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Abstract. The proofs of generalized Hardy, Copson, Bennett, Leindler-type,

and Levinson integral inequalities are revisited. It is contemplated to establish

new proof of these classical inequalities using probability density function.

New integral inequalities of Hardy-type involving the rth order Generalized

Riemann–Liouville, Generalized Weyl, Erdélyi–Kober, (k, ν)-Riemann–Liouville,

and (k, ν)-Weyl fractional integrals are established through a probabilistic

approach. The Kullback–Leibler inequality has been applied to compute the

best possible constant factor associated with each of these inequalities.

1. Introduction

In 1920, G. H. Hardy [11] published a note that says that if a > 0, f(x) ≥ 0, p > 1

and
∫
∞

a
fp(x)dx is convergent, then

∫
∞

a

( 1

x

∫ x

0

f(t)dt
)p

dx ≤
( p

p− 1

)p
∫

∞

a

fp(x)dx holds. (1)

In 1925, the same author published another note ([12], see also [10, Theorem 327,

p. 240]) in which the continuous Hardy inequality was established as stated below:

Theorem 1. Suppose p > 1, f(x) ≥ 0, and that f(x) is integrable over any finite

interval (0, x) and fp(x) is integrable over (0,∞). Then

∫
∞

0

( 1

x

∫ x

0

f(t)dt
)p

dx ≤
( p

p− 1

)p
∫

∞

0

fp(x)dx holds. (2)
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The discrete Hardy inequality asserts that if (ak)
∞

k=1 is a non-negative sequence

of real numbers and p > 1, then

∞∑

n=1

( 1

n

n∑

k=1

ak

)p

≤
( p

p− 1

)p ∞∑

n=1

apn. (3)

The constant term
(

p
p−1

)p
in both inequalities (2) and (3) is sharp. It is easy to prove

inequality (3) by restricting inequality (2) to the class of step functions. Landau

([12, p. 154]) first discovered this important fact. These inequalities are known as

the standard form of Hardy’s inequality and which occupy prominent positions in

different branches of mathematics. Based on this inequality, several applications in

the form of generalizations, extensions, refinements, etc. have been studied by many

mathematicians during the past nine decades. For further information regarding

Hardy inequalities and their extensions and applications, the readers are referred

to the book by Hardy et al. [10] and to the articles [3, 5–7, 15, 21] and references

cited therein.

In case when 0 < p < 1, f(x) ≥ 0, f(x) is integrable over any interval (x,∞)

and fp(x) is integrable over (0,∞) then

∫
∞

0

( 1

x

∫
∞

x

f(t)dt
)p

dx >
( p

1− p

)p
∫

∞

0

fp(x)dx holds, (4)

unless f ≡ 0. The term
(

p
1−p

)p
is a best possible constant factor in (4) [10, Theorem

337, p. 251].

An important extension of inequality (2) was proved by Hardy [13] which is

given below:

Theorem 2. Suppose that p > 1, m 6= 1, f(x) ≥ 0 and fp(x) is integrable on (0,∞).

Define F (x) as

F (x) =

∫ x

0

f(t)dt for m > 1 and F (x) =

∫
∞

x

f(t)dt for m < 1.

Then
∫

∞

0

x−mF p(x)dx ≤
( p

|m− 1|

)p
∫

∞

0

x−m(xf)pdx holds, (5)

where the constant term
(

p
|m−1|

)p
is best possible. It may be noted that when p = 1,

inequality (5) becomes an equality [10].

The reversed version of inequality (5) is also due to Hardy [13], and is stated

below:
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Theorem 3. Suppose that m, and F satisfy the conditions as provided in Theorem 2

but 0 < p < 1. Then the inequality
∫

∞

0

x−mF p(x)dx >
( p

|m− 1|

)p
∫

∞

0

x−m(xf)pdx holds. (6)

The constant term
(

p
|m−1|

)p
is best possible.

Further extensions of inequalities (5) and (6) are due to Copson [8] as given

below:

Theorem 4. Suppose that p ≥ 1,m 6= 1, f(x) ≥ 0 and fp(x) is integrable over [a,∞),

a > 0. For a positive real-valued function λ(x) (> 0), denote Λ(x) =
∫ x

a
λ(l)dl such

that Λ(∞) = ∞. Define F (x) as

F (x) =

∫ x

a

λ(t)f(t)dt for m > 1 and F (x) =

∫
∞

x

λ(t)f(t)dt for m < 1.

Then the following inequality holds:
∫

∞

a

λ(x)Λ−m(x)F p(x)dx ≤
( p

|m− 1|

)p
∫

∞

a

λ(x)Λp−m(x)fp(x)dx. (7)

In case when 0 < p < 1, the following inequality
∫

∞

a

λ(x)Λ−m(x)F p(x)dx ≥
( p

|m− 1|

)p
∫

∞

a

λ(x)Λp−m(x)fp(x)dx holds. (8)

In both the cases, the constant term
(

p
|m−1|

)p
is sharp.

A variant of the Hardy–Copson inequality was studied by Leindler [16] who

obtained the discrete version of the following continuous inequality :

Theorem 5. For a positive real-valued function λ(x) (> 0), denote Λ∗(x) =∫
∞

x
λ(l)dl, where x ∈ [a,∞) with a > 0 such that Λ∗(∞) = 0. Suppose that p > 1

and 0 ≤ m < 1. Then the following inequality holds:
∫

∞

a

λ(x)

Λm
∗
(x)

(∫ x

a

λ(t)f(t)dt
)p

dx ≤
( p

1−m

)p
∫

∞

a

λ(x)

Λm−p
∗ (x)

fp(x)dx. (9)

Bennett [4] established another variant of the Hardy–Copson inequality and

obtained the discrete version of the following continuous inequality :

Theorem 6. Denote Λ∗(x) =
∫
∞

x
λ(l)dl, where λ(x) > 0, x ∈ [a,∞) with a > 0

such that Λ∗(∞) = 0. Suppose that 1 < m ≤ p. Then the following result is true:

∫
∞

a

λ(x)

Λm
∗
(x)

(∫
∞

x

λ(t)f(t)dt
)p

dx ≤
( p

m− 1

)p
∫

∞

a

λ(x)

Λm−p
∗ (x)

fp(x)dx. (10)
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In case when 0 < p < 1, the signs of both inequalities (9) and (10) are reversed,

and associated constant terms are sharp.

Apart from the discrete version of inequality (9), Leindler [16] further obtained

the discrete version of the following integral inequalities, called as Leindler-type

inequalities:

Theorem 7. Suppose that p > 1, λ(x) > 0, g(x) is integrable over the intervals

(a, x) and (x,∞). Then the following inequalities are true:

∫
∞

a

λ(x)
(∫ x

a

g(t)dt
)p

dx ≤ pp
∫

∞

a

λ1−p(x)
(∫

∞

x

λ(t)dt
)p

gp(x)dx, (11)

∫
∞

a

λ(x)
(∫

∞

x

g(t)dt
)p

dx ≤ pp
∫

∞

a

λ1−p(x)
(∫ x

a

λ(t)dt
)p

gp(x)dx. (12)

The term pp in both cases is best possible. In case when 0 < p < 1, the signs of the

above inequalities are reversed as shown by Leindler [18] in the discrete case.

