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Abstract. In this paper, we consider Rota–Baxter operators on involutive asso-

ciative algebras. We define cohomology for Rota–Baxter operators on involutive

algebras that governs the formal deformation of the operator. This cohomology

can be seen as the Hochschild cohomology of a certain involutive associative

algebra with coefficients in a suitable involutive bimodule. We also relate this

cohomology with the cohomology of involutive dendriform algebras. Finally, we

show that the standard Fard–Guo construction of the functor from the category

of dendriform algebras to the category of Rota–Baxter algebras restricts to the

involutive case.

1. Introduction

Rota–Baxter operators are an algebraic abstraction of the integral operator that was

first introduced by Baxter in his study of the fluctuation theory in probability [2].

The study of Rota–Baxter operators was further developed by Rota [16] and Cartier

[4] in relationship with combinatorics. They found important applications in Connes–

Kreimer’s algebraic approach of the renormalization of quantum field theory [5].

Rota–Baxter operators are also useful to study splitting of algebras. Namely, Rota–

Baxter operators give rise to dendriform algebras which are splitting of associative

algebras [1,14]. In [10] Ebrahimi-Fard and Guo constructs the universal enveloping

Rota–Baxter algebra of a dendriform algebra in view of the standard universal

enveloping algebra of a Lie algebra. The cohomology and deformation problem of

Article history: received 16.6.2020, accepted 21.5.2021.

AMS Subject Classification: 16E40, 16S80, 16W99.

Key words and phrases: involutive algebras, Hochschild cohomology, Rota–Baxter operators, de-

formations, dendriform algebras.



Acta Scientiarum Mathematicarum 87:3–4 (2021) c© Bolyai Institute, University of Szeged

350 A. Das

associative Rota–Baxter operators (more generally of relative Rota–Baxter operators

[17]) has been recently studied by the author in [7].

On the other hand, classical algebras such as associative algebras, A∞-algebras

and L∞-algebras equipped with involutions are studied in the last few years. An

involutive associative algebra is an associative algebra A together with a linear map

∗ : A → A, a �→ a∗ satisfying a∗∗ = a and (ab)∗ = b∗a∗, for a, b ∈ A. Such involutive

algebras first appeared in mathematical physics in the context of an unoriented

version of topological field theory [6]. Involutive algebras often appear in the stan-

dard constructions of algebras arising in geometric contexts, when the underlying

geometric object has an involution [3,6]. For example, the de Rham cohomology of

a manifold with an involution carries an involutive A∞-algebra structure [15]. In [3]

Braun has defined Hochschild cohomology of involutive associative algebras. An in-

terpretation of Braun’s Hochschild cohomology is given by the authors in [11] using

involutive Bar complex which led them to also introduce Hochschild homology of

involutive associative algebras. Recently, with Saha, the present author gave a more

explicit description of Hochschild cohomology of involutive associative algebras [9].

More precisely, they defined involutive dendriform algebras, their cohomology and

found relations with the Hochschild cohomology of involutive associative algebras.

Our aim in this paper is to study (relative) Rota–Baxter operators on involutive

associative algebras. Let (A, ∗) be an involutive associative algebra and (M, ∗) be

an involutive A-bimodule. A linear map T : M → A is said to be a relative Rota–

Baxter operator on A with respect to the involutive A-bimodule M if T satisfies

T (u∗) = T (u)∗ and the following identity:

T (u)T (v) = T (uT (v) + T (u)v), for u, v ∈ M.

From the last identity, it follows that T is a relative Rota–Baxter operator on the

ordinary associative algebra A with respect to the ordinary A-bimodule M . Here

the word ‘ordinary’ means that we are not considering the involution. By definition,

a Rota–Baxter operator on an involutive associative algebra A is a relative Rota–

Baxter operator on the involutive algebra A with respect to itself. A (relative)

Rota–Baxter operator on an involutive algebra induces an involutive dendriform

algebra structure on the domain of the operator. Using Gerstenhaber’s bracket on

involutive Hochschild cochains and Voronov’s derived bracket [18], in Section 2, we

construct a graded Lie algebra whose Maurer–Cartan elements are relative Rota–

Baxter operators. Thus, a relative Rota–Baxter operator T on an involutive algebra

A with respect to an involutive A-bimodule M induces cohomology, called the

cohomology of T .

In Section 3, we show that the cohomology of T introduced in the previous
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section can be seen as the Hochschild cohomology of an involutive associative algebra

with coefficients in a suitable involutive bimodule. For a relative Rota–Baxter

operator T on an involutive associative algebra A with respect to an involutive

bimodule M , we show that the ordinary cohomology of T (viewed as a relative

Rota–Baxter operator on the ordinary algebra A with respect to the ordinary

bimodule M) has a direct sum decomposition of the involutive cohomology of T

and a skew-factor. Finally, we obtain a morphism from the cohomology of a relative

Rota–Baxter operator T and the cohomology of the induced involutive dendriform

algebra.

