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Abstract. We introduce a new concept of Lebesgue points, the so-called ω-

Lebesgue points, where ω > 0. As a generalization of the classical Lebesgue’s

theorem, we prove that the Cesàro means σ
a

n
f of the Fourier series of a multi-

dimensional function f ∈ L1(T
d

) converge to f at each ω-Lebesgue point

(0 < ω < α) as n → ∞.

1. Introduction

It was proved by Lebesgue [10] that the Fejér means [2] of the trigonometric Fourier

series of a one-dimensional integrable function converge almost everywhere to the

function, i.e.,

σnf(x) :=

n∑
k=−n

(
1−

|k|

n

)
f̂(k)eıkx → f(x)

for almost every x ∈ T, where T denotes the torus and f̂(k) is the kth Fourier

coefficient. More exactly, Lebesgue [10] introduced the concept of the so-called

Lebesgue points and verified that almost every point is a Lebesgue point and the

preceding convergence holds at every Lebesgue point. The set of Lebesgue points

contains all continuity points of f . Some years later M. Riesz [15] generalized this

theorem for the Cesàro means of one-dimensional integrable functions.
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In the two-dimensional case Marcinkiewicz and Zygmund [12] proved that the

Fejér means

σn1,n2
f(x, y) =

n1∑
k1=−n1

n2∑
k2=−n2

(
1−

|k1|

n1

)(
1−

|k2|

n2

)
f̂(k1, k2)e

ık1x1eık2x2

of a function f ∈ L1(T
2) converge almost everywhere to f as n → ∞, provided that

n is in a cone, i.e., τ−1 ≤ n1/n2 ≤ τ for some τ ≥ 1.

In this paper, we generalize these results to Cesàro means of multi-dimensional

functions and partly characterize the set of convergence. The Cesàro summability

was investigated in a great number of papers and books (see, e.g., Leindler [11], Gát

[4–6], Goginava [7–9], Simon [16,17], Nagy, Persson, Tephnadze and Wall [13, 14],

Weisz [20,21] and Zygmund [24]). We generalize the Lebesgue points and introduce

the so-called ω-Lebesgue points, where ω > 0. It is known that almost every point

is an ω-Lebesgue point of f ∈ L1(T
d) and if f is continuous at x, then x is also an

ω-Lebesgue point of f . We introduce a new maximal function Mωf and show that

the Cesàro means σα
nf of f ∈ L1(T

d) can be estimated by Mωf pointwise. Next

we prove that if Mωf(x) is finite and x is an ω-Lebesgue point of f ∈ L1(T
d), then

lim
n→∞

σα
nf(x) = f(x), (1.1)

whenever n is in a cone. This implies the convergence of the Cesàro means almost

everywhere.

After I have submitted the paper, the reviewer called my attention to the

paper of Gabisoniya [3]. There he introduced another concept of Lebesgue points for

functions of two variables. However, not every continuity point of f is a Lebesgue

point of f (see Remark 1). This means that our definition is different from the

definition of Gabisoniya. In the two-dimensional case, he proved in [3] that almost

every point is a Lebesgue point of f ∈ L1(T
2) as well as the convergence (1.1).

2. Maximal functions and Lebesgue points

Let us fix d ∈ N. For a set Y �= ∅, let Y
d be its Cartesian product Y × · · · × Y

taken with itself d times. We briefly write Lω
p (X

d) (ω ≥ 0) instead of the weighted

Lebesgue space Lω
p (X

d, λ) equipped with the norm

‖f‖Lω

p
(Xd) :=

(∫
Xd

|f(x)(1 + |x|)ω|p dx
)1/p

(1 ≤ p < ∞),

with the usual modification for p = ∞ and with X = R or X = T, where λ is the

Lebesgue measure and T = [−π, π] is the torus. If ω = 0, then we get back the

usual Lp(R
d) spaces. Clearly, Lp(R

d) ⊃ Lω
p (R

d).
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For some ω > 0 and f ∈ L1(T
d), we define the Hardy–Littlewood maximal

function

Mωf(x) := sup
i∈Nd, h>0

2−ω‖i‖1

(2h)d2‖i‖1

∫ 2i1h

−2i1h

· · ·

∫ 2idh

−2idh

|f(x− t)| dt.

