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Abstract. This versatile topic goes back to the inventions of Gauss, Markov,

and Gibbs, whose ideas are incorporated in graphical models and regression

graphs. Later, the geneticist S. Wright (1923–1934) and the philosopher and

computer scientist J. Pearl (1986–1987) developed the tools, but their notation

is too complicated to formulate the mathematical background. Here we mainly

follow the up-to-date discussion of statisticians S. Lauritzen and N. Wermuth,

and try to juxtapose the directed–undirected and discrete–continuous cases.

1. Graphical models in general

First, without specifying the type of distribution, we discuss the directed and undi-

rected models separately. We will show that they have many properties in common,

and after possible alterations, can be transformed into each other. If we have a

sample from a joint distribution that basically does not have directions between

the variables, we can find conditional independences between subsets of them (sup-

porting some kind of Markovity) based on statistical analysis, and build usually

an undirected graph on them. In particular, when our underlying distribution is

multivariate Gaussian, we build a so-called concentration graph (see Section 3),

and if it is discrete on categorical variables with assumed interactions, we build

a log-linear model (see Section 2.1). Both models contain decomposable ones as

special cases, in which case a so-called perfect numbering of the variables exists.
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This ordering traces back to the directed case. As a combination of the discrete

and continuous, we may have Conditional Gaussian (CG) distributions, and as a

combination of the directed and undirected, chain graphs and regression graphs

are at our disposal. We want to show that all these are strongly related, and only

based on the actual data and after a thorough statistical analysis on them, one can

determine which model to use.

Summarizing, graphical models provide a framework for describing statistical

dependences in (possibly large) collections of random variables. At their core lie var-

ious correspondences between the conditional independence properties of a random

vector and the structural properties of the graph used to represent its distribution.

If there are groups of the variables which are marginally independent, then the joint

distribution factorizes trivially. Usually this is not the case, but certain groups of

variables can be conditionally independent conditioned on another group. This also

causes the joint probability mass function (pmf) or probability density function

(pdf) to factorize in terms of certain conditional probabilities or densities. The

factors are far from being unique, and sometimes they or their negative logarithms

are called potentials. Again, the graph here is just a tool for the representation of

the richer structure of the joint distribution.

1.1. Directed graphical model: Bayesian Network (BN)

BN’s are directed graphical representations of joint distributions. The vertices

correspond to random variables (rv’s) X1, . . . , Xd, whereas the directed edges to

causal dependences between them. The rv’s are usually discrete, mainly categorical,

taking on finitely many values. The point is that even if the rv’s are binary, it is

time-consuming to learn the underlying distribution from the data as there are 2d

possible joint states in the pmf. However, if we parameterize with the conditional

probabilities along the dependences, we can reduce the calculations, provided the

underlying distribution P is Markov compatible with the directed graph assigned to

the rv’s based on causal relations. But this is sometimes not an open question, as

the joint distribution is generated through conditional probability tables (as in [13]),

and so, we have it in a factorized form, which fact will turn out to be equivalent to

some kind of Markovity.

We treat only directed acyclic graphs (DAG’s). In case of a DAG G with

vertex-set V = {1, . . . , d}, there are no directed cycles, and therefore, there exists

a linear ordering (labeling) of the vertices such that for every directed edge j → i,

i < j holds (we can refer to this relation as j is the parent of i). So the youngest

vertex has label 1, and the older a vertex, the larger its label is (we can think of

labels as ages). We use this so-called (not necessarily unique) topological labeling of
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the vertices which is also in accord with the labeling of the forthcoming regression

graph models, see Section 4.2. To find such a labeling, an algorithm is to be found

on [11, p. 1146]. Note, that some authors use the opposite ordering, however, this

one fits better in the framework of regression graphs, when it is important that the

rows or columns of the involved matrices be indexed in this order.

The directed factorization property (DF) of the distribution of the random

vector (X1, . . . , Xd) means that for any state configuration x = (x1, . . . , xd), it

factorizes over the DAG G as

p(x1, . . . , xd) =

d∏
i=1

p(xi|xi+1, . . . , xd) =

d∏
i=1

p(xi|xpar(i)), (DF)

where p(x1, . . . , xd) is the pmf corresponding to the d-tuple of states (x1, . . . , xd) in

the topological ordering; par(i) ⊂ {i+ 1, . . . , d} denotes the set of vertices j such

that from them, a directed edge j → i emanates to i (they are the parents of i), and

for any A ⊂ V we use the notations xA = {xi : i ∈ A} and XA = {Xi : i ∈ A}.

In fact, (DF) automatically holds if the pmf is constructed based on conditional

probabilities (or densities in the continuous case). Vice versa, we can construct a

DAG based on a factorized joint density in the following way: we draw a j → i,

i < j edge if there is a factor like p(xi| . . . xj . . . ) that cannot be further reduced.

On the other hand, let (DL) denote the directed local Markov property of the

distribution of the random vector X = (X1, . . . , Xd) as follows. Let

ant(i) = {i+ 1, . . . , d} \ par(i)

denote the set of anteriors of i (the set of its non-descendants except its parents).

Then (DL) means that

Xi⊥⊥Xant(i)|Xpar(i), i = 1, . . . , d, (DL)

holds, i.e., Xi (future) and Xant(i) (past) are independent conditioned on Xpar(i)

(present). It also means that p(xi|x{i+1,...,d}) = p(xi|xpar(i)), i = 1, . . . , d, holds

for any state configuration. This generalizes the fundamental property of Markov

chains (when G is a directed path).

Later on, we need the ancestral set of Xi that consists of the variables Xj ,

j ∈ {i+ 1, . . . , d}, such that there is a directed path from j to i. This set contains

the parents, grandparents, etc. of Xi. For A ⊂ V , let An(A) denote the ancestral

set of A, that is the smallest possible vertex-set (including A) containing all vertices

from where a directed path emanates to vertices of A.

Theorem 1 of [25] proves that for any DAG G, the set of distributions enjoying

property (DF) is the same as those enjoying (DL). Actually, Lauritzen [14] states
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more. He proves that (DL) is also equivalent to (DG), the global Markov property on

directed graphs, but we can define it only in Section 1.2 in the context of undirected

graphs and the so-called d-separation. However, we are able to define here the

directed pairwise Markov property (DP) of the distribution of (X1, . . . , Xd) that

reads as follows:

Xi⊥⊥Xj |Xpar(i) for j ∈ ant(i), i = 1, . . . , d. (DP)

The (DL)=⇒(DP) implication is trivial, but Lauritzen [14, p. 51] shows in a coun-

terexample that the converse is not always true. However, if the joint distribution is

strictly positive (with respect to the product measure), then all the directed Markov

properties are equivalent. Note that Wermuth [31, p. 4] characterizes pairwise de-

pendences too, in addition to the independence statements in (DP). These together

are equivalent to (DL). We will summarize these issues in the next sections.

1.2. Undirected Graphical Model and the Markov Random Field (MRF)

Here the vertices also correspond to rv’s X1, . . . , Xd, whereas the undirected edges

are obtained through conditional independences between them. So MRF’s are undi-

rected graphical models that include the neighbors instead of parents in the condi-

tional independence statements, satisfying some (or all) of the following Markov-type

properties.

For an undirected graph G, the undirected global Markov property (UG) of a

joint distribution with respect to G is defined as follows:

XA⊥⊥XB |XS (UG)

holds for any vertex cutset S between disjoint vertex-subsets A and B, i.e., removing

vertices of S will make A and B disconnected.

