0, integrable and

g—w(ir+is) [2'1h 2! 2h g—wiz 27 1
R e S I Ty Ly
f( ) igEN 2h 2211+12 2i1 p 2ia py inEN 4.9 %2 Co—in )4 ( )

>~ qup 2092 — oo,
= 3(1-9) nen

Remark 1. In the two-dimensional case Gabisoniya [3] introduced basically the
following concept of Lebesgue points. Let

w(11+12) 2i1p, 202 p
MY f(x) := su flz—1) x)|dt.
h f( ) 0<i1§31?n2/h 2h 220102 /211h 212h ( )|
0<ig<3ln2/h
x is called a Lebesgue point of f if
lim M}’ f(x) = 0. (4.5)

h—0

Actually, the concept of Lebesgue points used by Gabisoniya [3] is equivalent to
this definition. For two dimensions, he proved that almost every point is a Lebesgue
point of f as well as Theorem 3, whenever f € L;(T?). However, in contrast to our
definition of w-Lebesgue points, the definition (4.5) does not hold for all continuity
points of f. Indeed, let € > 0 be small enough, w < § < 1, 4; =0 and h = 2% and
consider the function (4.4) as before. Then

9—w(i1tiz) 2h p2%2h 1 (6—w)i
M (t)dt > —————200—wiz
i f0) 2 (2h)2201+i2 /Tlh/z%f 2(1—46)

and so limy, g M}’ f(0) = oo.
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