If ω = 0, we obtain the strong Hardy–Littlewood maximal function. Moreover, if

ω = 0 and i1 = · · · = id, then the usual Hardy–Littlewood maximal function.

In [22], we proved the next two inequalities:

sup
ρ>0

ρλ(Mωf > ρ) ≤ C‖f‖L1(Td) (f ∈ L1(T
d)) (2.1)

and, for 1 < p ≤ ∞,

‖Mωf‖p ≤ Cp‖f‖Lp(Td) (f ∈ Lp(T
d)). (2.2)

In this paper the constants C and Cp may vary from line to line.

Based on the definition of Mω, let

Uω
r f(x) := sup

i∈Nd, h>0

2ikh<r, k=1,...,d

2−ω‖i‖1

(2h)d2‖i‖1

∫ 2i1h

−2i1h

· · ·

∫ 2idh

−2idh

|f(x− t)− f(x)| dt.

For ω > 0, a point x ∈ T
d is called an ω-Lebesgue point of f ∈ L1(T

d) if

lim
r→0

Uω
r f(x) = 0.

Different versions of Lebesgue points were considered in Gabisoniya [3] and Skopina

[18,19] for two dimensions. If ω = 0, then this definition is equivalent to the strong

Lebesgue points, i.e.,

lim
h→0

1∏d

j=1(2hj)

∫ h1

−h1

· · ·

∫ hd

−hd

|f(x− t)− f(x)| dt = 0.

If in addition i1 = · · · = id, then it is equivalent to the usual Lebesgue points, i.e.,

lim
h→0

1

(2h)d

∫ h

−h

· · ·

∫ h

−h

|f(x− t)− f(x)| dt = 0.

For the concept of the usual Lebesgue and strong Lebesgue points, see, e.g., Fe-

ichtinger and Weisz [1] and the references therein. Every ω2-Lebesgue point is an

ω1-Lebesgue point (0 < ω2 < ω1 < ∞), because Uω1
r f ≤ Uω2

r f . Obviously, if f is

continuous at x, then x is an ω-Lebesgue point of f . The next theorem was proved

in [22].

Theorem 1. For ω > 0, almost every point x ∈ T
d is an ω-Lebesgue point of

f ∈ L1(T
d).
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3. Restricted Cesàro summability

For α �= −1,−2, . . . and n ∈ N, let

Aα
n :=

(
n+ α

n

)
=

(α+ 1)(α+ 2) · · · (α+ n)

n!
.

Then Aα
0 = 1, A0

n = 1 and A1
n = n + 1 (n ∈ N). The kth Fourier coefficient of a

d-dimensional integrable function f ∈ L1(T
d) is defined by

f̂(k) =
1

(2π)d

∫
Td

f(x)e−ık·x dx (k ∈ Z
d),

where u · x :=
∑d

k=1 ukxk for x = (x1, . . . , xd) ∈ R
d and u = (u1, . . . , ud) ∈ R

d. To

obtain better convergence properties, we consider Cesàro summability.

Let f ∈ L1(T
d), n = (n1, . . . , nd) ∈ N

d and α = (α1, . . . , αd) ∈ R
d
+. The nth

rectangular Cesàro means σα
nf of the Fourier series of f and the Cesàro kernel Kα

n

are introduced by

σα
nf(x) :=

1∏d

i=1 A
α
ni−1

∑
|k1|≤n1

· · ·
∑

|kd|≤nd

d∏
i=1

Aα
ni−1−|ki|

f̂(k)eık·x

and

Kα
n (t) :=

1∏d

i=1 A
α
ni−1

∑
|k1|≤n1

· · ·
∑

|kd|≤nd

d∏
i=1

Aα
ni−1−|ki|

eık·t,

respectively. It is easy to see that

σα
nf(x) =

1

(2π)d

∫
Td

f(x− t)Kα
n (t) dt and Kα

n = Kα1
n1

⊗ · · · ⊗Kαd

nd
,

where the functions Kαi

ni
are the one-dimensional Cesàro or (C,α) kernels. If αi = 1

for all i, then we get back the rectangular Fejér means.