The undirected pairwise Markov property (UP) of a joint distribution with

respect to the undirected graph G is defined as

Xi⊥⊥Xj |XV \{i,j}, i �= j, (UP)

while the undirected local Markov property (UL) as

Xi⊥⊥XV \cl(i)|Xbd(i), for all i, (UL)

where bd(i) = {j : j ∼ i} denotes the set of neighbors, in other words, the boundary

(in G) of i, while cl(i) = {i} ∪ bd(i) denotes the closure (in G) of i. For the states,

Equation (UL) means that

p(xi|x1, . . . , xi−1, xi+1, . . . , xd) = p(xi|xbd(i)), i = 1, . . . , d.
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So the conditional independence relations depend on the neighborhood. This obser-

vation is the base of the so-called Gibbs fields.

Now, let (UF) denote the undirected factorization property of the underlying

multivariate distribution with respect to the undirected graph G. For the states, it

means the factorization of the joint pmf or pdf as

p(x1, . . . , xd) =
1

Z

∏
C∈C

ΨC(xC) (UF)

with normalizing constant Z > 0 and non-negative compatibility functions ΨC ’s

assigned to the cliques C ∈ C of G. Under a clique we understand a maximal

complete subgraph of G. Note that, in graph theory, they are sometimes called

maximal cliques. The compatibility functions are sometimes called clique potentials,

though this notion is used in the literature in many contexts. In special (to be called

decomposable) models, the forthcoming Equation (2.9) gives an explicit formula

for the compatibility functions. The above factorization (UF) is far from being

unique, and sometimes has a more convenient form if not only the cliques, but other

complete subgraphs are also involved (e.g., in hierarchical log-linear models).

In fact, ΨC ’s are defined on all the state configurations within the clique, and

depend on the relation of C to the other cliques too. More precisely, ΨC : XC → R+,

where XC = ×i∈CXi and Xi is the sample space corresponding to Xi, i.e., Xi takes

on values in the set Xi. The whole sample space is X = ×d
i=1Xi.

Lauritzen [14] proves that for a distribution over an undirected graph, the

implications (UF) =⇒ (UG) =⇒ (UL) =⇒ (UP) always hold. However, there is an

important theorem, attributed to Hammersley and Clifford (see [14,19]) that states

(UP) =⇒ (UF), whenever P is positive and continuous with respect to the product

measure which condition always holds in non-degenerate exponential families. So,

under this condition, (UF) =⇒ (UG) =⇒ (UL) =⇒ (UP) =⇒ (UF), therefore, all

these properties are equivalent. Consequently,

(UG)⇐⇒ (UL)⇐⇒ (UP) (1.1)

also holds. However, for the equivalences in (1.1), milder conditions than the posi-

tivity of P also suffice. For example, for disjoint vertex-subsets A,B,C:

XA⊥⊥XB |XC and XA⊥⊥XC |XB =⇒ XA⊥⊥XB∪C .

These are the so-called composition and intersection properties that define so-called

graphoids and Gaussoids, see [16]. However, such distributions, like the Gaussian,

symmetric binary, and so-called MTP2 distributions, mimic the properties of the

Gaussian one, and we do not need the abstract definition of them.
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An important consequence of the Hammersley–Clifford theorem is that, in

case of positive distributions, (UP) can be used to build the graph that is based on

pairwise relations of the variables. Then, with this graph, all the global and local

independences will hold.

Gaussian distributions in the continuous, while log-linear distributions in the

discrete cases, and the mixture of them all satisfy the positivity constraint, and in

the next sections we shall confine ourselves to these distributions. We will show

that these distributions have many properties in common, in particular, when the

models are decomposable (in the wording of [28], multiplicative), and therefore, the

algorithms on a so-called junction tree can be unified in the possession of data.

Also, even if the underlying graph is undirected, the decomposable structure gives

a (not necessarily unique) so-called perfect ordering of the vertices, in which order

directed edges can be drawn. This is the base of path analysis [33], regression graph

and chain graph models, see [29–32]. We will go through these topics in Section 4,

after discussing log-linear and Gaussian models in Sections 2.1 and 3, as prototypes,

in details.

Note that the equivalence (UP) ⇐⇒ (UG) in (1.1) justifies that, in case

of positive distributions, all independence statements can be read off the graph,

constructed based on pairwise independences of the variables, conditioned on the

remaining ones. In Cox and Wermuth [5] these are called concentration graphs,

but we introduce this notion only in Section 3 for Gaussian rv’s. In this context,

sometimes covariance graphs are considered, where undirected edges correspond to

non-zero pairwise correlations. In a concentration graph, when two disjoint vertex-

subsets A and B have no path between them, it follows that XA⊥⊥XB , because XA

and XB are independent conditioned on X∅ (as there is no separating set between

them); this means that they are marginally independent. Otherwise, a covariance

graph and concentration graph based on the same (positive) distribution coincide

only if the latter consists exclusively of disjoint cliques. Covariance graphs will be

discussed in the context of regression graphs (see Section 4.2), but only within chain

blocks of rv’s on equal standing.

Going back to the directed graphs, observe that condition (DF) resembles that

of (UF), since in case of a DAG, condition (DF) can be written as

p(x1, . . . , xd) =
1

Z

d∏
i=1

Ψcl(i)(xi, xpar(i)) =
1

Z

d∏
i=1

Ψcl(i)(xcl(i))

where Z = 1 and cl(i) = {i} ∪ par(i) is considered as the closure of vertex i in the

DAG, which also forms a complete subgraph in the skeleton if the DAG G does

not contain a sink V configuration like i→ k ← j for k < i, k < j, when there is
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no arrow between the distinct vertices i and j. Such a DAG is called decomposable.

Let us form the vertex-sets Mi := cl(i) (i = 1, . . . , d), the spanning subgraph of

which is complete. Delete those that are contained in another one, and keep only

the maximal complete subgraphs, i.e., the cliques C ∈ C among them. Then the

above equation can be transformed into Equation (UF) with Z now not necessarily

1. We will later see that the so obtained cliques also form a so-called junction tree

structure in the skeleton (undirected version) of the DAG. This (in other words,

decomposable) structure is not necessarily understood in Equation (UF) in case of

an undirected graph, where the factorization over the cliques does not assume their

junction tree structure, so it is weaker than decomposability.

We can make a directed BN undirected: not only disregard the orientation of

the edges but also ‘moralize’ the graph. If G is a DAG, it can be done by connecting

two parents (having a common child) whenever they are not connected (married).

The so obtained moral graph Gm is then used in the MRF setup. To motivate

moralization, assume that the underlying distribution is multivariate Gaussian on

a DAG G. Moralization is needed when for some triple i, j > k in G, i → k, and

j → k holds, but there is no directed edge between i and j. Then even if Xi

and Xj are (marginally) independent, they are not conditionally independent any

more, conditioned on Xk. For example, if Xi is the years of former schooling and

Xj is the gender, then — though they are independent (men and women can get

any education irrespective of gender) — they are conditionally dependent given

the income (Xk). In the example of [31], on a given level of salary, women had a

higher level of education than men. Such conditional dependence induces an edge

in Gaussian covariance selection models. The triplet i, k, j is a sink V; for details

about these edge-inducing dependences see Section 4.1.

Though we may think that an undirected graph gives rise to a richer structure

of independence statements through neighborhoods than a directed one (on the

same skeleton) using only ancestral dependences, it turns out that the directed and

undirected Markov properties are strongly related to each other.

Proposition 1.1. ([14, Lemma 3.21]) If P has property (DF) with respect to the

directed graph G, then it has property (UF) with respect to the undirected moral

graph Gm
of G.

A certain converse of Proposition 1.1 and so-called Markov-equivalences of

regression graphs will be stated later, when the graph has both directed and undi-

rected edges, and we have learned the notion of decomposability.