Corollary 1. ([10, Theorem 328]) If p > 1, λ(x) ≡ 1 and a → 0+, then inequality

(12) gives ∫
∞

0

(∫
∞

x

g(t)dt
)p

dx ≤ pp
∫

∞

0

xpgp(x)dx.

The inequalities (2), (4), (5) and (6) are known as the basic models of the

theory of classical integral inequalities. These inequalities and their generalizations

and variants are dealt with in this paper. Many mathematicians have published

proofs of these inequalities in the literature. Recently, Walker [24] presented proof

of inequality (2) by a fully probabilistic approach.

In a continuation to the work presented by Walker [24], we report here a prob-

abilistic proof of the other important classical inequalities (7)–(12). It is noteworthy

that inequality (4) is a special case of inequality (6) and inequalities (5) & (6) are spe-

cial case of inequalities (7) & (8), respectively. So, it is needless to present the proofs

of inequalities (4), (5) & (6) separately. Some of the other important inequalities es-

tablished earlier by Leindler [17] and Levinson [20] have been reinvestigated here to

obtain proofs via probabilistic approach and employing a certain class of functions

in the process. Finally, using Generalized Riemann–Liouville integral, Generalized

Weyl integral, Erdélyi–Kober, (k, ν)-Riemann–Liouville, and (k, ν)-Weyl fractional

integrals of order r, new integral inequalities are derived through a probabilistic

approach.

The Kullback–Leibler inequality [9], stated below, has been applied to prove

that the constant term is sharp: Let η and ζ be two probability density functions
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(p. d. f.) on a set A of non-zero Lebesgue measure in (0, 1). Then the Kullback–

Leibler inequality (or ‘Information inequality ’) states that

∫ 1

0

ζ(u) log
{ ζ(u)

η(u)

}
du ≥ 0 (13)

and that equality holds if and only if ζ(u) = η(u) for all u ∈ (0, 1).

Now, multiplying both sides of inequality (13) by (p − 1) and hence using

log x < x− 1, one immediately obtains

∫ 1

0

ζp(u)

ηp−1(u)
du ≥ 1, (14)

which is used frequently for proving all results.

2. Proofs of the main results and more

Let us begin with the proof of Theorem 4 that is the proof of inequality (7).

Proof of Theorem 4. Two different cases are considered to prove it.

Case I: m > 1. Let η(t;x) be a p. d. f. in the domain (a, x) for x > a > 0.

Then by definition, one gets
∫ x

a
η(t;x)dt = 1. Applying the Jensen’s inequality, the

following is obtained:

(∫ x

a

λ(t)f(t)dt
)p

=
(∫ x

a

λ(t)f(t)

η(t;x)
η(t;x)dt

)p

≤

∫ x

a

λp(t)fp(t)

ηp(t;x)
η(t;x)dt =

∫ x

a

λp(t)fp(t)

ηp−1(t;x)
dt.

Using Fubini’s theorem, one obtains

∫
∞

a

λ(x)

Λm(x)

(∫ x

a

λ(t)f(t)dt
)p

dx ≤

∫
∞

a

λ(x)

Λm(x)

(∫ x

a

λp(t)fp(t)

ηp−1(t;x)
dt
)
dx

=

∫
∞

a

λp(t)fp(t)
(∫

∞

t

λ(x)

Λm(x)ηp−1(t;x)
dx

)
dt. (15)

Now assuming that η(t;x) is a scale distribution in the domain (a, x) as defined by

η(t;x) =
λ(t)

Λ(x)
η
( Λ(t)

Λ(x)

)

for some p. d. f. η(u) in the domain (0, 1). Inserting the above value of η(t;x) in the

inner integral of right-hand side of inequality (15) and changing the variable using



Acta Scientiarum Mathematicarum 86:3–4 (2020) c© Bolyai Institute, University of Szeged

472 A. Manna

transformation u = Λ(t)
Λ(x) , one gets

∫
∞

t

λ(x)

Λm(x)ηp−1(t;x)
dx =

∫
∞

t

λ(x)Λp−1(x)

Λm(x)λp−1(t)ηp−1
( Λ(t)
Λ(x)

)dx

=
1

λp−1(t)

∫ 1

0

λ(x)

Λm−p+1(x)ηp−1
( Λ(t)
Λ(x)

)dx

=
1

λp−1(t)Λm−p(t)

∫ 1

0

um−p−1

ηp−1(u)
du.

Therefore inequality (15) becomes

∫
∞

a

λ(x)

Λm(x)

(∫ x

a

λ(t)f(t)dt
)p

dx ≤

∫ 1

0

um−p−1

ηp−1(u)
du

∫
∞

a

λ(x)

Λm−p(x)
fp(x)dx, (16)

which proves inequality (7) with the constant term

Cp,m(η) =

∫ 1

0

um−p−1

ηp−1(u)
du.

For sharpness of the associated constant term Cp,m(η), it is required to show that

( p

m− 1

)p

= Cp,m ≤

∫ 1

0

um−p−1

ηp−1(u)
du = Cp,m(η).

By choosing a p. d. f. ζ(u) =
(
m−1
p

)
u

m−1
p

−1 in the domain (0, 1), inequality (14)

after simplifications assumes the form

∫ 1

0

um−p−1

ηp−1(u)
du ≥

( p

m− 1

)p

. (17)

In addition, if one chooses η(u) =
(
m−1
p

)
u

m−1
p

−1 p. d. f. on (0, 1), then the equality

sign occurs in inequality (17) and hence the proof of Case I is complete.

Case II: 0 ≤ m < 1. Now assuming that η(t;x) is a p. d. f. in the domain

(x,∞), one gets by definition
∫
∞

x
η(t;x)dt = 1. Applying Jensen’s inequality, the

following is obtained:

(∫
∞

x

λ(t)f(t)dt
)p

=
(∫

∞

x

λ(t)f(t)

η(t;x)
η(t;x)dt

)p

≤

∫
∞

x

λp(t)fp(t)

ηp(t;x)
η(t;x)dt =

∫
∞

x

λp(t)fp(t)

ηp−1(t;x)
dt.
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Then Fubini’s theorem implies that

∫
∞

a

λ(x)

Λm(x)

(∫
∞

x

λ(t)f(t)dt
)p

dx ≤

∫
∞

a

λ(x)

Λm(x)

(∫
∞

x

λp(t)fp(t)

ηp−1(t;x)
dt
)
dx

=

∫
∞

a

λp(t)fp(t)
(∫ t

a

λ(x)

Λm(x)ηp−1(t;x)
dx

)
dt. (18)

Now a scale distribution η(t;x) in the domain (x,∞) is chosen as follows:

η(t;x) =
λ(t)Λ(x)

Λ2(t)
η
(Λ(x)
Λ(t)

)

for some p. d. f. η(u) in the domain (0, 1). Then the inner integral of the right-hand

side of inequality (18) simplifies to the following form:

∫ t

a

λ(x)

Λm(x)ηp−1(t;x)
dx =

∫ t

a

λ(x)Λ2(p−1)(t)

λp−1(t)Λm+p−1(x)ηp−1
(

Λ(x)
Λ(t)

)dx.