The classical deformation theory of Gerstenhaber [13] has been extended to

associative Rota–Baxter operators in [7]. In Section 4, we study deformations of a

relative Rota–Baxter operator T on an involutive associative algebra with respect to

an involutive bimodule. Our main results in this section are similar to the results of

[7]. We show that the linear term in a formal deformation of T is a 1-cocycle in the

cohomology of T , called the infinitesimal of the deformation. Moreover, equivalent

deformations have cohomologous infinitesimals. Given a finite order deformation of

T , we associate a 2-cocycle in the cohomology complex of T , called the obstruction 2-

cocycle. When the corresponding cohomology class vanishes, the given deformation

extends to deformation of next order.

Finally, in Section 5, we first recall the construction of the universal enveloping

Rota–Baxter algebra of a dendriform algebra. Then we show that this construction

restricts to the corresponding algebras equipped with involutions.

All vector spaces, linear maps and tensor products are over a field K of char-

acteristic 0.

2. (Relative) Rota–Baxter operators on involutive associative

algebras

In this section, we introduce relative Rota–Baxter operators on involutive associative

algebras with respect to an involutive bimodule. A particular case is given by Rota–

Baxter operators on involutive algebra. We construct a graded Lie algebra whose

Maurer–Cartan elements are relative Rota–Baxter operators.

2.1. Involutive associative algebras and Hochschild cohomology

An involution on a vector space V is a linear map ∗ : V → V, v �→ v∗ satisfying

v∗∗ = v, for all v ∈ V . Thus, an involution on V is an invertible linear map on V

that equals its inverse.
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Definition 2.1. An involutive associative algebra is an associative algebra A together

with an involution ∗ : A → A that satisfies (ab)∗ = b∗a∗, for all a, b ∈ A.

A morphism between involutive associative algebras is a morphism between

underlying algebras preserving the involutions. Let A be an involutive associative

algebra. An involutive A-bimodule is an ordinary A-bimodule M together with an

involution ∗ : M → M that satisfies (au)∗ = u∗a∗ and (ua)∗ = a∗u∗, for a ∈ A,

u ∈ M .

In this case, the direct sum A ⊕M carries an involutive associative algebra

structure (called the semi-direct product) with the involution (a, u)∗ = (a∗, u∗) and

the product (a, u) · (b, v) = (ab, av + ub).

In the following, we recall the Hochschild cohomology of an involutive associa-

tive algebra A with coefficients in an involutive A-bimodule M . First consider the

ordinary Hochschild cochain complex {C•
Hoch(A,M), δHoch}, where Cn

Hoch(A,M) =

Hom(A⊗n,M) for n ≥ 0 and the differential δHoch : C
n
Hoch(A,M) → Cn+1

Hoch(A,M)

given by

(δHochf)(a1, . . . , an+1)

= a1f(a2, . . . , an+1) +

n∑
i=1

(−1)if(a1, . . . , ai−1, aiai+1, . . . , an+1)+

+ (−1)n+1f(a1, . . . , an)an+1.

For n ≥ 0, consider the collection of subspaces iCn
Hoch(A,M) ⊂ Cn

Hoch(A,M)

given by iC0
Hoch(A,M) = {m ∈ C0

Hoch(A,M) = M |m∗ = −m} and for n ≥ 1 by

iCn
Hoch(A,M) = {f ∈ Cn

Hoch(A,M)| f(a1, . . . , an)
∗ = (−1)

(n−1)(n−2)
2 f(a∗n, . . . , a

∗
1)}.

It has been shown in [9] that {iC•
Hoch(A,M), δHoch} is a subcomplex of the or-

dinary Hochschild complex and the cohomology of this subcomplex is called the

Hochschild cohomology of the involutive algebra A with coefficients in the involutive

bimodule M .

Next we show that the classical Gerstenhaber bracket on ordinary Hochschild

cochains passes onto the involutive Hochschild cochains. Let us first recall the

classical Gerstenhaber bracket [12]. For f ∈ Cm
Hoch(A,A) and g ∈ Cn

Hoch(A,A), the

Gerstenhaber bracket [f, g] ∈ Cm+n−1
Hoch (A,A) is given by

[f, g] =

m∑
i=1

(1−)(i−1)(n−1)f ◦i g − (−1)(m−1)(n−1)
n∑

i=1

(−1)(i−1)(m−1)g ◦i f, (2.1)

where (f◦ig)(a1, . . . , am+n−1)=f(a1, . . . , ai−1, g(ai, . . . , ai+n−1), ai+n, . . . , am+n−1).

With this notation, we have the following.
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Proposition 2.2. If f ∈ iCm
Hoch(A,A) and g ∈ iCn

Hoch(A,A), then

[f, g] ∈ iCm+n−1
Hoch (A,A).

Proof. First observe that

(f ◦i g)(a1, . . . , am+n−1)
∗ = (−1)

(m−1)(m−2)+(n−1)(n−2)
2 (f ◦m−i+1 g)(a

∗
m+n−1, . . . , a

∗
1).

Hence( m∑
i=1

(−1)(i−1)(n−1)f ◦i g
)
(a1, . . . , am+n−1)

∗

= (−1)
(m−1)(m−2)+(n−1)(n−2)

2

m∑
i=1

(−1)(i−1)(n−1) (f ◦m−i+1 g)(a
∗
m+n−1, . . . , a

∗
1)

= (−1)
(m−1)(m−2)+(n−1)(n−2)

2 +(m−1)(n−1)×

×
m∑
i=1

(−1)(m−i)(n−1) (f ◦m−i+1 g)(a
∗
m+n−1, . . . , a

∗
1).