Now, in possession of Proposition 1.1, we are able to define the directed global

Markov property (DG) of a distribution with respect to a directed graph G. This
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means that

XA⊥⊥XB |XS (DG)

holds for any vertex cutset S between disjoint vertex-subsets A and B in the moral

graph of the ancestral set An(A ∪ B ∪ S). Note that (DG) is equivalent to the

d-separation (direction-dependent separation) criterion of Pearl [19]:

XA⊥⊥XB |XS ⇐⇒ S d-separates A from B, (1.2)

where S d-separates A from B in the DAG G if there is no active path in G from

A to B given S. A path between A and B given S is active if among its inner

nodes, every collision node (◦ → ◦ ← ◦ ) is in An(S) and every transmitting node

(◦ → ◦ → ◦ ) is in V \ (A ∪ B ∪ S). This notion is also generalized to regression

graphs [29], see Section 4.2. Based on these, the so-called Bayes-ball algorithm is

constructed to decide whether the above d-separation holds for given disjoint subsets

A,B, S ⊂ V , see, e.g., [19]. Later it was shown that the criterion of d-separation

cannot be improved: in the case of real sample spaces, a Gaussian and a symmetric

binary distribution always exists satisfying (1.2).

Recall that (DF)⇐⇒ (DG)⇐⇒ (DL) =⇒ (DP) as discussed in Section 1.1.

Finally, note that P is called a Gibbs distribution over the undirected graph G

if it can be parameterized by a set of positive functions ΨC ’s over the cliques of G,

by physicists called clique potentials, such that for its pmf or pdf the condition (UF)

holds. By the above Hammersley–Clifford theorem, a Gibbs field and MRF are

equivalent with regard to the same G whenever P is strictly positive. We use the

notion Markov Random Field (MRF) only for positive distributions, when all the

Markov properties are equivalent to each other and to the factorization property.

Originally, Gibbs fields were developed in statistical physics, where the compatibility

functions are of the form ΨC = e−gC with gC an energy function over states xC of

C. The energy represents the likelihood of the corresponding relationships within

the clique, with a higher energy configuration having lower probability and vice

versa. The estimation of these potentials through energy functions is related to

the theory of the forthcoming log-linear models and Markov Chain Monte Carlo

methods, e.g., Gibbs samplers [12,14]. When the cliques are vertex-pairs (e.g., G is

a grid), then we get the classical Ising model.

In [13], the authors give several equivalent potential representations of the

probabilities in an MRF, and in the more special class of them (decomposable

model), the forthcoming representation of Equations (2.7) and (2.9) indeed give a

direct factorization of the joint density.
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2. Discrete MRF’s

2.1. Log-linear models

Let X1, . . . , Xd be categorical variables, where Xi takes on values in the finite set

Xi = {1, . . . , ri}, i = 1, . . . , d. The components of the random vector (X1, . . . , Xd)

are usually not independent, the observations for their joint distribution are collected

in a so-called contingency table, the frame of which is provided by the sample space

(state space) X = X1 × · · · × Xd. In fact, X is a d-dimensional array, the entries

of which are d-tuples x = (x1, . . . , xd) ∈ X , and they are called cells ; altogether,

there are
∏d

i=1 ri cells. Under contingency table we understand this frame together

with the cell counts n(x), x ∈ X , where the nonnegative integer n(x) is the number

of observations for the random vector X = (X1, . . . , Xd) that fall in the cell x out

of the total of n observations. In other words, n is the sample size, and of course,

n =
∑

x∈X n(x). When n is kept fixed, the joint distribution of the counts, N(x)′s

as rv’s, is multinomial with parameters p(x), x ∈ X :

P(N(x) = n(x), x ∈ X ) =
n!∏

x∈X n(x)!

∏
x∈X

p(x)n(x). (2.1)

In the saturated model, the parameters are only constrained by restrictions that

are due to the sampling procedure, the multinomial sampling. Under multinomial

sampling, as in exponential families, the ML-estimate of the parameters is obtained

by equating the count n(x) to the binomial expectation np(x), for all x ∈ X , and

hence, p̂(x) = n(x)
n

, x ∈ X .

Now, with some restrictions on the marginal distributions, we shall define more

special models. We need the following definitions. The marginal of the contingency

table corresponding to a given subset of the variables XA = {Xi : i ∈ A}, with

A ⊂ V = {1, . . . , d}, is defined as follows. The A-marginal of the contingency table

is given by the marginal counts

n(xA) =
∑

x′∈X :x′
A
=xA

n(x′) =
∑

yV \A∈XV \A

n(xA,yV \A), xA ∈ XA = ×i∈AXi,

i.e., the variables in V \A are ‘summed out’. So if |A| = k, then these A-marginal

counts form a k-dimensional contingency table of
∏

i∈A ri cells, and there are
(
d
k

)
possible k-dimensional marginals (k = 1, . . . , d). Likewise, the A-marginal distribu-

tion of the distribution {p(x) : x ∈ X} is defined by

pA(xA) =
∑

x′∈X :x′
A
=xA

p(x′) =
∑

yV \A∈XV \A

p(xA,yV \A), xA ∈ XA.
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Given the set Γ = {A : A ⊂ V }, we define the following log-linear model :

ln p(x) = f0 +
∑
A∈Γ

fA(xA), (2.2)

where the individual terms represent interactions (fA : XA → R functions) corre-

sponding to A ∈ Γ, for they depend on x only through xA, and the constant term

f0 corresponds to ∅ ∈ Γ (it also fits into the forthcoming hierarchical structure of

Γ). This is also in accord with the notation of the Gibbs field, see Section 1.2, where

|fA|’s are the energies of the configurations that correspond to the vertex-subsets

in Γ of G. We will see that the log-linear model defines an MRF if and only if

the generating class Γ consists of the cliques of G and of the subsets of them, see

Section 2.2.

To meet some compatibility constraints, we consider hierarchical log-linear

models: with any A ∈ Γ and A′ ⊂ A, the relation A′ ∈ Γ also holds, and some

normalizing conditions are also needed (see [6]). If P obeys a hierarchical log-linear

model, it means that it can be constructed as the product of functions defined on

its lower-dimensional margins up to a certain dimension. So it suffices to keep only

the maximal interaction sets in Γ; such a Γ will be called the generating class of

the log-linear model.

In special hierarchical log-linear models (we will call them graphical), the

generating class is specified with the set of maximal interactions

C = {C : C is a clique of the underlying graph},

and so, Γ consists of the complete subgraphs of the underlying graph. In this

case, there is another equivalent form of Equation (2.2) that uses an exponential

parametrization and shows that we are in the exponential family :

p(x) = exp

{∑
C∈C

〈θC , IC(xC)〉 − Z(θ)

}
.

Here θ = {θC : C ∈ C} is the canonical parameter, where

θC = {θC,yC
, yC ∈ XC} ∈ R|XC |

is a vector, and so, θ is a
∑

C∈C |XC |-dimensional vector, which dimension is usually

less than |X | =
∏n

i=1 |Xi|. The canonical statistic IC also takes on values in R|XC |

for every C ∈ C. In fact, the IC ’s are multiple indicator functions consisting of usual

0-1 indicator functions of all possible states in XC (cells with coordinates in C).

More exactly,

IC = {IC,yC
, yC ∈ XC} ∈ R|XC |,
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where the usual indicator function IC,yC
(xC) is 1 if xC = yC and 0 otherwise.

Further, 〈·, ·〉 denotes the inner product in the above finite-dimensional spaces, and

Z(θ) is the log-partition function (it does not depend on x ∈ X ). In accord with

(2.2), fC = θCIC .

In exponential family, the sums of the canonical statistics through an iid sam-

ple X(1), . . . ,X(n) ∈ X , are the sufficient statistics entering into the parameter

estimation. So based on this sample, the frequencies n(xC)’s of the cells within

the cliques are the sufficient statistics. The mean value parameters (in other words,

moment parameters) are their expectations: m(xC) = np(xc). In regular exponen-

tial families, there is a one-to-one correspondence between the mean value and

the canonical parameters, see [26]. Further, the ML-estimate of the mean value

parameter comes from the moment-matching equations

m(xC) = n(xC), C ∈ C, x ∈ X .