Changing the variable by using transformation u = Λ(x)
Λ(t) , one gets

∫ t

a

λ(x)

Λm(x)ηp−1(t;x)
dx =

1

λp−1(t)Λm−p(t)

∫ 1

0

du

um+p−1ηp−1(u)
.

Finally, inequality (18) assumes the form

∫
∞

a

λ(x)

Λm(x)

(∫
∞

x

λ(t)f(t)dt
)p

dx ≤

∫ 1

0

u−m−p+1

ηp−1(u)
du

∫
∞

a

λ(x)

Λm−p(x)
fp(x)dx, (19)

which proves inequality (7) with the constant term

Cp,m(η) =

∫ 1

0

u−m−p+1

ηp−1(u)
du.

To obtain the sharp constant term Cp,m(η), it is enough to show that

( p

1−m

)p

= Cp,m ≤

∫ 1

0

u−m−p+1

ηp−1(u)
du = Cp,m(η).

Let us choose a p. d. f. ζ(u) =
(
1−m
p

)
u

1−m

p
−1 in the domain (0, 1). Then inequality

(14) takes the form

∫ 1

0

u−m−p+1

ηp−1(u)
du ≥

( p

1−m

)p

, (20)
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and that equality holds when η(u) =
(
1−m
p

)
u

1−m

p
−1 is chosen in the domain (0, 1).

This completes the proof of inequality (7).

It may be noted that when 0 < p < 1, the function F (x) defined earlier is

concave for m > 1 as well as for m < 1. Consequently the signs of inequalities (15)

and (18) are reversed and hence inequality (8) can be proved easily and subsequent

derivations are left for the readers.

Now it is planned to present the proof of Theorem 5 that is the proof of

inequality (9).

Proof of Theorem 5. Proceeding in the parallel lines of the earlier theorem, η(t;x)

denotes p. d. f. in the domain (a, x) for x > a > 0. Using Jensen’s inequality and

Fubini’s theorem, one gets
∫

∞

a

λ(x)

Λm
∗
(x)

(∫ x

a

λ(t)f(t)dt
)p

dx ≤

∫
∞

a

λp(t)fp(t)
(∫

∞

t

λ(x)

Λm
∗
(x)ηp−1(t;x)

dx
)
dt.

(21)

Now η(t;x) is chosen as a scale distribution in the domain (a, x) as defined below:

η(t;x) =
λ(t)Λ∗(x)

Λ2
∗
(t)

η
(Λ∗(x)

Λ∗(t)

)

for some density function η(u) in the domain (0, 1). Then the inner integral of

right-hand side of inequality (21) simplifies to

∫
∞

t

λ(x)

Λm
∗
(x)ηp−1(t;x)

dx =

∫
∞

t

λ(x)Λ
2(p−1)
∗ (t)

λp−1(t)Λm+p−1
∗ (x)ηp−1

(Λ∗(x)
Λ∗(t)

)dx,

which reduces to the following by changing the variable u = Λ∗(x)
Λ∗(t)

:

∫
∞

t

λ(x)

Λm
∗
(x)ηp−1(t;x)

dx =
1

λp−1(t)Λm−p
∗ (t)

∫ 1

0

du

um+p−1ηp−1(u)
.

Finally, inequality (21) can be written as
∫

∞

a

λ(x)

Λm
∗
(x)

(∫ x

a

λ(t)f(t)dt
)p

dx ≤

∫ 1

0

u−m−p+1

ηp−1(u)
du

∫
∞

a

λ(x)

Λm−p
∗ (x)

fp(x)dx, (22)

which is inequality (9) with the constant term

Cp,m(η) =

∫ 1

0

u−m−p+1

ηp−1(u)
du.

It has already been proved in Theorem 4 (Case II) that the term Cp,m(η) ≥ Cp,m =(
p

1−m

)p
is best possible constant. Hence inequality (9) is established.
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Proof of Theorem 6. Considering η(t;x) as a p. d. f. in the domain (x,∞) for

x ∈ [a,∞), a > 0 and then applying Jensen’s inequality and Fubini’s theorem, one

obtains
∫

∞

a

λ(x)

Λm
∗
(x)

(∫
∞

x

λ(t)f(t)dt
)p

dx ≤

∫
∞

a

λp(t)fp(t)
(∫ t

a

λ(x)

Λm
∗
(x)ηp−1(t;x)

dx
)
dt. (23)

Choosing η(t;x) is a scale distribution in the domain (x,∞) as below:

η(t;x) =
λ(t)

Λ∗(x)
η
( Λ∗(t)

Λ∗(x)

)

for some p. d. f. η(u) in the domain (0, 1). Then inner integral of the right-hand side

of inequality (23) becomes

∫ t

a

λ(x)

Λm
∗
(x)ηp−1(t;x)

dx =

∫
∞

t

λ(x)Λ
2(p−1)
∗ (t)

λp−1(t)Λm+p−1
∗ (x)ηp−1

(Λ∗(x)
Λ∗(t)

)dx,

=
1

λp−1(t)Λm−p
∗ (t)

∫ 1

Λ∗(t)
Λ∗(a)

du

u−m+p+1ηp−1(u)

≤
1

λp−1(t)Λm−p
∗ (t)

∫ 1

0

du

u−m+p+1ηp−1(u)
,

where u = Λ∗(t)
Λ∗(x)

. Finally, inequality (23) reduces to

∫
∞

a

λ(x)

Λm
∗
(x)

(∫
∞

x

λ(t)f(t)dt
)p

dx ≤

∫ 1

0

um−p−1

ηp−1(u)
du

∫
∞

a

λ(x)

Λm−p
∗ (x)

fp(x)dx, (24)

which proves inequality (10) with the constant term

Cp,m(η) =

∫ 1

0

um−p−1

ηp−1(u)
du.

The constant
(

p
m−1

)p
= Cp,m ≤ Cp,m(η) is sharp as Case I shows in the proof of

Theorem 4, hence its derivation is omitted. Therefore inequality (10) is proved.

It is now contemplated to give a probabilistic proof of the Leindler-type in-

equalities (11) and (12) of Theorem 7.

Proof of Theorem 7. Choosing the substitutions g(t) = f(t)
Λ∗(t)

for inequality (11)

and g(t) = f(t)
Λ(t) for inequality (12), respectively, then these inequalities reduce to

the inequalities
∫

∞

a

λ(x)
(∫ x

a

f(t)

Λ∗(t)
dt
)p

dx ≤ pp
∫

∞

a

λ1−p(x)fp(x)dx (25)
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and
∫

∞

a

λ(x)
(∫

∞

x

f(t)

Λ(t)
dt
)p

dx ≤ pp
∫

∞

a

λ1−p(x)fp(x)dx. (26)

Therefore it is adequate to prove inequalities (25) and (26).