Therefore,

[f, g](a1, . . . , am+n−1)
∗

= (−1)
(m−1)(m−2)+(n−1)(n−2)

2 +(m−1)(n−1) [f, g](a∗m+n−1, . . . , a
∗
1)

= (−1)
(m+n−2)(m+n−3)

2 [f, g](a∗m+n−1, . . . , a
∗
1).

This shows that [f, g] ∈ iCm+n−1
Hoch (A,A).

2.2. Relative Rota–Baxter operators

Definition 2.3. Let A be an associative algebra. A linear map R : A → A is a

Rota–Baxter operator on A if R satisfies

R(a)R(b) = R(aR(b) +R(a)b), for a, b ∈ A. (2.2)

If A is an involutive associative algebra, then a linear map R : A → A is said

to be a Rota–Baxter operator on A if R(a∗) = R(a)∗ and satisfies (2.2).

Definition 2.4. Let A be an involutive associative algebra and M be an involutive

A-bimodule. A linear map T : M → A is called a relative Rota–Baxter operator on

A with respect to the involutive A-bimodule M if T satisfies T (u∗) = T (u)∗ and

T (u)T (v) = T (uT (v) + T (u)v), for u, v ∈ M.
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They are also called involutive relative Rota–Baxter operators. Thus, it follows

that a Rota–Baxter operator on an involutive associative algebra A is a relative

Rota–Baxter operator on A with respect to the involutive bimodule A itself.

Proposition 2.5. Let A be an involutive associative algebra and M be an involutive

A-bimodule. A linear map T : M → A is a relative Rota–Baxter operator on A with

respect to the bimodule M if and only if the graph of T , Gr(T ) = {(Tu, u)| u ∈ M},

is an involutive subalgebra of the semi-direct product A⊕M .

Let T (resp. T ′) be a relative Rota–Baxter operator on an involutive associative

algebra A with respect to an involutive A-bimodule M (resp. on an involutive

associative algebra A′ with respect to an involutive A′-bimodule M ′).

Definition 2.6. A morphism from T to T ′ consists of a pair (φ, ψ) in which φ : A →

A′ is an involutive algebra morphism and ψ : M → M ′ is a linear map satisfying

ψ(u∗) = ψ(u)∗ and

T ′ ◦ ψ = φ ◦ T, ψ(au) = φ(a)ψ(u) and ψ(ua) = ψ(u)φ(a),

for all a ∈ A and u ∈ M . A morphism (φ, ψ) is called an isomorphism if φ and ψ

are both linear isomorphisms.

In [1] Aguiar showed that a (relative) Rota–Baxter operator induces a dendri-

form structure. Here we observe the corresponding result in the involutive case.

Definition 2.7. A dendriform algebra is a vector space D together with bilinear

operations ≺,� : D ⊗D → D satisfying the following three identities:

(a ≺ b) ≺ c = a ≺ (b ≺ c+ b � c), (a � b) ≺ c = a � (b ≺ c),

(a ≺ b+ a � b) � c = a � (b � c),

for all a, b, c ∈ D. A dendriform algebra as above may be denoted by the triple

(D,≺,�).

An involutive dendriform algebra is a dendriform algebra (D,≺,�) together

with an involution ∗ : D → D that satisfies (a ≺ b)∗ = b∗ � a∗ (equivalently,

(a � b)∗ = b∗ ≺ a∗), for all a, b ∈ D.

Proposition 2.8. Let T be a relative Rota–Baxter operator on an involutive asso-

ciative algebra A with respect to an involutive A-module M . Then M carries an

involutive dendriform algebra structure with products

u ≺ v = uT (v) and u � v = T (u)v, for u, v ∈ M.
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2.3. Gauge transformations

Let A be an involutive associative algebra and M be an involutive A-bimodule. Let

T : M → A be a relative Rota–Baxter operator. Consider the involutive subalgebra

Gr(T ) ⊂ A⊕M of the semi-direct product.

For any involutive 1-cochain B ∈ iC1
Hoch(A,M), we consider the deformed

subspace

τB(Gr(T )) = {(Tu, u+B(Tu))| u ∈ M} ⊂ A⊕M.

Lemma 2.9. If B ∈ iC1
Hoch(A,M) is an involutive Hochschild 1-cocycle then the

subspace τB(Gr(T )) ⊂ A⊕M is an involutive subalgebra of the semi-direct product

A⊕M .

Proof. For any u, v ∈ M , we have

(Tu, u+B(Tu)) · (Tv, v +B(Tv))

=
(
T (u)T (v), T (u)v + uT (v) + T (u)(B(Tv)) + (B(Tu))T (v)

)
=

(
T (u)T (v), T (u)v + uT (v) +B(T (u)T (v))

)
(since B is a 1-cocycle).

This is in τB(Gr(T )) as T is a relative Rota–Baxter operator. Finally, this is an

involutive subspace as B is an involutive 1-cochain.