This system of equations is solved by the Iterative Proportional Scaling (IPS) algo-

rithm of Section 2.5.

2.2. Graphical and decomposable models

In many applications we have a contingency table of large size: even in case of

binary variables, there are 2d cells the number of which grows exponentially with

the number of variables d. Then the IPS algorithm of Section 2.5, going through

the cells several times, is time-consuming. However, there are models, where the

ML-estimate of the cell probabilities under the model’s assumptions can be given

by explicit formulas. These models are characterized by the special dependency

structure of the variables when we build a graph or hypergraph on them. These are

the decomposable models.

From now on, our log-lineal model is hierarchical, and therefore, we keep only

the maximal interactions in Γ. Recall that we called this Γ the generating class of the

model. Further, we assume that each variable is included in at least one interaction;

in other words, all main effects are present. In case of a special structure of the

generating class, we can introduce an exact algorithm that goes through the sets

A ∈ Γ in a definite order, see the belief propagation algorithm of Section 2.5.

To discuss this, hypergraph notions may be used as follows. The generating

class Γ uniquely defines the following hypergraph H: the vertices correspond to

the variables and constitute the set V = {1, . . . , d}, while the hyperedges are the

elements of Γ (they are the maximal interaction sets). With our former assumption,

each vertex is contained in at least one hyperedge. As the model is hierarchical,
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the subsets of the maximal interaction set are also interactions, but they are not

hyperedges in H.

The interaction graph G = G(H) corresponding to H, or equivalently, to the

hierarchical log-linear model with generating class Γ, is defined in the following way.

Its vertex set is again V , while the edges are as follows:

i ∼ j ⇔ {i, j} ⊆ A for some A ∈ Γ,

i.e., two vertices are connected if and only if they are contained together in some

interaction set.

The clique hypergraph H of a graph G (both are defined on the same vertex

set) consists of hyperedges which are exactly the cliques of G. With another wording

(see [23]), H is conformal (with G).

Observe that different connected components of the so-called interaction graph

correspond to variables that are mutually (marginally) independent. Also note

that different hierarchical models may have the same interaction graph, see the

examples below. However, we introduce a class of models when there is a one-to-

one correspondence between the model and its interaction graph. Therefore, the

interaction graph is capable of describing such a model. To make it precise, we need

some further definitions.

Definition 2.1. The hierarchical log-linear model with generating class Γ is graphical

if the hypergraph H defined above (with the hyperedges as the entries of the

generating class Γ) is identical to the clique hypergraph of its interaction graph

(see [17]), i.e., H is conformal (with G).

Note that equivalently the definition means: the hierarchical log-linear model

with generating class Γ is graphical if the generating class Γ is identical to the

cliques of its interaction graph.

For example, when the generating class is

Γ = {{1, 2}, {2, 3}, {1, 3}}, (2.3)

then the interaction graph has the clique {1, 2, 3}, which is not an interaction set.

So our log-linear model is not a graphical interaction model. However, when the

generating class is

Γ′ = {{1, 2, 3}}, (2.4)

then the interaction graph has the clique {1, 2, 3}, so our log-linear model is a

graphical interaction model. Note that model (2.3) corresponds to the Ising model

on 3 vertices. When there are more than 3 vertices, then, for example, a squared
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grid defines an Ising model, where the cliques are indeed the vertex-pairs, so those

constitute the generating class at the same time.

Theorem 2.2. ([17]) The distribution P obeying the hierarchical log-linear model

with generating class Γ defines an MRF (satisfies conditions (UF), (UG), (UL),

and (UP)) if and only if the log-linear model is graphical (again, the cliques of the

interaction graph G correspond to subsets of variables which are in interaction with

each other).

Now we investigate special graphical models, the decomposable ones.

Definition 2.3. The hierarchical log-linear model with generating class Γ is decom-

posable if its interaction graph is decomposable.

The definition of the (weak) decomposability of a graph is recursive.

Definition 2.4. The graph G is decomposable if it is either a complete graph or its

vertex-set V can be partitioned into disjoint vertex-subsets A,B,C such that

• C defines a complete subgraph;

• C separates A from B (in other words, C is a vertex cutset between A and B);

• the subgraphs generated by A ∪ C and B ∪ C are both decomposable.

In this way, decomposability goes through to the log-linear model as follows.

Proposition 2.5. The log-linear model is decomposable if and only if the generating

class Γ either consists of one set (G is the complete graph) or it is the disjoint union

of the decomposable generating classes Γ1 and Γ2 (they contain no sets in common)

so that there exist A∗ ∈ Γ1 and B∗ ∈ Γ2 with the following property:( ⋃
A∈Γ1

A
)
∩
( ⋃

B∈Γ2

B
)
= A∗ ∩B∗.

It is important that decomposable models are subclasses of the graphical ones.

Proposition 2.6. ([17, Corollary 7.5]) A log-linear model is graphical whenever it

is decomposable.

So, in case of contingency tables, the graphical interaction models (the cliques

constitute the generating class) coincide with the MRF’s. However, the decom-

posable models are proper subsets of them. In [6], the authors show examples of

graphical interaction models that are not decomposable. We will cite some of these

examples at the end of Section 2.3, after we have learned some equivalent notions

of decomposability.
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Note that some authors call the decomposable models Markov, as here the

chain of the cliques behaves like a Markov chain, see (2.6) in the subsequent Sec-

tion 2.3. It is misleading, and again, the Markov chain property of the decomposable

models is stronger than the condition for being an MRF.

2.3. Junction tree

If we have a graphical hierarchical log-linear model and the model is also decompos-

able, we can find a junction tree structure of the cliques by the following equivalences.

Recall that by a clique we understand a maximal complete subgraph (as in the

statistics literature). Here we establish many equivalent properties of a decompos-

able graph, based on Proposition 2.5 of [14], Proposition 4 of [28], and the last

section of [25]. For simplicity, the necessary notions are defined at the very place

where they are introduced. Further explanation together with algorithmic aspects

is to be found in Section 2.4.

Proposition 2.7. The following properties are equivalent to the fact that G is de-

composable:

• G is triangulated (with other words, chordal), i.e., every cycle in G of length

at least four has a chord.

• G has a perfect numbering of its vertices such that in this labeling,

bd(i) ∩ {i+ 1, . . . , d} (2.5)

is a complete subgraph, i = 1, . . . , d. It is also called single vertex elimination

ordering (see [25]), and obtainable with the Maximal Cardinality Search (MCS)

algorithm of [23], see Section 2.4.

• G has the following running intersection property (RIP): we can number

the cliques of it to form a so-called perfect sequence C1, . . . , Ck where each

combination of the subgraphs induced by Hj−1 = C1 ∪ · · · ∪ Cj−1 and Cj is

a decomposition (j = 2, . . . , k), i.e., the necessarily complete subgraph Sj =

Hj−1 ∩ Cj is a separator. More precisely, Sj is a vertex cutset between the

disjoint vertex subsets Hj−1 \Sj and Rj = Cj \Sj = Hj \Hj−1. This sequence

of cliques is also called a junction tree (JT).

Here any clique Cj is the disjoint union of Rj (called residual), the vertices

of which are not contained in any Ci, i < j and of Sj (called separator) with

the following property: there is an i∗ ∈ {1, . . . , j − 1} such that

Sj = Cj ∩
( j−1⋃

i=1

Ci

)
= Cj ∩ Ci∗ .
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This (not necessarily unique) Ci∗ is called the parent clique of Cj. Here S1 = ∅

and R1 = C1. Furthermore, if such an ordering is possible, a version may be

found in which any prescribed set is the first one (see [21]).