Proof of (25). Let η(t;x) be a p. d. f. in the domain (a, x) for x > a > 0. Then

by applying Jensen’s inequality and Fubini’s theorem, one can directly obtain
∫

∞

a

λ(x)
(∫ x

a

f(t)

Λ∗(t)
dt
)p

dx ≤

∫
∞

a

fp(t)

Λp
∗(t)

∫
∞

t

λ(x)

ηp−1(t;x)
dxdt. (27)

Select a scale distribution η(t;x) in the domain (a, x) as follows:

η(t;x) =
λ(t)Λ∗(x)

Λ2
∗
(t)

η
(Λ∗(x)

Λ∗(t)

)

for some density function η(u) in the domain (0, 1). Then inequality (27) after

substituting u = Λ∗(x)
Λ∗(t)

with Λ∗(∞) = 0 assumes the form

∫
∞

a

λ(x)
(∫ x

a

f(t)

Λ∗(t)
dt
)p

dx ≤

∫ 1

0

du

up−1ηp−1(u)

∫
∞

a

λ1−p(x)fp(x)dx,

which proves inequality (25) with the constant term

Cp(η) =

∫ 1

0

du

up−1ηp−1(u)
≥ pp = Cp.

The term pp is best possible which can be easily deduced from Theorem 5 by putting

m = 0. This completes the proof of inequality (25).

Proof of (26). Suppose that η(t;x) is a p. d. f. in the domain (x,∞) for x ∈

[a,∞), a > 0. Applying Jensen’s inequality and Fubini’s theorem, the following is

obtained:
∫

∞

a

λ(x)
(∫

∞

x

f(t)

Λ(t)
dt
)p

dx ≤

∫
∞

a

fp(t)

Λp(t)

∫ t

a

λ(x)

ηp−1(t;x)
dxdt. (28)

Defining a scale distribution η(t;x) in the domain (x,∞) as follows:

η(t;x) =
λ(t)Λ(x)

Λ2(t)
η
(Λ(x)
Λ(t)

)

for some density function η(u) in the domain (0, 1). Then by using the transforma-

tion u = Λ(x)
Λ(t) , inequality (28) assumes the form

∫
∞

a

λ(x)
(∫

∞

x

f(t)

Λ(t)
dt
)p

dx ≤

∫ 1

0

du

up−1ηp−1(u)

∫
∞

a

λ1−p(x)fp(x)dx,
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which is inequality (26) with the constant term

Cp(η) =

∫ 1

0

du

up−1ηp−1(u)
≥ pp = Cp,

which is again best possible as shown earlier. This completes the proof of inequality

(26).

In addition to the above inequalities, some generalizations were made by

Leindler [17] in the discrete case. Before putting a list of generalized inequalities,

the following is recalled: for p > 0, ϕ ∈ D(p) if ϕ is a non-negative increasing

function on [a,∞), a ≥ 0, ϕ(0) = 0, ϕ(x)
xp is non-increasing. Then the following

results are true:

Theorem 8. Suppose p ≥ 1, m 6= 1 and ϕ ∈ D(p). Notations Λ(x) and F (x) carry

the same meaning as in Theorem 4. Then the following holds:

∫
∞

a

λ(x)Λ−m(x)ϕ(F (x))dx ≤
( p

|m− 1|

)p
∫

∞

a

λ1−p(x)Λp−m(x)ϕ(λ(x)f(x))dx.

(29)

The constant term
(

p
|m−1|

)p
is best possible.

Corollary 2. By choosing ϕ(x) = xp, p ≥ 1, one gets inequality (7).

Similarly Theorems 5 & 6 can be generalized in the following way:

Theorem 9. Suppose p > 1 and m 6= 1. Define F ∗(x) as

F ∗(x) =

∫ x

a

λ(t)f(t)dt for m < 1 and F ∗(x) =

∫
∞

x

λ(t)f(t)dt for m > 1.

If ϕ ∈ D(p), then the following inequality is true:

∫
∞

a

λ(x)Λ−m
∗

(x)ϕ
(
F ∗(x)

)
dx ≤

( p

|m− 1|

)p
∫

∞

a

λ1−p(x)Λp−m
∗

(x)ϕ(λ(x)f(x))dx. (30)

Corollary 3. By choosing ϕ(x) = xp, p ≥ 1, one gets inequalities (9) and (10).

To prove the above theorems, the following lemma proved by Leindler [19] is

recalled:

Lemma 1. ([19]) If p > 0, ϕ ∈ D(p) and x ≥ 0, then

tpϕ(x) ≤ ϕ(tx) for 0 ≤ t ≤ 1 and ϕ(tx) ≤ tpϕ(x) for t ≥ 1.
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Proof. The proof immediately follows from the definition of the class D(p) and is

hence omitted.

Next we present the proofs of Theorem 8 and Theorem 9.

Proof of Theorem 8. The proof of this theorem is quite similar to that of Theorem

4. Suppose that p ≥ 1, m > 1 and ϕ ∈ D(p). Applying Jensen’s inequality and

using Fubini’s theorem, one can directly establish the reduced form of inequality

(15) as shown below:

∫
∞

a

λ(x)

Λm(x)
ϕ
(
F (x)

)
dx ≤

∫
∞

a

λ(x)

Λm(x)

∫ x

a

ϕ
(λ(t)f(t)

η(t;x)

)
η(t;x)dtdx

=

∫
∞

a

ϕ(λ(t)f(t))
(∫

∞

t

λ(x)

Λm(x)ηp−1(t;x)
dx

)
dt, (31)

where the notations have their usual meanings and the last line is the application of

Lemma 1 for 0 ≤ η(t;x) ≤ 1. Remaining of the proof runs similar lines as developed

in Theorem 4. The case m < 1 will be treated similarly as the Case II of Theorem

4. Therefore inequality (29) immediately follows by joining these two cases. The

procedure for obtaining the best possible constant will also be same as that of

Theorem 4, and hence omitted.

The proof of Theorem 9 is also quite similar to those of Theorems 5 & 6.

Proof of Theorem 9. Suppose that p ≥ 1, m < 1 and ϕ ∈ D(p). Applying Jensen’s

inequality and using Fubini’s theorem, one can directly establish the reduced form

of inequality (21) as follows:

∫
∞

a

λ(x)

Λm
∗
(x)

ϕ
(
F ∗(x)

)
dx ≤

∫
∞

a

λ(x)

Λm
∗
(x)

∫ x

a

ϕ
(λ(t)f(t)

η(t;x)

)
η(t;x)dtdx

=

∫
∞

a

ϕ(λ(t)f(t))
(∫

∞

t

λ(x)

Λm
∗
(x)ηp−1(t;x)

dx
)
dt, (32)

where the notations have their usual meanings and the last line is the application of

Lemma 1 for 0 ≤ η(t;x) ≤ 1. The rest of the proof runs similar lines as developed

in Theorem 5. Similarly the case m > 1 will be treated as presented in Theorem

6. Hence inequality (30) follows immediately by combining these two cases. The

procedure for obtaining the best possible constant is again the same as those of

Theorems 5 & 6, and is hence skipped.

Levinson proved the following:
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Levinson inequality. ([20, Theorem 2]) Let ϕ be defined on an open interval (finite

or infinite) such that ϕ(u) ≥ 0, ϕ′′ ≥ 0 and satisfies the following inequality for

p > 1:

ϕϕ′′ ≥
(
1−

1

p

)
(ϕ′)2. (33)

Suppose that f(x) is defined in the domain (0,∞), range of which lies in the closed

interval of definition of ϕ. For a positive real-valued function λ(x) (> 0), let Λ(x) =∫ x

a
λ(l)dl such that Λ(∞) = ∞. Then we have

∫
∞

0

ϕ
( 1

Λ(x)

∫ x

0

λ(t)f(t)dt
)
dx ≤

( p

p− 1

)p
∫

∞

0

ϕ(f(x))dx. (34)

The reduced inequality (λ ≡ 1) is also due to Levinson ([20, Theorem 1]).