We now ask the question whether the involutive subalgebra τB(Gr(T )) is the

graph of a new involutive relative Rota–Baxter operator. We observe that if the

linear map idM + B ◦ T : M → M is invertible, then τB(Gr(T )) is the graph of a

linear map T ◦ (idM + B ◦ T )−1 : M → A. In such a case, by Proposition 2.5, the

linear map T ◦ (idM +B ◦T )−1 is a relative Rota–Baxter operator on the involutive

algebra A with respect to the involutive bimodule M . The relative Rota–Baxter

operator T ◦ (idM + B ◦ T )−1 is called the gauge transformation of T associated

with B.

2.4. Maurer–Cartan characterization and cohomology

In this subsection, we first recall from [7] that ordinary relative Rota–Baxter oper-

ators are Maurer–Cartan elements in a suitable graded Lie algebra g. Then we will

show that involutive relative Rota–Baxter operators are Maurer–Cartan elements

in a suitable graded Lie subalgebra of g.

Let A be an ordinary associative algebra with product μ and M be

an A-bimodule with left and right A actions l, r. Then the graded space
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⊕
n≥0 Hom(M⊗n, A) carries a graded Lie bracket defined by Voronov’s derived

bracket

�P,Q� := (−1)m[[μ+ l + r, P ], Q], (2.3)

for P ∈ Hom(M⊗m, A), Q ∈ Hom(M⊗n, A). Here μ+ l+ r can be considered as an

element in Hom((A⊕M)⊗2, A⊕M). Similarly, P can be considered as an element

in Hom((A⊕M)⊗m, A⊕M) and the same for Q. Finally, the bracket [ , ] on the

right-hand side of (2.3) is the Gerstenhaber’s bracket (2.1) on multilinear maps on

the vector space A⊕M . Explicitly, the bracket (2.3) is given by

�P ,Q�(u1, . . . , um+n) (2.4)

=
m∑
i=1

(−1)(i−1)nP (u1, . . . , ui−1, Q(ui, . . . , ui+n−1)ui+n, . . . , um+n)−

−
m∑
i=1

(−1)inP (u1, . . . , ui−1, uiQ(ui+1, . . . , ui+n), ui+n+1, . . . , um+n)−

− (−1)mn

{ n∑
i=1

(−1)(i−1)m Q(u1, . . . , ui−1, P (ui, . . . , ui+m−1)ui+m, . . . , um+n)−

−
n∑

i=1

(−1)im Q(u1, . . . , ui−1, uiP (ui+1, . . . , ui+m), ui+m+1, . . . , um+n)

}
+

+ (−1)mn
[
P (u1, . . . , um)Q(um+1, . . . , um+n)−

− (−1)mn Q(u1, . . . , un)P (un+1, . . . , um+n)
]
,

�P , a�(u1, . . . , um)

=
m∑
i=1

P (u1, . . . , ui−1, aui − uia, ui+1, . . . , um) + P (u1, . . . , um)a− aP (u1, . . . , um),

and �a, b� = ab − ba, for P ∈ Hom(M⊗m, A), Q ∈ Hom(M⊗n, A), a, b ∈ A and

u1, . . . , um+n ∈ M .

It is easy from the above bracket that a linear map T ∈ Hom(M,A) is an ordi-

nary relative Rota–Baxter operator on A with respect to the A-bimodule M if and

only if T is a Maurer–Cartan element in the graded Lie algebra defined above. The

cohomology induced from the Maurer–Cartan element T is called the cohomology

of the relative Rota–Baxter operator T , and they are denoted by H•
T (M,A).

Next, let A be an involutive associative algebra and M be an involu-

tive A-bimodule. Consider the graded space of involutive multilinear maps

⊕n≥0iHom(M⊗n, A), where iHom(M⊗0, A) = iA = {a ∈ A|a∗ = −a} and for
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n ≥ 1,

iHom(M⊗n, A)

= {f ∈ Hom(M⊗n, A)| f(u1, . . . , un)
∗ = (−1)

(n−1)(n−2)
2 f(u∗

n, . . . , u
∗
1)}.

Since involutive multilinear maps are closed under Gerstenhaber’s bracket, it

follows that the bracket (2.3) restricts to the graded subspace ⊕n≥0iHom(M⊗n, A)

by the same formula as (2.4). It follows that a linear map T : M → A is an involutive

relative Rota–Baxter operator if and only if T ∈ iHom(M,A) is a Maurer–Cartan

element in the graded Lie algebra (⊕n≥0iHom(M⊗n, A), � , �).

Thus, an involutive relative Rota–Baxter operator T induces a degree 1 dif-

ferential dT = �T, � on the graded space ⊕n≥0iHom(M⊗n, A). The corresponding

cohomology groups are called the cohomology of the involutive relative Rota–Baxter

operator T , and they are denoted by iH•
T (M,A).

3. Some properties of the cohomology

In this section, we first show that the cohomology of an involutive relative Rota–

Baxter operator can be seen as the Hochschild cohomology of an involutive asso-

ciative algebra. We also obtain a splitting theorem of the ordinary cohomology

of a relative Rota–Baxter operator on an involutive associative algebra. Finally,

we relate the cohomology of an involutive relative Rota–Baxter operator to the

cohomology of the corresponding involutive dendriform algebra.