Also, equivalently, any path between Ci and Cj (i �= j) contains Ci ∩ Cj.

Note that the junction tree is indeed a tree with vertices C1, . . . , Ck and one

less edges, that are the separators S2, . . . , Sk.

• Sundberg’s criterion: We can number the cliques of G as C1, . . . , Ck, where

each combination of the subgraphs induced by Hj+1 = Cj+1 ∪ · · · ∪Ck and Cj

is a decomposition (j = 1, . . . , k − 1), i.e., the necessarily complete subgraph

Sj = Hj+1 ∩ Cj is a separator. More precisely, Sj is a vertex cutset between

the disjoint vertex subsets Hj+1 \ Sj and Rj := Cj \ Sj. Here Rj is called

residual, and so Cj = Sj ∪ Rj is a disjoint union. This sequence of cliques

forms the junction tree in the reversed RIP ordering.

So each Cj can be composed of one set of elements (Rj) which are missing in

all Ci, for i > j and one set Sj = Cj ∩ ∪
k
i=j+1Ci which is contained in some

Ci∗ , i
∗ > j. This (not necessarily unique) Ci∗ is the former parent clique of

Cj. Here Sk = ∅ and Rk = Ck.

Furthermore, if such an ordering is possible, a version may be found in which

any prescribed set is the last one (see [21]). As the Sundberg’s ordering of the

cliques is opposite to the RIP ordering, in the RIP ordering any prescribed

clique can be the first one.

• G is recursively simplicial, see [25]. A non-empty graph G is recursively

simplicial if it contains a simplicial vertex, and when that is removed, any

graph that remains is recursively simplicial.

A vertex is called simplicial in a graph if its neighbours form a complete

subgraph. Every decomposable graph with at least two vertices has at least two

simplicial vertices; if the graph is not complete, these vertices can be chosen

to be non-adjacent (see [25]). We can arrange that C1 and Ck contain the

simplicial vertices.

• There is a labeling of the vertices such that the adjacency matrix contains a

reducible zero pattern (RZP). It means that the zero entries in the upper-

diagonal part of the adjacency matrix form an index set that is reducible

in the following sense. The index set I, which is the subset of the set of

edges {(i, j) : 1 ≤ i < j ≤ d}, is called reducible if for each (i, j) ∈ I and

h = 1, . . . , i− 1, we have (h, i) ∈ I or (h, j) ∈ I or both.

Indeed, this convenient labeling is a perfect numbering (2.5) of the vertices.

Note that decomposable graphs are special perfect graphs. A perfect graph

is defined as follows: it and any spanning subgraph of it has the same chromatic



Acta Scientiarum Mathematicarum 85:1–2 (2019) c© Bolyai Institute, University of Szeged

24 M. Bolla, F. Abdelkhalek and M. Baranyi

number as the size of the maximum clique (maximum size maximal clique in the

graph or in the spanning subgraph in question). L. Lovász (1972) proved that the

complement of a perfect graph is also perfect. It can also be proven that a graph is

perfect if and only if any odd cycle (of length greater than three) of it and (in view

of the above) of its complement has a chord, see the related exercises of [15].

Also observe that in the RIP ordering, the cliques also form a Markov chain:

the conditional distribution of XRj
conditioned on XC1∪···∪Cj−1 is the conditional

distribution of XRj
conditioned on XSj

, i.e.,

p(xRj
|xC1∪···∪Cj−1

) = p(xRj
|xSj

), (2.6)

where p is the pmf in discrete, and pdf in continuous cases. Sometimes this is called

Markovity, but again, it is stronger than being an MRF.

In decomposable log-linear models, there are also exact ML-estimates for the

cell probabilities, and so, for the moment parameters. Here we cite some results

of [14]. If we have the RIP ordering C1, . . . , Ck of the cliques with separators

S2, . . . , Sk, then for the cell probabilities we have

p(x) =

∏k

j=1 p(xCj
)∏k

j=2 p(xSj
)
=

∏
C∈C p(xC)∏

S∈S p(xS)ν(S)
, x ∈ X , (2.7)

where C is the set of the cliques, S is the set of the separators along the JT, and

ν(S) is the multiplicity of the occurrence of the separator S in the above JT of G.

Hence, the ML-estimate of the mean vector is given by the explicit formula

m̂(x) =

∏k

j=1 n(xCj
)∏k

j=2 n(xSj
)
=

∏
C∈C

n(xC)∏
S∈S

n(xS)ν(S)
, x ∈ X , (2.8)

and that of the cell probabilities is p̂(x) = m̂(x)
n

, x ∈ X .

Equation (2.7) also induces the following factorization:

p(x) =
k∏

i=1

p(xRj
|xSj

) (2.9)

in the RIP ordering, where Rj ’s are the residuals, Sj ’s are the separators of the

cliques C1, . . . , Ck; further, R1 = C1, S1 = ∅, so p(xR1 |xS1) = p(xC1). It is in accord

with (2.6) and also resembles the factorization (DF) of a directed graph. It also

gives a possible factorization in (UF), where Z = 1 and the compatibility function

is, in fact, a conditional probability of the clique’s residual on the clique’s separator:

ΨCj
(xCj

) = p(xRj
|xSj

) for any clique Cj = Rj ∪ Sj and any state configuration

xCj
within it.



Acta Scientiarum Mathematicarum 85:1–2 (2019) c© Bolyai Institute, University of Szeged

Graphical models, regression graphs, and recursive linear regression 25

Figure 1 illustrates that decomposable models are subclasses of the graphical

ones. Figure 1(a) is the complete graph corresponding to the unrestricted model,

while 1(b) corresponds to the model X1⊥⊥X2⊥⊥X5 | {X3, X4}, in terms of condi-

tional independences; (c) and (d) are not decomposable: (c) corresponds to the

model X1⊥⊥X4⊥⊥X5 | {X2, X3} and vice versa, X2⊥⊥X3 | {X1, X4, X5}, while (d)

corresponds to the model X1⊥⊥X3 | {X2, X4, X5} and X2⊥⊥X4 | {X1, X3, X5}. In

(a) and (b), the cliques constitute a junction tree in the Sundberg’s ordering (so

they both are decomposable), and (2.7) is applicable for their factorization. How-

ever, in (c) we can use the factorization according to the log-linear model. Actually,

its equivalent form for the log-probabilities is as follows:

ln p(x1, x2, x3, x4, x5)

= f1,2(x1, x2) + f1,3(x1, x3) + f2,4(x2, x4) + f2,5(x2, x5)+

+ f3,4(x3, x4) + f3,5(x3, x5) + f1(x1) + f2(x2)+

+ f3(x3) + f4(x4) + f5(x5) + f0.

C1 = {1, 2, 3, 4}

1 2

4 3

(a)

C1 = {1, 2, 3}
C2 = {2, 3, 4}
C3 = {2, 3, 5}

1 2

4 3

5

(b)

C1 = {1, 2}
C2 = {1, 3}
C3 = {2, 4}
C4 = {2, 5}
C5 = {3, 4}
C6 = {3, 5}

1 2

4 3

5

(c)

C1 = {1, 2, 5}
C2 = {2, 3, 5}
C3 = {3, 4, 5}
C4 = {4, 1, 5}

1 2

4 3

5

(d)

Figure 1. Examples of graphical models: (a) and (b) are also decomposable;

(c) and (d) are not. One may think that (d) is triangulated, but it

is not: 1-2-3-4-1 is a chordless 4-cycle in it.

In the following example, let us consider the rv’s X1, X2, X3, and assume that

X2 and X3 are independent conditioned on X1. This means that the generating

class of the log-linear model is

Γ = {{1, 2}, {1, 3}}, (2.10)

and the interaction graph has the cliques {1, 2} and {1, 3}. This log-linear model is

decomposable with the only separator S = {1} between the cliques. From (2.7), we
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get the formula

p(x1, x2, x3) =
p(x1, x2)p(x1, x3)

p(x1)
= p(x1, x2)p(x3|x1) (2.11)

which gives possible factorizations. The graph here was 2− 1− 3.