For the one-dimensional Cesàro kernels, it is known (see Zygmund [24]) that

Kα
n (t) ≤ Cmin

(
n,

1

nα|t|α+1

)
(3.1)

and supn∈N

∫
T
|Kα

n | dλ ≤ C, where n ∈ N, 0 < α ≤ 1 and t ∈ (−π, π). In this paper,

we study the convergence of σα
nf over a cone and the corresponding restricted

maximal operator

σα
�
f := sup

n∈Rd

τ

|σα
nf |,

where τ ≥ 1 is fixed and the cone is given by

R
d
τ := {x ∈ R

d
+ : τ−1 ≤ xi/xj ≤ τ, i, j = 1, . . . , d}.
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4. Restricted convergence at Lebesgue points

For ω ≥ 0, the weighted Herz space Eω
∞(Rd) contains all functions f for which

‖f‖Eω

∞
:=

∞∑
k1=0

· · ·
∞∑

kd=0

2(k1+···+kd)(ω+1)‖f1Qk
‖∞ < ∞,

where Qk := Qk1
× · · · ×Qkd

(k ∈ N
d) and

Qi = {x ∈ R : 2i−1π ≤ |x| < 2iπ} (i ∈ N+), Q0 := (−π, π).

If ω = 0, we get back the usual Herz spaces. Obviously, L1(R
d) ⊃ Lω

1 (R
d) ⊃ Eω

∞(Rd).

In the next proofs, we will use the functions

hαj (t) := min{1, |t|−αj−1} (t ∈ R) and hα := hα1 ⊗ · · · ⊗ hαd .

We get from (3.1) that

1

nj

∣∣∣(1(−π,π)K
αj

nj

)( t

nj

)∣∣∣ ≤ C

nj

min
{
nj ,

nj

|t|αj+1

}
= Chαj (t) (t ∈ R). (4.1)

It is easy to see that

‖hα‖Eω

∞
(Rd) =

d∏
j=1

‖hαj‖Eω

∞
(R) ≤ Cα, (4.2)

whenever ω < min(αj , j = 1, . . . , d). First we will estimate pointwise the restricted

maximal operator by the maximal function Mωf .

Theorem 2. Suppose that 0 < ω < αj ≤ 1 for all j = 1, . . . , d. For all f ∈ L1(T
d)

and x ∈ T
d, σα

�
f(x) ≤ CMωf(x).

Proof. Observe that

|σα
nf(x)| =

1

(2π)d

∣∣∣ ∫
Rd

f(x− t)
(
1(−π,π)dK

α
n

)
(t) dt

∣∣∣
=

1

(2π)d

∞∑
k1=0

· · ·

∞∑
kd=0

∫
Qk1

(n1)

· · ·

∫
Qk

d
(nd)

|f(x− t)||(1(−π,π)dK
α
n )(t)| dt,

where Qi(nj) := {x ∈ R : 2i−1π/nj ≤ |x| < 2iπ/nj} (i ∈ N+) and Q0(nj) :=

(−π/nj , π/nj). Then

|σα
nf(x)| ≤

1

(2π)d

∞∑
k1=0

· · ·

∞∑
kd=0

∫
Qk1

(n1)

· · ·

∫
Qk

d
(nd)

|f(x− t)| dt×

× sup
t∈Qk1

(n1)×···×Qk
d
(nd)

∣∣(1(−π,π)dK
α
n

)
(t)

∣∣
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=
1

(2π)d

∞∑
k1=0

· · ·

∞∑
kd=0

∫
Qk1

(n1)

· · ·

∫
Qk

d
(nd)

|f(x− t)| dt×

× sup
t∈Qk1

×···×Qk
d

∣∣∣ (1(−π,π)dK
α
n

) ( t1
n1

, . . . ,
td
nd

)∣∣∣.
Choose s ∈ N such that 2s−1 < τ ≤ 2s. Using the fact n ∈ R

d
τ and (4.1), we

conclude

|σα
nf(x)| ≤

∏d

j=1 nj

(2π)d

∞∑
k1=0

· · ·

∞∑
kd=0

∫ 2k1+sπ/n1

−2k1+sπ/n1

· · ·

∫ 2kd
+sπ/n1

−2kd
+sπ/n1

|f(x− t)| dt×

× ‖hα1Qk
‖∞.