3.1. Cohomology as involutive Hochschild cohomology

Let T : M → A be a relative Rota–Baxter operator on an involutive associative

algebra A with respect to the involutive A-bimodule M . Then, by Proposition 2.8,

M carries an involutive dendriform algebra structure. Hence M has an involutive

associative algebra structure with product

u� v = uT (v) + T (u)v, for u, v ∈ M.

The following lemma is a generalization of [17] in the involutive context.

Lemma 3.1. Let T : M → A be a relative Rota–Baxter operator on an involutive

associative algebra A with respect to the involutive A-bimodule M . Then the maps

lT : M ⊗A → A, (u, a) �→ T (u)a− T (ua),

rT : A⊗M → A, (a, u) �→ aT (u)− T (au)

define an involutive M -bimodule structure on A.
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Proof. In [17] it has been proved that the maps lT and rT define an M -bimodule

structure on A. Thus, we need to verify the compatibility of involution and the

maps lT , rT . We have

lT (u, a)
∗ = a∗T (u)∗ − T ((ua)∗) = a∗T (u∗)− T (a∗u∗) = rT (a

∗, u∗).

Similarly, rT (a, u)
∗ = lT (u

∗, a∗). Hence the proof.

It follows from the above lemma that we may consider the Hochschild cochain

complex of the involutive associative algebra M with coefficients in the involutive M -

bimodule A. More precisely, we consider the cochain complex {iC•
Hoch(M,A), δTHoch},

where iC0
Hoch(M,A) = {a ∈ A|a∗ = −a} and, for n ≥ 1,

iCn
Hoch(M,A) =

{
f : M⊗n → A| f(u1, . . . , un)

∗ = (−1)
(n−1)(n−2)

2 f(u∗
n, . . . , u

∗
1)
}
,

and the differential δTHoch : iC
n
Hoch(M,A) → iCn+1

Hoch(M,A) given by

(δTHochf)(u1, . . . , un+1) (3.1)

= lT (u1, f(u2, . . . , un+1)) +

n∑
i=1

(−1)if(u1, . . . , ui−1, ui � ui+1, . . . , un+1)+

+ (−1)n+1 rT (f(u1, . . . , un), un+1).

It has been shown in [7] that the coboundary operator dT induced from the Maurer–

Cartan element T and the coboundary operator (3.1) are related by

dT f = (−1)nδTHochf, for f ∈ iCn
Hoch(M,A) = iHom(M⊗n, A).

Hence we get that the cohomology of the involutive relative Rota–Baxter

operator T is isomorphic to the Hochschild cohomology of the involutive associative

algebra M with coefficients in the involutive M -bimodule A.

3.2. Splitting theorem

In [3] Braun has shown that for involutive associative algebras, the ordinary

Hochschild cohomology splits as a direct sum of involutive Hochschild cohomol-

ogy and a skew-factor. This splitting theorem has been explicitly described in a

recent paper by the present author [9] and further extended to the dendriform

context. Here we conclude a similar result for relative Rota–Baxter operators.

Let T : M → A be a relative Rota–Baxter operator on an involutive associative

algebra A with respect to an involutive A-bimodule M . For each n ≥ 0, define a

linear map Sn : Hom(M⊗n, A) → Hom(M⊗n, A) by

S0(a) = −a∗ and (SnP )(a1, . . . , an) = (−1)
(n−1)(n−2)

2 P (a∗n, . . . , a
∗
1)

∗, for n ≥ 1.
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Then we have (Sn)
2 = id. Therefore, the map Sn has eigenvalues ±1. Observe

that the eigenspace corresponding to the eigenvalue +1 is precisely given by

iHom(M⊗n, A). Denote the eigenspace corresponding to the eigenvalue −1 by

i−Hom(M⊗n, A). Then we have

Hom(M⊗n, A)∼= iHom(M⊗n, A)⊕i−Hom(M⊗n, A), f �→
(f+Snf

2
,
f−Snf

2

)
. (3.2)

It is easy to verify that {i−Hom(M⊗•, A), dT } is a subcomplex of the com-

plex {Hom(M⊗•, A), dT }. We denote the corresponding cohomology groups by

i−H
•
T (M,A). Note that the isomorphisms (3.2) preserve the corresponding differ-

entials on both sides. Hence we get the following.

Proposition 3.2. For an involutive relative Rota–Baxter operator T , the ordinary

cohomology of T splits as a direct sum H•
T (M,A) ∼= iH•

T (M,A)⊕ i−H
•
T (M,A).

3.3. Relation with the cohomology of involutive dendriform algebras

The cohomology of dendriform algebras was first defined by Loday [14] with trivial

coefficients and the operadic approach was given in [15]. An explicit description

of the cohomology was given in [8]. Here we require the cohomology of involutive

dendriform algebras given in [9].