Now inequality (34) will be proved using a probabilistic approach as discussed

in the earlier proofs. But this time only the condition ϕ ∈ D(p) will be used instead

of condition (33). The statement of the theorem reads now as follows:

Theorem 10. Let p > 1, ϕ ∈ D(p) and f(x) be defined on (a,∞), a > 0. Then the

following
∫

∞

a

ϕ
( 1

Λ(x)

∫ x

a

λ(t)f(t)dt
)
dx ≤

( p

p− 1

)p
∫

∞

a

ϕ(f(x))dx holds. (35)

Also the constant factor
(

p
p−1

)p
is sharp.

Proof. Let η(t;x) be a p. d. f. in the domain (a, x) for x > a > 0. Proceeding

similarly as in Theorem 4, by applying Jensen’s inequality and Fubini’s theorem,

one gets
∫

∞

a

ϕ
( 1

Λ(x)

∫ x

a

λ(t)f(t)dt
)
dx ≤

∫
∞

a

∫
∞

t

ϕ
( λ(t)f(t)

Λ(x)η(t;x)

)
η(t;x)dxdt. (36)

Choosing the scale distribution η(t;x) in the domain (a, x) as in Theorem 4 (Case

I) given by η(t;x) = λ(t)
Λ(x)η

( Λ(t)
Λ(x)

)
, inequality (36) takes the form

∫
∞

a

ϕ
( 1

Λ(x)

∫ x

a

λ(t)f(t)dt
)
dx ≤

∫
∞

a

∫
∞

t

ϕ
( f(t)

η
( Λ(t)
Λ(x)

)
) λ(t)

Λ(x)
η
( Λ(t)

Λ(x)

)
dxdt. (37)

Using the transformation u = Λ(t)
Λ(x) , Lemma 1 with 0 ≤ η(t;x) ≤ 1 and then applying

the non-decreasing property of λ, inequality (37) is reduced to the form

∫
∞

a

ϕ
( 1

Λ(x)

∫ x

a

λ(t)f(t)dt
)
dx ≤

∫ 1

0

1

uηp−1(u)
du

∫
∞

a

ϕ(f(x))dx,



Acta Scientiarum Mathematicarum 86:3–4 (2020) c© Bolyai Institute, University of Szeged

480 A. Manna

which proves the inequality (35) with the constant term
∫ 1

0
1

uηp−1(u)du. To prove that

the associated constant term Cp =
(

p
p−1

)p
sharp, it is enough to show that Cp ≤

∫ 1

0
1

uηp−1(u)du = Cp(η) and which again follows from Theorem 4. This completes

the proof of inequality (35).

3. New integral inequalities

In fractional calculus, the Riemann–Liouville integral plays an essential role, whereas

the Weyl integral finds its application in the theory of Fourier series. A natural

extension of Hardy’s inequality (2) using the Riemann–Liouville integral is due to

Knopp [14], and another extension of Hardy’s inequality involving the Weyl integral

can be found in the book of Hardy et al. ([10], Theorem 329).

In this section, a generalized version of the Riemann–Liouville integral, and the

Weyl integral are introduced and using both these generalized integrals, new frac-

tional integral inequalities are established. Further, applying the same techniques,

new integral inequalities involving the rth order Erdélyi–Kober, (k, ν)-Riemann–

Liouville, and (k, ν)-Weyl fractional integrals are presented. Finally, it will be shown

that the best possible constants attached with each of these integral inequalities

may be obtained through a probabilistic approach. In the remaining portion of the

paper, it is assumed that the right-hand side integral in each of the inequalities

(39), (43), (46), (49), (53) and (58) is finite.

3.1. Generalized Riemann-Liouville integral

Let r > 0 be a real number and λ(x), Λ(x) carry the same meaning as mentioned

in Section 1. Then Riemann–Liouville integral of λ(x)f(x) of order r with origin

at 0 is defined as

fr(x) =
1

Γ(r)

∫ x

0

(Λ(x)− Λ(t))r−1λ(t)f(t)dt. (38)

Then we have the following theorem.

Theorem 11. Suppose that p > 1. Then the following inequality

∫
∞

0

λ(x)
( fr(x)

Λr(x)

)p

dx <

{
Γ
(
1− 1

p

)

Γ
(
r + 1− 1

p

)

}p ∫
∞

0

λ(x)fp(x)dx holds, (39)

unless f ≡ 0. The constant term
{

Γ(1− 1
p
)

Γ(r+1− 1
p
)

}p

is sharp.
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Corollary 4. In particular when λ(x) = 1 for all x ∈ (0,∞), then expression (38)

for fr(x) is known as the Riemann–Liouville integral of f(x) of order r with origin

at 0 and inequality (39) reduces to

∫
∞

0

( fr
xr

)p

dx <

{
Γ
(
1− 1

p

)

Γ
(
r + 1− 1

p

)

}p ∫
∞

0

fp(x)dx,

which further reduces to Hardy’s inequality (2) for r = 1 (see [10, Theorem 329]).

Naturally, inequality (39) is more general than its earlier form. It is now decided

to provide a probabilistic proof of Theorem 11 that is inequality (39).

Proof. Let η(t;x) be a probability density function in the domain (0, x) for x > 0,

so that one gets
∫ x

0
η(t;x)dt = 1. Applying Jensen’s inequality and Fubini’s theorem,

one obtains
∫

∞

0

λ(x)
( fr(x)

Λr(x)

)p

dx

≤

∫
∞

0

λ(x)

Λrp(x){Γ(r)}p

(∫ x

0

(Λ(x)− Λ(t))p(r−1)λp(t)fp(t)

ηp−1(t;x)
dt
)
dx

=

∫
∞

0

λp(t)fp(t)

{Γ(r)}p

(∫
∞

t

λ(x)(Λ(x)− Λ(t))p(r−1)

Λrp(x)ηp−1(t;x)
dx

)
dt. (40)

Let η(t;x) be a scale distribution in the domain (0, x) and is defined as η(t;x) =
λ(t)
Λ(x)η

( Λ(t)
Λ(x)

)
for some density function η(u) in the domain (0, 1). Replacing the

value of η(t;x) in inequality (40), one gets

∫
∞

0

λ(x)
( fr(x)

Λr(x)

)p

dx

≤

∫
∞

0

λp(t)fp(t)

{Γ(r)}p

(∫
∞

t

λ(x)(Λ(x)− Λ(t))p(r−1)Λp−1(x)

λp−1(t)Λrp(x)ηp−1( Λ(t)
Λ(x) )

dx
)
dt

=

∫
∞

0

λ(t)fp(t)
( 1

{Γ(r)}p

∫ 1

0

(1− u)p(r−1)

uηp−1(u)
du

)
dt where u =

Λ(t)

Λ(x)

=
1

{Γ(r)}p

∫ 1

0

(1− u)p(r−1)

uηp−1(u)
du

∫
∞

0

λ(x)fp(x)dx. (41)

This proves inequality (39) with the constant term

Cp,r(η) =
1

{Γ(r)}p

∫ 1

0

(1− u)p(r−1)

uηp−1(u)
du.
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To show that the associated constant term Cp,r =
{

Γ(1− 1
p
)

Γ(r+1− 1
p
)

}p

is sharp, one needs

to prove that

Cp,r(η) ≥
{ Γ

(
1− 1

p

)

Γ
(
r + 1− 1

p

)
}p

= Cp,r.