(4.3)

Consequently,

|σα
nf(x)| ≤ C

∞∑
k1=0

· · ·

∞∑
kd=0

2(k1+···+kd)(1+ω)Mωf(x) sup
t∈Qk

|hα(t)|

= C ‖hα‖Eω

∞
(Rd) M

ωf(x).

Inequality (4.2) finishes the proof.

Inequalities (2.1) and (2.2) imply

Corollary 1. Suppose that 0 < ω < αj ≤ 1 for all j = 1, . . . , d. If f ∈ L1(T
d), then

sup
ρ>0

ρλ(σα
�
f > ρ) ≤ C ‖f‖L1(Td) .

If 1 < p ≤ ∞ and f ∈ Lp(T
d), then

‖σα
�
f‖p ≤ Cp‖f‖Lp(Td).

The usual density argument due to Marcinkiewicz and Zygmund [12] implies

Corollary 2. Suppose that 0 < ω < αj ≤ 1 for all j = 1, . . . , d. If f ∈ L1(T
d), then

lim
n→∞, n∈Rd

τ

σα
nf = f a.e.

Now we partly characterize the set of convergence.

Theorem 3. Suppose that 0 < ω < αj ≤ 1 for all j = 1, . . . , d. If Mωf(x) is finite

and x is an ω-Lebesgue point of f ∈ L1(T
d), then

lim
n→∞, n∈Rd

τ

σα
nf(x) = f(x).
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Proof. Since
1

(2π)d

∫
Td

Kα
n (t) dt = 1,

we have

|σα
nf(x)− f(x)| ≤

1

(2π)d

∫
Rd

|f(x− t)− f(x)|
∣∣(1(−π,π)dK

α
n

)
(t)

∣∣ dt
= A1(x) +A2(x),

where

A1(x) :=
1

(2π)d

r0∑
k1=0

· · ·

r0∑
kd=0

∫
Qk1

(n1)

· · ·

∫
Qk

d
(nd)

|f(x− t)− f(x)||(1(−π,π)dK
α
n )(t)| dt,

and

A2(x) :=
1

(2π)d

∑
π1,...,πd

∞∑
kπ1

=r0+1

· · ·

∞∑
kπ

j
=r0+1

∞∑
kπ

j+1
=0

· · ·
∞∑

kπ
d
=0∫

Qk1
(n1)

· · ·

∫
Qk

d
(nd)

|f(x− t)− f(x)|
∣∣(1(−π,π)dK

α
n

)
(t)

∣∣ dt,
where {π1, . . . , πd} is a permutation of {1, . . . , d} and 1 ≤ j ≤ d.

Since x is an ω-Lebesgue point of f , we can fix a number r < 1 such that

Uω
r2sπf(x) < ε, where 2s−1 < τ ≤ 2s. Let us denote by r0 the largest number i,

for which r/2 ≤ 2i/n1 < r. Observe that n ∈ R
d
τ and kj ≤ r0 imply 2kj+s/n1 ≤

2r0+s/n1 < r2s (j = 1, . . . , d). Denoting

G(u) :=

∫ u1

−u1

· · ·

∫ ud

−ud

|f(x− t)− f(x)| dt (u ∈ R
d
+),

we get that

2−ω(k1+···+kd)nd
1

G(2k1+sπ/n1, . . . , 2
kd+sπ/n1)

(2π)d2sd2k1+···+kd

≤ Uω
r2sπf(x).

As in (4.3),

A1(x) ≤ C

r0∑
k1=0

· · ·

r0∑
kd=0

∫ 2k1+sπ/n1

−2k1+sπ/n1

· · ·

∫ 2kd
+sπ/n1

−2kd
+sπ/n1

|f(x− t)− f(x)| dt×

×
( d∏

j=1

nj

)
‖hα1Qk

‖∞
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≤ C

r0∑
k1=0

· · ·

r0∑
kd=0

G(2k1+sπ/n1, . . . , 2
kd+sπ/n1)

( d∏
j=1

nj

)
‖hα1Qk

‖∞

≤ C

r0∑
k1=0

· · ·

r0∑
kd=0

2(k1+···+kd)(ω+1)n−d
1 Uω

r2sπf(x)
( d∏

j=1

nj

)
‖hα1Qk

‖∞.