Let Cn be the set of the first n natural numbers. For convenience, we denote

the elements of Cn by {[1], [2], . . . , [n]}. It has been shown in [8] that for any vector

space D, the collection of spaces

O(n) = Hom(K[Cn]⊗D⊗n, D), for n ≥ 1

forms a non-symmetric operad with partial compositions

(f ◦i g)([r]; a1, . . . , am+n−1)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f([r]; a1, . . . , ai−1, g([1] + · · ·+ [n]; ai, . . . , ai+n−1), . . . , am+n−1)

if 1 ≤ r ≤ i− 1

f([i]; a1, . . . , ai−1, g([r − i+ 1]; ai, . . . , ai+n−1), . . . , am+n−1)

if i ≤ r ≤ i+ n− 1

f([r − n+ 1]; a1, . . . , ai−1, g([1] + · · ·+ [n]; ai, . . . , ai+n−1), . . . , am+n−1)

if i+ n ≤ r ≤ m+ n− 1,

for f ∈ O(m), g ∈ O(n), 1 ≤ i ≤ m and [r] ∈ Cm+n−1. Therefore, there is a graded
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Lie bracket on the graded vector space O(•+ 1) = ⊕n≥0O(n+ 1) given by

�f, g� =
m+1∑
i=1

(−1)(i−1)nf ◦i g − (−1)mn

n+1∑
i=1

(−1)(i−1)mg ◦i f,

for f ∈ O(m + 1) and g ∈ O(n + 1). More generally, if (D,≺,�) is a dendriform

algebra, then the element π ∈ O(2) defined by

π([1]; a, b) = a ≺ b and π([2]; a, b) = a � b

satisfies �π, π� = 0, i.e. π defines a Maurer–Cartan element in the above graded

Lie algebra. Hence π induces a differential δπ : O(n) → O(n+ 1) given by δπ(f) :=

(−1)n−1�π, f�, for f ∈ O(n).

Let (D,≺,�, ∗) be an involutive dendriform algebra. We define

iCn
dend(D,D) = {f ∈ O(n)| f([r]; a1, . . . , an)

∗

= (−1)
(n−1)(n−2)

2 f([n− r + 1]; a∗n, . . . , a
∗
1)}, for n ≥ 1.

Then it has been shown in [9] that {iC•
dend(D,D), δπ} is a subcomplex of the

cochain complex {O(•), δπ}. The cohomology groups of this subcomplex are called

the cohomology of the involutive dendriform algebra (D,≺,�, ∗) and they are

denoted by iH•
dend(D,D).

Let T be a relative Rota–Baxter operator on an involutive associative algebra A

with respect to an involutive A-bimodule M . Consider the involutive dendriform al-

gebra structure on M . We denote by πT ∈ iC2
dend(M,M) the corresponding Maurer–

Cartan element. Define a collection of maps Θn : iHom(M⊗n, A) → iCn+1
dend(M,M)

by

Θn(P )([r];u1, u2, . . . , un+1) =

⎧⎪⎪⎨⎪⎪⎩
(−1)n+1 u1P (u2, . . . un+1) if r = 1,

0 if 2 ≤ r ≤ n,

P (u1, . . . , un)un+1 if r = n+ 1.

Note that Θn(P ) ∈ iCn+1
dend(M,M) as

Θn(P )([1];u1, . . . , un+1)
∗

= (−1)n+1P (u2, . . . , un+1)
∗u∗

1 = (−1)n+1(−1)
(n−1)(n−2)

2 P (u∗
n+1, . . . , u

∗
2)u

∗
1

= (−1)
n(n−1)

2 P (u∗
n+1, . . . , u

∗
2)u

∗
1 = (−1)

n(n−1)
2 Θn(P )([n+ 1];u∗

n+1, . . . , u
∗
1).

For 2 ≤ r ≤ n, we have

Θn(P )([r];u1, . . . , un+1)
∗ = 0 = Θn(P )([n− r + 2];u∗

n+1, . . . , u
∗
1).

With these notations, we have the following [7, Lemma 3.4].
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Lemma 3.3. The collection {Θn} of maps preserve the corresponding graded Lie

brackets, i.e. �Θm(P ),Θn(Q)� = Θm+n(�P,Q�).

Hence as a consequence, we get the following.

Proposition 3.4. Let T be a relative Rota–Baxter operator on an involutive asso-

ciative algebra A with respect to the involutive A-bimodule M . Then the collection

{Θn} of maps induces a morphism Θ∗ : iH
•
T (M,A) → iH•+1

dend(M,M) from the co-

homology of T to the cohomology of the involutive dendriform algebra structure

on M .

4. Deformations

In this section, we study formal deformations of relative Rota–Baxter operators on

involutive associative algebras from cohomological perspectives.

Let A be an involutive associative algebra and M be an involutive A-bimodule.

Consider the space A[[t]] of formal power series in t with coefficients from A. The

involution on A induces an involution on A[[t]] and the associative multiplication

on A induces an associative multiplication on A[[t]] by K[[t]]-bilinearity. With these

structures, A[[t]] is an involutive associative algebra. Moreover, the space M [[t]] can

be given the structure of an involutive A[[t]]-bimodule with the obvious left and

right actions.

Definition 4.1. Let T : M → A be a relative Rota–Baxter operator on the involutive

algebra A with respect to the involutive A-bimodule M . A formal one-parameter

deformation of T consists of a formal sum

Tt = T0 + tT1 + t2T2 + · · · ∈ Hom(M,A)[[t]]

in which T0 = T is such that as a K[[t]]-linear map Tt : M [[t]] → A[[t]] is a relative

Rota–Baxter operator on the involutive algebra A[[t]] with respect to the involutive

A[[t]]-bimodule M [[t]].