As the last example, consider the graph of Figure 2, where the generating class

of the log-linear model is

Γ = {{1, 3}, {2, 3}, {3, 4}, {4, 5, 6}}. (2.12)

As the entries of Γ are the cliques of the interaction graph, this log-linear model

is a graphical interaction model, and it is also decomposable with the cliques

{1, 3}, {2, 3}, {3, 4}, {4, 5, 6}, which form a junction tree in Sundberg’s ordering

with the separators {3}, {3}, {4}. Therefore, the probabilities in this model can be

decomposed as

p(x1, x2, x3, x4, x5, x6) =
p(x1, x3) · p(x2, x3) · p(x3, x4) · p(x4, x5, x6)

p2(x3) · p(x4)

for all x = (x1, x2, x3, x4, x5, x6) ∈ X .

1

2
3 4

5

6

Figure 2. Interaction graph with cliques in (2.12)

2.4. Numerical algorithms to find a junction tree

To find the structure, where one of the equivalent criteria (e.g., triangulatedness) of

Proposition 2.7 holds, we can use the MCS (Maximal Cardinality Search) method

of [23]. For a simple version of MCS see the pseudocode of [11, p. 312].

The simple MCS gives label d to an arbitrary vertex. Then labels the vertices

consecutively, from d down to 1, choosing as the next to label a vertex with a

maximum number of previously labeled neighbors and breaks ties arbitrarily. Note

that [14] labels the vertices conversely, and so, there our perfect labeling (2.5)

happens in the opposite direction. The MCS ordering is far not unique, and this

simple version is not always capable of finding the JT structure behind a triangulated

graph in one run, but another run is needed as follows.

To get the cliques of the triangulated graph and construct a JT structure

based on the ordering d, d− 1, . . . , 2, 1, provided by the MCS, we proceed as follows.
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Take the vertex labeled i and its higher labeled neighbors: Mi := {i} ∪ {j : j >

i and j ∼ i}, i = 1, . . . , d. Since the input was a perfect ordering, every Mi will

be a complete subgraph. Then C1, . . . , Ck is obtained by deleting all Mi’s that

are subsets of another one, that is by keeping the maximal complete subgraphs

(the cliques) of them. If we label the cliques consecutively, we obtain Sundberg’s

ordering; whereas, the reversed ordering gives the RIP ordering of them.

Note that, in this way, we are able to get a new labeling of the vertices by

partitioning them according to the JT structure. Let us form the separators and

residuals of the cliques in Sundberg’s ordering. Then vertices can be relabeled by

permuting them between the separators and the residuals, and within the residuals,

see Figure 3. This relabeling will not hurt the JT structure and it is another perfect

ordering of the vertices.

C1

C2 \ S1

...

Ck−1 \ Sk−2

Ck \ Sk−1

R1

S1
R2 \ S1

S2
...

Sk−2

Rk−1 \ Sk−2

Sk−1

Rk \ Sk−1

Figure 3. Relabeling the variables within the junction tree in Sundberg’s

ordering

This gives us a more causal way of looking at the vertices. For example, we can

form a DAG in this modified perfect ordering on the skeleton of G such that j → i

if i < j and i ∼ j. Note that, in the above relabeling, a strict perfect numbering of

the vertices is obtained, in which bd(i) ∩ {1, . . . , i− 1} is a complete subgraph, for

i = 1, . . . , d. This indicates that the reversed labeling of the vertices is perfect too.

We remark that for a moderate number of vertices, we can as well proceed as

follows. We start with a simplicial vertex and run the MCS with the restriction that

first we exhaust the cliques. We can do so by counting the degrees of the vertices

which have the same number of formerly labeled neighbors. Starting from vertex

labeled d, first we select vertices with the same degree. At the moment, when there

are no more such vertices, the first residual (R1 in the RIP ordering) is exhausted.

Next come the vertices with higher degree, which belong to the first separator

(S2) and have neighbors in other cliques too. At the moment, when the degrees
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start again decrease, the first clique (C1) is exhausted, etc. This method gives the

cliques and the separators in the RIP ordering that will be used by the so-called

belief propagation algorithm of Section 2.5. However, this method is not the best

as for the computational complexity. Numerical issues are discussed in Tarjan and

Yannakakis [23] together with other issues, for example the lexicographical labeling

and the fill-in procedure for undirected graphs which are not triangulated.

Note that fill-in can be also defined for directed graphs, see, e.g., [20]. Recall

that to have Markov equivalences, the graph has to be first moralized, and this

undirected moral graph is then triangulated, see also Section 4.1. The process of

triangulation is called fill-in in [13] and [25] too.

It can be easily seen that in a chordal graph, the perfect ordering is also a

suitable ordering of the vertices in which the adjacency matrix has the reducible

zero pattern I. Note that by [28, Proposition 6], the cliques (in the reversed RIP

ordering, that is in Sundberg’s ordering) can be obtained as discussed before: Mi :=

{i} ∪ {j : j > i and (i, j) /∈ I}, i = 1, . . . , k, then C1, . . . , Ck is again obtained by

deleting all Mi’s that are subsets of another one. A possible MCS-ordering and JT

structure is shown in Figure 4.

C1 = {a, t}

C2 = {t, l, e}

C3 = {l, e, b}

C4 = {l, b, s}

C5 = {e, b, d}

C6 = {e, x}

a(8) s(3)

t(7) l(6) b(4)

e(5)

x(1) d(2)

• a: visit to Asia? (y/n)

• s: smoking? (y/n)

• t: tuberculosis? (y/n)

• l: lung cancer? (y/n)

• e: tuberculosis or

lung cancer? (y/n)

• b: bronchitis? (y/n)

• x: positive X-ray? (y/n)

• d: dyspnoea? (y/n)

Figure 4. The stylized example of [13], where the set V = {a, s, t, l, b, e, x, d} of vari-

ables is labeled (see the superscript) based on MCS, starting from vertex

a of label 8. (It is a backward numbering, so the perfect elimination order-

ing is x, d, s, b, e, l, t, a.) On the left panel see the clique structure of the

triangulated graph in the RIP ordering.

Another construction of a JT from a so-called cluster tree is as follows (see [25]).

Call the cliques clusters, and first have all separators (intersections) between the

cluster pairs.
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The so-obtained cluster graph, with vertices as the clusters and edges as the

separators, usually contains cycles. Then find the maximal weight spanning tree of

this cluster graph with usual algorithms of Kruskal, Prim, see, e.g., on [11, p. 1147].

Again, the vertices are the cliques, while the edges are the separators with weights

that are equal to their size (cardinality). Any maximal weight spanning tree (there

can be more than one) will be a computationally economic JT. More exactly,

Proposition 4 of [25] states that any maximal weight spanning tree of the cardinality

weighted clique graph is a junction tree for the original graph.

If we have the joint distribution, and we want to find a tree-structured graph

that defines an MRF over it, then we can use the Chow–Liu algorithm of [3]. Based

on the empirical probabilities (estimated from the sample) of the vertices and vertex-

pairs (edges), the likelihood of the spanning tree over the vertices is maximized

with information theoretical tools, see [25]. More general structures are investigated

in [22].

If the variables are binary, and the interactions are singletons or pairwise, the

min-cut algorithm can also be applied, which runs in polynomial time, see [11].

For this purpose we construct an edge-weighted graph, the cuts of which to be

minimized are just the energies in the Gibbs model. The vertices are either in spin

state 0 or 1, and the weights are obtained from the exponents of the potential

functions, see [1] for details.