By choosing a p. d. f. ζ(u) in the domain (0, 1) as ζ(u) = u
−

1
p (1−u)r−1

B(1− 1
p
,r)

, where B(·, ·)

denotes the well-known Beta function, the inequality (14) becomes

Cp,r(η) =
1

{Γ(r)}p

∫ 1

0

(1− u)p(r−1)

uηp−1(u)
du ≥

1

{Γ(r)}p

{
B(1−

1

p
, r)

}p

=

{
Γ
(
1− 1

p

)

Γ
(
r + 1− 1

p

)

}p

,

hence the constant Cp,r(η) ≡ Cp,r in inequality (41) is sharp. Equality holds when

η(u) = u
−

1
p (1−u)r−1

B(1− 1
p
,r)

. If f is non-nul, then there is an equality in (39) for f(x) =

{λ(x)}−1/p. But this leads to the divergence of
∫
∞

0
λ(x)fp(x), and this completes

the proof of inequality (39).

3.2. Generalized Weyl integral

For r > 0, the Weyl integral of λ(x)f(x) of order r is now defined as follows:

fr(x) =
1

Γ(r)

∫
∞

x

(Λ(t)− Λ(x))r−1λ(t)f(t)dt. (42)

Then the following is true:

Theorem 12. Suppose that p > 1. Then the following result

∫
∞

0

λ(x)
(
fr(x)

)p
dx <

{
Γ
(
1
p

)

Γ
(
r + 1

p

)

}p ∫
∞

0

λ(x)(Λr(x)f(x))pdx is holds, (43)

unless f ≡ 0. The term
{

Γ( 1
p
)

Γ(r+ 1
p
)

}p

is best possible constant.

Corollary 5. In particular, when λ(x) = 1 for all x ∈ (0,∞), then (42) turns out

to be the Weyl integral of f(x) of order r so that inequality (43) reduces to

∫
∞

0

(
fr(x)

)p
dx <

{
Γ
(
1
p

)

Γ
(
r + 1

p

)

}p ∫
∞

0

(xrf(x))pdx,

which is another form of Hardy’s inequality (see [10, Theorem 329]) and further

reduces to another well-known inequality (see [10, Theorem 328]) when r = 1.
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It is to be noted that the inequality (43) is an extension of Hardy’s inequality

and here a probabilistic proof of inequality (43), i.e. Theorem 12 is presented.

Proof. Let η(t;x) be a probability density function in the domain (x,∞) for x > 0.

Hence by definition
∫
∞

x
η(t;x)dt = 1. Then applying Jensen’s inequality and Fubini’s

theorem, one obtains
∫

∞

0

λ(x)
(
fr(x)

)p
dx ≤

∫
∞

0

λ(x)

{Γ(r)}p

(∫
∞

x

(Λ(t)− Λ(x))p(r−1)λp(t)fp(t)

ηp−1(t;x)
dt
)
dx

=

∫
∞

0

λp(t)fp(t)

{Γ(r)}p

(∫ t

0

λ(x)(Λ(t)− Λ(x))p(r−1)

ηp−1(t;x)
dx

)
dt. (44)

Choosing η(t;x) is a scale distribution in the domain (x,∞) as η(t;x) =
λ(t)Λ(x)
Λ2(t) η

(Λ(x)
Λ(t)

)
for some density function η(v) in the domain (0, 1). Replacing

the value of η(t;x) in inequality (44), one gets
∫

∞

0

λ(x)
(
fr(x)

)p
dx

≤

∫
∞

0

λp(t)fp(t)

{Γ(r)}p

(∫ t

0

λ(x)(Λ(t)− Λ(x))p(r−1)Λ2(p−1)(t)

λp−1(t)Λp−1(x)ηp−1(Λ(x)
Λ(t) )

dx
)
dt

=

∫
∞

0

λ(t)(Λr(t)f(t))p
( 1

{Γ(r)}p

∫ 1

0

(1− v)p(r−1)

vp−1ηp−1(v)
dv

)
dt by putting v =

Λ(x)

Λ(t)

=
1

{Γ(r)}p

∫ 1

0

(1− v)p(r−1)

vp−1ηp−1(v)
dv

∫
∞

0

λ(t)(Λr(t)f(t))pdt, (45)

which proves inequality (43) with the constant term

Cp,r(η) =
1

{Γ(r)}p

∫ 1

0

(1− v)p(r−1)

vp−1ηp−1(v)
dv.

In order to demonstrate that term Cp,r is best possible only when it equals
{ Γ( 1

p
)

Γ(r+ 1
p
)

}p
, one needs to prove that

Cp,r(η) ≥
{ Γ

(
1
p

)

Γ
(
r + 1

p

)
}p

= Cp,r.

By choosing a p. d. f. ζ(v) in the domain (0, 1) as ζ(v) = v
1
p
−1

(1−v)r−1

B( 1
p
,r)

, then inequal-

ity (14) assumes the form

Cp,r(η) =
1

{Γ(r)}p

∫ 1

0

(1− v)p(r−1)

vp−1ηp−1(v)
dv ≥

1

{Γ(r)}p

{
B(

1

p
, r)

}p

=

{
Γ
(
1
p

)

Γ
(
r + 1

p

)

}p

,

which shows that the constant Cp,r(η) ≡ Cp,r in inequality (45) is best possible.
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Equality holds when η(v) = v
1
p
−1

(1−v)r−1

B( 1
p
,r)

and this completes the proof of inequality

(43).

3.3. Erdélyi–Kober fractional integral

The Erdélyi–Kober fractional integral operators, Iνr,ξ and Jν
r,η, are respectively the

generalized form of the Riemann–Liouville and Weyl fractional integrals with power

weights and are defined as follows:

(Iνr,ξf)(x) =
νx−ν(ξ+r)+ν

Γ(r)

∫ x

0

(xν − tν)r−1tνξ−1f(t)dt

and

(Jν
r,ηf)(x) =

νxνη

Γ(r)

∫
∞

x

(tν − xν)r−1t−ν(r+η)+ν−1f(t)dt.

These operators have many applications in different parts of fractional integral and

differential calculus. The operators and their generalizations also find numerous

applications in mathematical physics [23]. Several authors have also obtained re-

sults involving these operators (see [1]). Here new Hardy-type integral inequalities

involving the Erdélyi–Kober fractional integral operators are established, and it is

proved that the best possible constants can be obtained by a probabilistic approach.

Let us begin with the following theorem.

Theorem 13. Suppose that p > 1, r > 0 and ξ > 0. Then the following inequality

∫
∞

0

((Iνr,ξf)(x))
pdx <

{
Γ
(
ξ − 1

νp

)

Γ
(
r + ξ − 1

νp

)

}p ∫
∞

0

fp(x)dx holds, (46)

unless f ≡ 0. The constant term
{

Γ(ξ− 1
νp

)

Γ(r+ξ− 1
νp

)

}p

is best possible.