Thus, the following hold:

Tt(u
∗) = Tt(u)

∗ and Tt(u)Tt(v) = Tt(uTt(v) + Tt(u)v), for u, v ∈ M.

These conditions are equivalent to the following: for each k ≥ 0, we have

Tk(u
∗) = Tk(u)

∗ and
∑

i+j=k

Ti(u)Tj(v) = Ti(uTj(v) + Tj(u)v), for u, v ∈ M.
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For k = 1, we get T1(u
∗) = T1(u)

∗ and

T (u)T1(v) + T1(u)T (v) = T (uT1(v) + T1(u)v) + T1(uT (v) + T (u)v).

This says that T1 ∈ iHom(M,A) is a 1-cocycle in the cohomology of the involutive

relative Rota–Baxter operator T .

Definition 4.2. Two deformations Tt =
∑

i≥0 t
iTi and T ′

t =
∑

i≥0 t
iT ′

i of an involu-

tive relative Rota–Baxter operator T are said to be equivalent if there is an element

a ∈ A with a
∗ = −a and linear maps φj ∈ iHom(A,A), ψj ∈ iHom(M,M), for

j ≥ 2, such that(
φt = idA + t(adl

a
− adr

a
) +

∑
j≥2

tjφj , ψt = idM + t(la − ra) +
∑
j≥2

tjψj

)
defines a morphism of relative Rota–Baxter operators from Tt to T ′

t .

Hence, by Definition 2.6, the following conditions must hold: for all a, b ∈ A

and u ∈ M ,

φt(a)φt(b) = φt(ab), T ′
t ◦ ψt(u) = φt ◦ Tt(u), ψt(au) = φt(a)ψt(u)

and ψt(ua) = ψt(u)φt(a).

In the second equality, by equating coefficients of t from both sides, we get

T1(u)− T ′
1(u) = T (au− ua)− (aT (u)− T (u)a) = δTHoch(a)(u).

Summarizing the above discussions, we get the following.

Theorem 4.3. Let Tt =
∑

i≥0 t
iTi be a formal one-parameter deformation of an

involutive relative Rota–Baxter operator T . Then the linear term T1 is a 1-cocycle

in the cohomology of T whose cohomology class depends only on the equivalence

class of the deformation Tt.

4.1. Extensions of finite order deformations

In this subsection, we consider extensions of a finite order deformation of an in-

volutive relative Rota–Baxter operator T . Given a finite order deformation of T ,

we associate a second cohomology class in the cohomology of T . When the class is

trivial, the deformation extends to the next order.

Let T : M → A be a relative Rota–Baxter operator on an involutive associative

algebra A with respect to the involutive A-bimodule M .
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Definition 4.4. An order N deformation of T consists of a finite sum Tt =∑N

i=0 t
iTi ∈ Hom(M,A)[[t]]/(tN+1) such that T0 = T and as a K[[t]]/(tN+1)-

linear map Tt : M [[t]]/(tN+1) → A[[t]]/(tN+1) is an involutive relative Rota–Baxter

operator on A[[t]]/(tN+1) with respect to the involutive A[[t]]/(tN+1)-bimodule

M [[t]]/(tN+1).

Therefore, we must have Tk(u
∗) = Tk(u)

∗ and∑
i+j=k

Ti(u)Tj(v) = Ti(uTj(v) + Tj(u)v), for u, v ∈ M and k = 0, 1, . . . , N.

The last condition is equivalent to the fact that

dT (Tk) = −
1

2

∑
i+j=k,i,j≥1

�Ti, Tj�, for k = 0, 1, . . . , N.

Definition 4.5. A deformation Tt =
∑N

i=0 t
iTi of order N is said to be extensible

if there exists an element TN+1 ∈ iHom(M,A) such that T̃t = Tt + tN+1TN+1 is a

deformation of order N + 1.

In such a case, one more deformation equation needs to be satisfied, namely,

dT (TN+1) = −
1

2

∑
i+j=N+1,i,j≥1

�Ti, Tj�. (4.1)

Note that the right-hand side of (4.1) depends only on {T1, . . . , TN} and doesn’t

involve TN+1. Hence it depends on the deformation Tt. This is called the obstruction

to the extend the deformation Tt, denoted by ObTt
.

Proposition 4.6. ObTt
is a 2-cocycle in the cohomology complex of T .

Proof. See [7, Proposition 4.17].

The above proposition shows that a finite order deformation Tt gives rise to a

second cohomology class [ObTt
] ∈ iH2

T (M,A), called the obstruction class.

Hence from (4.1) and Proposition 4.6, we get the following.

Theorem 4.7. A finite order deformation Tt of an involutive relative Rota–Baxter

operator T extends to a deformation of next order if and only if the corresponding

obstruction class [ObTt
] ∈ iH2

T (M,A) is trivial.

Corollary 4.8. If iH2
T (M,A) = 0 then every finite order deformation of T extends

to a deformation of next order.
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5. Fard–Guo functor for involutive algebras

In [10] Ebrahimi-Fard and Guo construct the universal enveloping Rota–Baxter

algebra of a dendriform algebra. Here we recall their construction and observe that

it passes to the involutive case.

Let B be a nonunitary associative algebra. Let X be a basis for B, and let

X ′ = X ∪ {�, �}. Here � and � are two symbols, called brackets. Let M(X ′) be the

free semigroup generated by X ′.