2.5. Iterative scaling, belief propagation, and mode prediction

In hierarchical log-linear models, the mean value parameters, and so the cell prob-

abilities are estimated based on the clique frequencies, and are obtainable by the

IPS (Iterative Proportional Scaling) algorithm, see [25, p. 97] and [14, p. 82]. At

the heart of this algorithm lies the following: we want to make the clique proba-

bilities equal to the corresponding relative frequencies, for all cliques. Recall that

{n(xC), xC ∈ XC , C ∈ C} is a sufficient statistic for the canonical parameters of the

log-linear model. Moreover, as we are in the exponential family, the C-marginals of

the ML-estimate m̂ of the mean value parameter m satisfy the system of equations

m(xC) = n(xC), C ∈ C, x ∈ X ,

for all the cliques (and consequently, for their subsets), but not for larger subsets

of the vertices. To solve the above system, we will recursively adjust the above

marginal counts going through each clique in a cyclic iteration that finds the fixed

point of the mapping T = TC1
· · ·TCk

(if there are k cliques in C), where

TCi
m(x) = m(x)

n(xCi
)

m(xCi
)
, i = 1, . . . , k.

Note that TCi
m(xCi

) = n(xCi
) and

∑
x∈X TCi

m(x) = n.
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So starting from some m(0), the iteration is m(t)(x) = Tm(t−1)(x), x ∈ X .

In [17] it is proved that if n(xC) > 0 and m(0)(xC) > 0, for all x ∈ X and for all

C ∈ C, then the sequence m(t)(x) converges as t → ∞, for all x ∈ X . With some

additional condition, namely, that m(0)(xA) = n(xA) cannot hold for A /∈ C, the se-

quence m(t)(x) converges to the theoretically guaranteed unique ML estimate of m:

m(t)(x)→ m̂(x) as t→∞, for all x ∈ X ,

or equivalently, m(t)(x)
n

→ p̂(x). The proof is based on information divergence

minimization, see [17, 25]. The additional condition excludes the possibility that

some extra subset of variables is added to the prescribed set of interactions (which

are the cliques). In particular, the cell frequencies do not provide a good starting,

as they belong to the saturated model. The suggested starting is the uniform

distribution over the cells, i.e., m(0)(x) = n/c, where c = |X | is the total number

of the cells.

Note that the same idea is hidden behind the so-called covariance selection

method in the Gaussian case, see Section 3.3.

In general, in hierarchical log-linear models, we cannot give the ML estimate

of the mean value parameter in explicit form, this is why the infinite iteration of

IPS is needed that converges to this estimate. However, when the log-linear model

is decomposable, we have the ML estimate in explicit form, see (2.8), and in accord

with this, we can construct an iteration that converges in two runs. The iteration

facilitates the quick computation of the clique marginals. Here the special structure

of the cliques and separators is exploited.

For the cliques of the junction tree (in the reversed RIP ordering), together with

separators, we apply the so-called message-passing, in other words, belief propagation

algorithm so that we update their potentials in such a way, that at the end they

become the clique marginals. Let A and B be two consecutive cliques, and S be the

separator between them. Starting with some potentials (see later), and denoting by
∗ the newly updated potential, the algorithm is as follows:

ψ∗
S(xS) =

∑
xA\S∈XA\S

ψA(xS ,xA\S), for all xS ∈ XS ,

ψ∗
B(xB) = ψB(xB) ·

ψ∗
S(xS)

ψS(xS)
, for all xB ∈ XB ,

ψ∗∗
S (xS) =

∑
xB\S∈XB\S

ψ∗
B(xS ,xB\S), for all xS ∈ XS ,

ψ∗
A(xA) = ψA(xA) ·

ψ∗∗
S (xS)

ψ∗
S(xS)

, for all xA ∈ XA.

(2.13)

These equations hold for any state-configurations xA,xS ,xB within the cliques.
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Algorithm (2.13) can be thought of as the so-called sum-product algorithm

that gives the following:∑
y∈XA\S

ψ∗
A(xS ,y) =

∑
y∈XA\S

ψA(xS ,y)
ψ∗∗
S (xS)

ψ∗
S(xS)

=
ψ∗∗
S (xS)

ψ∗
S(xS)

∑
y∈XA\S

ψA(xS ,y)

=
ψ∗∗
S (xS)

ψ∗
S(xS)

ψ∗
S(xS) = ψ∗∗

S (xS) =
∑

y∈XB\S

ψ∗
B(xS ,y).

So
∑

y∈XB\S
ψ∗
B(xS ,y) =

∑
y∈XA\S

ψ∗
A(xS ,y) after one back and forth step, which

means local consistency, see [13, p. 181].

Start with clique potentials obtained from conditional probability tables,

whereas the separator potentials can be constantly 1’s. So ψC contains the product

of marginal or conditional probabilities, affecting variables included in C, and such

that the product of ψC ’s for C ∈ C, with normalizing constant Z, gives the for-

mula (UF). It means that the joint distribution is already factorized in some form

with respect to the cliques. To find all clique and separator marginals, we first run

the algorithm in the reversed RIP, that is, in Sundberg’s ordering C1, . . . , Ck of the

cliques. In this forward step we start at C1 (called root), and via the separators, end

at Ck. The so-obtained potential of Ck is already the clique potential. To obtain

all the clique potentials, we have to run the algorithm again, that is to make a

backward step (in the RIP ordering). In this way, each separator appears with

multiplicity in the calculations.

It is proven (see [12,25]) that at the end, ψ∗∗
Ci
(xCi

) = p(xCi
) and ψ∗∗

Si
(xSi

) =

p(xSi
), i = 1, . . . , k; so the iteration leads to the clique marginals. In other words, in

the forward steps, the cliques collect the information from all of its neighbors (parent

cliques on the JT) recursively; whereas, in the backward steps, they distribute the

information to them. This is the so-called HUGIN version of the belief propagation

algorithm, whereas the original version of [12] does not store the separator potentials.

Basically, we have historical data or empirical observation a priori. These

provide us with so-called probability tables of conditional probabilities and also

suggest the causal links. Afterwards, if a new observation comes in with some

evidences (observed values of some of its variables), we can substitute those (or

make them absorbed by other cliques), and get probabilities of the other variables,

see the expert system description of [13].

Sometimes, we want to take the mode of the log-linear distribution, i.e., to

find the most probable state. In the junction tree framework, it is the max-product

algorithm that does this. The max-product algorithm is practically the same as the

sum-product algorithm (2.13) with the difference, that instead of summation we

take maxima over the same sets.
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For example, if we want to predict the mode (the most probable value of

a variable) based on the observed values of the others, it suffices to consider the

observed values of those variables which share cliques and/or separators with the

target variable. For example, let X1, . . . , Xd be categorical variables, where Xi takes

on ri distinct values. We want to predict the value of the target variable (say, X1)

based on the given values x2, . . . , xd of the others. If x1i denotes the ith possible

value of X1, we are looking for the conditional probabilities

p(x1i|x2, . . . , xd) =
p(x1i, x2, . . . , xd)

p(x2, . . . , xd)
, i = 1, . . . , r1, (2.14)

and find the i∗ for which it is maximal. This is a discrete maximization (integer

programming) task. Then x1i∗ is the mode of X1 conditioned on the given values of

the other variables, and this is our prediction for X1. For example, if X2, . . . , Xd are

possible symptoms, and X1 is the diagnosis, then x1i∗ is the most likely diagnosis

under the given symptoms.

If X1, . . . , Xd is a perfect numbering, and the variables are organized into a

junction tree structure, in the possession of the clique (and separator) potentials

(obtained by the belief propagation algorithm), we proceed as follows. We find

p(xi) := p(x1i, x2, . . . , xd) =

∏
C p(xi

C)∏
S p(xi

S)
, i = 1, . . . , r1.