Proof. Let η(t;x) be a probability density function on (0, x) for x > 0, so by

definition
∫ x

0
η(t;x)dt = 1. Applying Jensen’s inequality and Fubini’s theorem, one

obtains
∫

∞

0

((Iνr,ξf)(x))
pdx

≤

∫
∞

0

νpxp(−ν(ξ+α)+ν)

{Γ(r)}p

(∫ x

0

(xν − tν)p(r−1)tp(νξ−1)fp(t)

ηp−1(t;x)
dt
)
dx

=

∫
∞

0

νpfp(t)

{Γ(r)}p

(∫
∞

t

(
1− tν

xν

)p(r−1)
xpν(r−1)+pν(1−ξ−r)tp(νξ−1)

ηp−1(t;x)
dx

)
dt. (47)
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Choosing η(t;x) is a scale distribution on (0, x) as η(t;x) = 1
xη

(
t
x

)
for some density

function η(u) on (0, 1). Replacing the value of η(t;x) in (47), one gets

∫
∞

0

(
(Iνr,ξf)(x)

)p

dx

≤

∫
∞

0

νpfp(t)

{Γ(r)}p

(∫
∞

t

xp−1+pν(r−1)+pν(1−ξ−r)

ηp−1( t
x )

tp(νξ−1)
(
1−

tν

xν

)p(r−1)

dx
)
dt

=

∫
∞

0

νpfp(t)

{Γ(r)}p

(∫ 1

0

up(νξ−1)−1(1− uν)p(r−1)

ηp−1(u)
du

)
dt by putting u =

t

x

=
νp

{Γ(r)}p

∫ 1

0

up(νξ−1)−1(1− uν)p(r−1)

ηp−1(u)
du

∫
∞

0

fp(t)dt. (48)

Let us consider a p. d. f. ζ(u) on (0, 1) as ζ(u) = νu
νξ− 1

p
−1

(1−uν)r−1

B(ξ− 1
pν

,r)
. Then inequality

(14) becomes

νp

{Γ(r)}p

∫ 1

0

up(νξ−1)−1(1− uν)p(r−1)

ηp−1(u)
du

≥
1

{Γ(r)}p

{
B
(
ξ −

1

pν
, r
)}p

=

{
Γ
(
ξ − 1

νp

)

Γ
(
r + ξ − 1

νp

)

}p

,

which shows that the associated constant term in inequality (48) is best possible.

Equality holds when η(u) = νu
νξ− 1

p
−1

(1−uν)r−1

B(ξ− 1
pν

,r)
and this completes the proof of

inequality (46), that is Theorem 13.

Now the following theorem involving the fractional integral operator Jν
r,η will

be proved.

Theorem 14. Suppose that p > 1, r > 0 and η > 0. Then

∫
∞

0

((Jν
r,ηf)(x))

pdx <

{
Γ
(
η + 1

νp

)

Γ
(
r + η + 1

νp

)

}p ∫
∞

0

fp(x)dx holds, (49)

unless f ≡ 0. The constant term
{

Γ(η+ 1
νp

)

Γ(r+η+ 1
νp

)

}p

is best possible.

Proof. Let η(t;x) be a probability density function on (x,∞) for x > 0, so by

definition
∫
∞

x
η(t;x)dt = 1.



Acta Scientiarum Mathematicarum 86:3–4 (2020) c© Bolyai Institute, University of Szeged

486 A. Manna

Applying Jensen’s inequality and Fubini’s theorem, one obtains

∫
∞

0

((Jν
r,ηf)(x))

pdx

≤

∫
∞

0

νpxpνη

{Γ(r)}p

(∫
∞

x

(tν − xν)p(r−1)tp(−ν(r+η)+ν−1)fp(t)

ηp−1(t;x)
dt
)
dx

=

∫
∞

0

νpfp(t)

{Γ(r)}p

(∫ t

0

(
1− xν

tν

)p(r−1)
xpνηtpν(r−1)−pν(r+η)+pν−p

ηp−1(t;x)
dx

)
dt. (50)

Choosing η(t;x) is a scale distribution on (x,∞) as η(t;x) = x
t2 η

(
x
t

)
for some

density function η(u) on (0, 1). Inserting the value of η(t;x) in (50), one obtains

∫
∞

0

((Jν
r,ηf)(x))

p

<

∫
∞

0

νpfp(t)

{Γ(r)}p

(∫ t

0

xpνη−p+1

ηp−1( t
x )

t−pνη+p−2
(
1−

xν

tν

)p(r−1)

dx
)
dt

=

∫
∞

0

νpfp(t)

t{Γ(r)}p

(∫ 1

0

upνη−p+1(1− uν)p(r−1)

ηp−1(u)
du

)
dt by putting u =

x

t

=
νp

{Γ(r)}p

∫ 1

0

upνη−p+1(1− uν)p(r−1)

ηp−1(u)
du

∫
∞

0

fp(t)dt. (51)

Consider a p. d. f. ζ(u) on (0, 1) as ζ(u) = νu
νη+ 1

p
−1

(1−uν)r−1

B(η+ 1
pν

,r)
. Then inequality (14)

assumes the form

νp

{Γ(r)}p

∫ 1

0

upνη−p+1(1− uν)p(r−1)

ηp−1(u)
du ≥

1

{Γ(r)}p

{
B
(
η +

1

pν
, r
)}p

=

{
Γ
(
η + 1

νp

)

Γ
(
r + η + 1

νp

)

}p

. (52)

Inequality (52) shows that the constant term
{

Γ(η+ 1
νp

)

Γ(r+η+ 1
νp

)

}p

in inequality (51) and

hence in inequality (49) is best possible. Equality holds when η(u) = ζ(u) and this

completes proof of the theorem.

3.4. (k, ν)-Riemann-Liouville fractional integral of order r

Let k > 0, r > 0, ν be a non-zero real number and f(x) be a continuous function

defined on [0, x]. The (k, ν)-Riemann–Liouville fractional integral of f(x) of order
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r is then denoted by ν
kI

rf(x) and defined as follows [22]:

ν
kI

rf(x) =
ν1−

r
k x−

νr
k

kΓk(r)

∫ x

0

(xν − tν)
r
k
−1tν−1f(t)dt,

where Γk(x) is a k-Gamma function as defined below:

Γk(x) =

∫
∞

0

tx−1e−
tk

k dt.

The relation between the k-Beta function Bk(x, y) and the k-Gamma function

is Bk(x, y) = Γk(x)Γk(y)
Γk(x+y) , where Bk(x, y) = 1

kB
(
x
k ,

y
k

)
, the original Beta function.

Now a new Hardy-type inequalty involving the r-th order (k, ν)-Riemann–Liouville

fractional integral operator is presented. Indeed, the following theorem is proved:

Theorem 15. Suppose that f(x) (f 6≡ 0) is a continuous function defined on [0, x]

and p > 1. Then the following holds:

∫
∞

0

(νkI
rf(x))pdx <

{
ν−

r
kΓk

(
k(1− 1

pν )
)

Γk

(
r + k(1− 1

pν )
)

}p ∫
∞

0

fp(x)dx unless f ≡ 0. (53)

The constant term
{

ν−
r
k Γk(k(1−

1
pν

))

Γk(r+k(1− 1
pν

))

}p

is sharp.