There is a sequence {Xn} of subsets of M(X ′) defined by the following recursive

formula: X0 = X and for n ≥ 0,

Xn+1 =
( ⋃

r≥1

(X�Xn�)
r
)⋃( ⋃

r≥0

(X�Xn�)
rX

)⋃( ⋃
r≥1

(�Xn�X)r
)⋃

⋃( ⋃
r≥0

(�Xn�X)r�Xn�
)
.

Then Xn+1 ⊃ Xn, for n ≥ 0. Define X∞ =
⋃

n≥0 Xn = lim→ Xn. The words of

X∞ are called Rota–Baxter words. Every Rota–Baxter word x �= 1 has a unique

decomposition (called standard decomposition) x = x1 · · ·xb, where xi, 1 ≤ i ≤ b,

is alternatively in X or in �X∞�. The number b is called the breadth of x, denoted

by b(x). We define the head h(x) of x to be 0 (resp. 1) if x1 is in X (resp. in �X∞�).

Similarly, the tail t(x) is defined as 0 (resp. 1) if xb is in X (resp. in �X∞�). Finally,

the depth of x is defined as d(x) = min{n|x ∈ Xn}.

Define �NC,0(B) =
⊕

x∈X∞

Kx. For x,x′ ∈ X∞ with t(x) �= h(x′), we define

a product x � x′ by the concatenation. For x,x′ ∈ X∞ with t(x) = h(x′), we define

x � x′ using the induction on n = d(x) + d(x′). If n = 0, then x,x′ is in X, hence

in B, and the product x � x′ := x · x′ (the product in B). Suppose the product is

defined for n = k ≥ 0 and we want to define for n = k+1. If b(x) = b(x′) = 1, then

x�x′=

⎧⎪⎪⎨⎪⎪⎩
x · x′ (the product in B) if x,x′∈X,

xx
′ (concatenation) if x∈X, x

′∈�X∞� or x∈�X∞�, x
′∈X,

��x��x′�+�x��x′�� if x=�x�, x
′=�x′�∈�X∞�.

(5.1)

Finally, if b(x) > 1 or b(x′) > 1, let x = x1 · · ·xb and x
′ = x

′
1 · · ·x

′
b′ be the standard

decompositions of x and x
′. In this case, we define

x � x′ = x1 · · ·xb−1(xb � x
′
1)x

′
2 · · ·x

′
b′ ,

where xb � x
′
1 is defined by (5.1). Then (�NC,0(B), �) is a nonunitary associative

algebra and RB : �NC,0(B) → �NC,0(B) defined by RB(x) = �x�, for x ∈ X∞ is
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a Rota–Baxter operator on (�NC,0(B), �). We also consider the natural inclusion

jX : X → X∞ → �NC,0(B) which extends to an injective algebra map jB : B →

�NC,0(B).

For any vector space V , consider the tensor algebra T (V ) = ⊕n≥1V
⊗n. Then

(�NC,0(T (V )), �, RT (V )) is a ‘free’ nonunitary Rota–Baxter algebra over V [10].

Let (D,≺,�) be a dendriform algebra. Consider the free nonunitary Rota–Baxter

algebra �NC,0(T (D)) over the vector space D. Let JR be the Rota–Baxter ideal

of �NC,0(T (D)) generated by the set {x ≺ y − x�y�, x � y − �x�y | x, y ∈ D}.

Then the quotient Rota–Baxter algebra �NC,0(T (D))/JR is the universal enveloping

Rota–Baxter algebra of D.

Note that, if we start with a nonunitary involutive associative algebra B,

then (�NC,0(B), �, RB) can be given an involutive Rota–Baxter algebra with the

involution given on basis elements by the involution on B (when x ∈ X ⊂ B),

�x�∗ = �x∗� and (x1 · · ·xb)
∗ = x

∗
b · · ·x

∗
1.

If V is an involutive vector space, then T (V ) is an involutive algebra with

involution (v1 ⊗ · · · ⊗ vn)
∗ = v∗n ⊗ · · · ⊗ v∗1 . Hence (�NC,0(T (V )), �, RT (V )) is an

involutive Rota–Baxter algebra. This is free in the following sense [10].

Proposition 5.1. Let V be an involutive vector space. Then for any nonunitary

involutive Rota–Baxter algebra A and a linear map f : V → A preserving involu-

tions, there exists a unique nonunitary involutive Rota–Baxter algebra morphism

f̃ : �NC,0(T (V )) → A such that f̃ ◦ (jT (V ) ◦ i) = f , where i : V → T (V ) is the

inclusion.

Finally, for an involutive dendriform algebra (D,≺,�, ∗), the ideal JR of the

nonunitary involutive Rota–Baxter algebra �NC,0(T (D)) preserves under the invo-

lution as (x ≺ y − x�y�)∗ = y∗ � x∗ − �y∗�x∗ ∈ JR and (x � y − �x�y)∗ = y∗ ≺

x∗ − y∗�x∗� ∈ JR. Hence we get the following.

Proposition 5.2. If (D,≺,�, ∗) is an involutive dendriform algebra then the uni-

versal enveloping Rota–Baxter algebra �NC,0(T (D))/JR is involutive.
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