Since n ∈ R
d
τ , we conclude A1(x) ≤ Cε ‖hα‖Eω

∞
(Rd) ≤ Cαε. Similarly,

A2(x) ≤
1

(2π)d

∑
π1,...,πd

∞∑
kπ1=r0+1

· · ·

∞∑
kπ

j
=r0+1

∞∑
kπ

j+1
=0

· · ·

∞∑
kπ

d
=0∫ 2k1+sπ/n1

−2k1+sπ/n1

· · ·

∫ 2kd
+sπ/n1

−2kd
+sπ/n1

|f(x− t)− f(x)| dt
( d∏

j=1

nj

)
‖hα1Qk

‖∞

and

2−ω(k1+···+kd)nd
1

G(2k1+sπ/n1, . . . , 2
kd+sπ/n1)

(2π)d2sd2k1+···+kd

≤ Mωf(x) + |f(x)|.

Hence

A2(x) ≤ C
∑

π1,...,πd

∞∑
kπ1=r0+1

. . .

∞∑
kπ

j
=r0+1

∞∑
kπ

j+1
=0

. . .

∞∑
kπ

d
=0

2(k1+···+kd)(ω+1) ‖hα1Qk
‖
∞

(Mωf(x) + |f(x)|) .

Since Mωf(x) is finite and r0 → ∞ as n1 → ∞, we conclude that A2(x) → 0 as

n → ∞, which finishes the proof.

A different version of this result was shown in Gabisoniya [3] for two dimensions.

Similar theorems are proved by the author [23] for the θ-means generated by a single

function θ. However, those results and proofs do not contain the results for Cesàro

means. If f is continuous at a point x, then x is also an ω-Lebesgue point. So we

obtain

Corollary 3. Suppose that 0 < ω < αj ≤ 1 for all j = 1, . . . , d. If Mωf(x) is finite

and f ∈ L1(T
d) is continuous at a point x, then

lim
n→∞, n∈Rd

τ

σα
nf(x) = f(x).

The condition that Mωf(x) is finite is important even if f is continuous at x.

Indeed, for two dimensions let

f(x1, x2) :=

{
0 if x ∈ [−π, π]× [−ε, ε];

|x1|
−δ if x ∈ [−π, π]2 \ ([−π, π]× [−ε, ε]).

(4.4)
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Let ε > 0 be small enough, ω < δ < 1, i1 = 0 and h = 2−i2 . Then f is

obviously continuous at 0, integrable and

Mωf(0) ≥ sup
i2∈N

2−ω(i1+i2)

(2h)22i1+i2

∫ 2i1h

−2i1h

∫ 2i2h

−2i2h

f(t) dt = sup
i2∈N

2−ωi2

4 · 2−i2

∫ 2−i2

−2−i2

∫ 1

−1

f(t) dt

≥
1

2(1− δ)
sup
i2∈N

2(δ−ω)i2 = ∞.

Remark 1. In the two-dimensional case Gabisoniya [3] introduced basically the

following concept of Lebesgue points. Let

Mω
h f(x) := sup

0<i1≤3ln2/h

0<i2≤3ln2/h

2−ω(i1+i2)

(2h)22i1+i2

∫ 2i1h

−2i1h

∫ 2i2h

−2i2h

|f(x− t)− f(x)| dt.

x is called a Lebesgue point of f if

lim
h→0

Mω
h f(x) = 0. (4.5)

Actually, the concept of Lebesgue points used by Gabisoniya [3] is equivalent to

this definition. For two dimensions, he proved that almost every point is a Lebesgue

point of f as well as Theorem 3, whenever f ∈ L1(T
2). However, in contrast to our

definition of ω-Lebesgue points, the definition (4.5) does not hold for all continuity

points of f . Indeed, let ε > 0 be small enough, ω < δ < 1, i1 = 0 and h = 2−i2 and

consider the function (4.4) as before. Then

Mω
h f(0) ≥

2−ω(i1+i2)

(2h)22i1+i2

∫ 2i1h

−2i1h

∫ 2i2h

−2i2h

f(t) dt ≥
1

2(1− δ)
2(δ−ω)i2

and so limh→0 M
ω
h f(0) = ∞.
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