Proof. Let η(t;x) be a probability density function on (0, x) for x > 0. Applying

Jensen’s inequality and Fubini’s theorem, one obtains

∫
∞

0

(νkI
rf(x))pdx

≤

∫
∞

0

νp(1−
r
k
)x−

pνr

k

kpΓp
k(r)

∫ x

0

(xν − tν)p(
r
k
−1)tp(ν−1) fp(t)

ηp−1(t;x)
dtdx

=

∫
∞

0

νp(1−
r
k
)fp(t)

kpΓp
k(r)

(∫
∞

t

(
1− tν

xν

)p( r
k
−1)

x−
pνr

k
+ pνr

k
−pνtp(ν−1)

ηp−1(t;x)
dx

)
dt. (54)

Now choosing η(t;x) is a scale distribution on (0, x) as η(t;x) = 1
xη(t/x) for some

density function η(u) on (0, 1). Substituting the value of η(t;x) in (54), one gets

∫
∞

0

(νkI
rf(x))pdx

≤

∫
∞

0

νp(1−
r
k
)fp(t)

kpΓp
k(r)

(∫
∞

t

(
1− tν

xν

)p( r
k
−1)

x−pν+p−1tp(ν−1)

ηp−1(t/x)
dx

)
dt. (55)
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Changing the variable in inequality (55) using the transformation u = t/x, one gets
∫

∞

0

(νkI
rf(x))pdx ≤

∫
∞

0

νp(1−
r
k
)fp(t)

kpΓp
k(r)

(∫ 1

0

upν−p−1(1− uν)p(
r
k
−1)

ηp−1(u)
du

)
dt

=
νp(1−

r
k
)

kpΓp
k(r)

∫ 1

0

upν−p−1(1− uν)p(
r
k
−1)

ηp−1(u)
du

∫
∞

0

fp(t)dt. (56)

This proves that inequality (53) holds with the constant term

νp(1−
r
k
)

kpΓp
k(r)

∫ 1

0

upν−p−1(1− uν)p(
r
k
−1)du.

To prove that the associated constant term is sharp, we choose a p. d. f. ζ(u) on

(0, 1) as ζ(u) = νu
ν−

1
p
−1

(1−uν)
r
k

−1

B(1− 1
pν

, r
k
)

. Then inequality (14) reduces to the following

form:

νp(1−
r
k
)

kpΓp
k(r)

∫ 1

0

upν−p−1(1− uν)p(
r
k
−1)

ηp−1(u)
du ≥

νp(1−
r
k
)

kpΓp
k(r)

{
B
(
1− 1

pν ,
r
k

)

ν

}p

=

{
ν−

r
kΓk

(
k(1− 1

νp

)
)

Γk

(
r + k(1− 1

νp

)
)

}p

. (57)

Inequality (57) says that the constant term
{

ν−
r
k Γk(k(1−

1
νp

))

Γk(r+k(1− 1
νp

))

}p

in inequality (56)

and hence in inequality (53) is sharp. This completes the proof.

3.5. (k, ν)-Weyl fractional integral of order r

Let k > 0, r > 0, ν be a non-zero real number and f(x) be a continuous function

defined on [x,∞), x > 0. Then the (k, ν)-Weyl fractional integral ν
kJ

rf(x) of f(x)

of order r is introduced in [2] and defined as follows:

ν
kJ

rf(x) =
ν1−

r
k

kΓk(r)

∫
∞

x

(tν − xν)
r
k
−1tν−1f(t)dt,

where Γk(x) is the k-Gamma function as defined in the previous sub-section. Now

a Hardy-type inequality involving the (k, ν)-Weyl fractional integral of order r is

presented in the following theorem.

Theorem 16. Suppose that f(x) (f 6≡ 0) is a continuous function defined on [x,∞)

for x > 0 and p > 1. Then

∫
∞

0

(νkJ
rf(x))pdx <

{
ν−

r
kΓk

(
k
pν

)

Γk

(
r + k

pν

)

}p∫
∞

0

(
x

νr
k f(x)

)p
dx holds unless f ≡ 0, (58)
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where the constant term
{

ν−
r
k Γk

(
k
pν

)

Γk

(
r+ k

pν

)
}p

is best possible.

Proof. Let η(t;x) be a p. d. f. on (x,∞) for x > 0. Applying Jensen’s inequality

and Fubini’s theorem, one gets

∫
∞

0

(νkJ
rf(x))pdx

≤

∫
∞

0

νp(1−
r
k
)

kpΓp
k(r)

∫
∞

x

(tν − xν)p(
r
k
−1)tp(ν−1) fp(t)

ηp−1(t;x)
dtdx

=

∫
∞

0

νp(1−
r
k
)fp(t)

kpΓp
k(r)

(∫ t

0

(
1− xν

tν

)p( r
k
−1)

tpν(
r
k
−1)tp(ν−1)

ηp−1(t;x)
dx

)
dt. (59)

Selecting a scale distribution η(t;x) on (x,∞) as η(t;x) = x
t2 η(x/t) for some density

function η(u) on (0, 1) and substituting the value of η(t;x) in (59), one obtains

∫
∞

0

(νkJ
rf(x))pdx

≤

∫
∞

0

νp(1−
r
k
)fp(t)

kpΓp
k(r)

(∫ t

0

(
1− xν

tν

)p( r
k
−1)

tpν(
r
k
−1)+p(ν−1)+2(p−1)

xp−1ηp−1(xt )
dx

)
dt. (60)

Using the variable transformation u = x
t in inequality (60), one gets

∫
∞

0

(νkJ
rf(x))pdx ≤

νp(1−
r
k
)

kpΓp
k(r)

∫ 1

0

u1−p(1− uν)p(
r
k
−1)

ηp−1(u)
du

∫
∞

0

(
t
νr
k f(t)

)p
dt, (61)

which proves inequality (58) with the constant factor

νp(1−
r
k
)

kpΓp
k(r)

∫ 1

0

u1−p(1− uν)p(
r
k
−1)

ηp−1(u)
du.

For proving that the associated constant factor is best possible, a p. d. f. ζ(u) =

νu
1
p
−1

(1−uν)
r
k

−1

B( 1
pν

, r
k
)

on (0, 1) is chosen. Then inequality (14) simplifies to the following

form:

νp(1−
r
k
)

kpΓp
k(r)

∫ 1

0

u1−p(1− uν)p(
r
k
−1)

ηp−1(u)
du ≥

νp(1−
r
k
)

kpΓp
k(r)

{
B
(

1
pν ,

r
k

)

ν

}p

=

{
ν−

r
kΓk

(
k
pν

)

Γk

(
r + k

pν

)

}p

,

which implies that the constant term
{

ν−
r
k Γk(

k
pν

)

Γk(r+
k
pν

)

}p

in inequality (61), and hence

inequality (58) is best possible.
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4. Conclusions

An attempt has been made to give a probabilistic proof of the classical integral

inequalities of Hardy [10,13], Copson [8], Bennett [4], Leindler [16,18] and Levinson

[20]. Several new integral inequalities of Hardy-type are also established using a

probabilistic approach. The associated constant factor in each of these inequali-

ties is sharp, and derived by using the Kullback–Leibler inequality. The approach

may be considered for proving and establishing other well-known and new integral

inequalities.
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