However, the C’s and S’s that do not contain X1 can be disregarded, as those

marginal counts do not depend on i at all. Therefore,

p(xi) ∝ qi :=

∏
C:X1∈C p(xi

C)∏
S:X1∈S p(xi

S)
.

Eventually,

p(x1i|x2, . . . , xd) =
qi∑r1
j=1 qj

, i = 1, . . . , r1,

and a discrete maximization in i closes the mode finding procedure for X1.

Again, the important clique and separator marginals (where X1 is included)

are obtained through the junction tree iteration, which can be stopped at the desired

place.

Note that the estimation process can be extended to directed graphs or to

CG models, where some of the variables can be continuous (scaled). We can either

categorize them or, assuming that they are Gaussian (conditioned on the discrete

ones), similar procedures are available via covariance estimates, see Section 3.
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3. Continuous MRF’s and Gaussian graphical models

3.1. Partitioned covariance matrices and partial correlations

Here we consider the multivariate Gaussian distribution which is able to define

so-called compositional graphoids (see [16]), and thus, embody the prototype of

continuous multivariate distributions with existing second moments, where pairwise

relations rule the joint distribution of the components.

Let X ∼ Nd(μ,Σ) be a d-variate Gaussian random vector with expecta-

tion (vector) μ and positive definite, symmetric d× d covariance matrix Σ. Note

that this distribution belongs to the exponential family with canonical parameter

(Σ−1,Σ−1μ). The also positive definite, symmetric matrix Σ−1 of entries σij is

called the concentration matrix, and its zero entries indicate conditional indepen-

dences between two components of X, conditioned on the remaining components.

This is supported by the following facts.

Proposition 3.1. Let the (p+ q)× (p+ q) covariance matrix Σ > 0 be partitioned

as

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

where Σ11, Σ22 are covariance matrices of X1 and X2, whereas Σ12 = ΣT
21 is their

cross-covariance matrix. Then the symmetric matrix Σ−1 > 0 has the following

partitioned form:

Σ−1 =

(
Σ−1

1|2 −Σ−1
1|2Σ12Σ

−1
22

−Σ−1
22 Σ21Σ

−1
1|2 Σ−1

22 +Σ−1
22 Σ21Σ

−1
1|2Σ12Σ

−1
22

)
, (3.1)

where

Σ1|2 = Σ11 −Σ12Σ
−1
22 Σ21.

Further,Σ > 0 is equivalent to the fact that both Σ22 and Σ1|2 are regular (invertible)

matrices (actually, they are positive definite).

Theorem 3.2. Let (XT
1 ,X

T
2 )

T ∼ Np+q(μ,Σ) be a random vector, where the expec-

tation μ and the covariance matrix Σ are partitioned (with block sizes p and q) in

the following way:

μ =

(
μ1

μ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

Then the conditional distribution of the random vector X1 conditioned on X2 = x2

is Np(Σ12Σ
−1
22 (x2 − μ2) + μ1,Σ1|2) distribution.
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Note that the conditional covariance matrix Σ1|2 does not depend on x2 of

the condition. Further, for the conditional expectation, which is the expectation of

the conditional distribution, we get that

E(X1|X2 = x2) = Σ12Σ
−1
22 (x2 − μ2) + μ1.

Therefore,

E(X1|X2) = Σ12Σ
−1
22 (X2 − μ2) + μ1

which is a linear function of the coordinates of X2. In the p = q = 1 case, it is

called the regression line, while in the p = 1, q > 1 case, the regression plane.

Summarizing, in case of the multidimensional Gaussian distribution, the regression

functions are linear functions of the variables in the condition, which fact has

important consequences in the multivariate statistical analysis. Since μ is just a

shift, in the sequel, we will assume μ = 0, i.e., the variables are mean centered.

Theorem 3.3. Let X = (X1, . . . , Xd)
T ∼ Nd(0,Σ) be a random vector, and let

V := {1, . . . , d} denote the index set of the variables, d ≥ 3. Assume that Σ is

positive definite. Then

rXiXj |XV \{i,j}
=

−σij

√
σiiσjj

i �= j,

where rXiXj |XV \{i,j}
denotes the partial correlation coefficient between Xi and Xj

after eliminating the effect of the remaining variables XV \{i,j}. Further,

σii = 1/(Var(Xi|XV \{i}), i = 1, . . . , d,

is the reciprocal of the conditional (residual) variance of Xi conditioned on the other

variables XV \{i}.

Note that the equivalence rXiXj |XV \{i,j}
= 0⇐⇒ σij = 0 can be heuristically

explained as follows. It suffices to prove for the i = 1, j = 2 case. rX1X2|XV \{1,2}
= 0

means that when regressing X1 and X2 with XV \{1,2}, the residuals have 0 covari-

ance. This is equivalent to that the residual covariance matrix Σ11 −Σ12Σ
−1
22 Σ21

is diagonal, where Σ11 is the upper left 2× 2 block of Σ, and the other blocks are

constructed accordingly. This in turn is equivalent to that the inverse of the residual

covariance matrix is also diagonal, and this is just the upper left 2×2 block of Σ−1,

see (3.1).

Definition 3.4. Let X ∼ Nd(0,Σ) be a random vector with Σ positive definite.

Consider the regression plane

E(Xi|XV \{i} = xV \{i}) =
∑

j∈V \{i}

βji·V \{i}xj , j ∈ V \ {i},
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where xj ’s are the coordinates of xV \{i}. Then we call the coefficient βji·V \{i} the

partial regression coefficient of Xj when regressing Xi with XV \{i}, j ∈ V \ {i}.

Theorem 3.5. We have

βji·V \{i} = −
σij

σii
, j ∈ V \ {i}.

Corollary 3.6. An important consequence of Theorems 3.3 and 3.5 is that

βji·V \{i} = rXiXj |XV \{i,j}

√
σjj

σii
= rXiXj |XV \{i,j}

√
Var(Xi|XV \{i})

Var(Xj |XV \{j})
, j ∈ V \ {i}.

(The formula is analogous to the one of unconditioned regression.) So only

the variables Xj ’s whose partial correlation with Xi (after eliminating the effect

of the remaining variables) is not 0 enter into the regression of Xi with the other

variables.

3.2. Testing hypotheses about partial correlations

For i �= j we want to test H0 : rXiXj |XV \{i,j}
= 0, i.e., that Xi and Xj are

conditionally independent conditioned on the remaining variables. Equivalently,

H0 means that βij|V \{i} = 0, βji|V \{j} = 0, or simply, σij = σji = 0 (Σ > 0 is

assumed).

To test H0 in some form, several exact tests are known that are usually based

on likelihood ratio tests. The following test uses the empirical partial correlation

coefficient, denoted by r̂XiXj |XV \{i,j}
, and the following statistic is based on it:

B = 1− (r̂XiXj |XV \{i,j}
)2 =

|SV \{i,j}| · |SV |

|SV \{i}| · |SV \{j}|
,

where S is the sample size times the empirical covariance matrix of the variables

in the subscript (its entries are the product-moments).

It can be proven that, under H0, the test statistic

t =
√
n− d ·

√
1

B
− 1 =

√
n− d ·

r̂XiXj |XV\{i,j}√
1− (r̂XiXj |XV \{i,j}

)2

is distributed as Student’s t with n− d degrees of freedom. Therefore, we reject H0

for large values of |t|.
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3.3. The undirected model and the covariance selection

Let X ∼ Nd(μ,Σ) be a d-dimensional Gaussian random vector, and form a graph

G on the vertex-set V , where V corresponds to the components of X and the edges

are drawn according to the rule

i ∼ j ⇔ σij �= 0, i �= j.

This is called the Gaussian graphical model. For practical purposes we use the

empirical partial correlation coefficients, and based on them, the above exact test

to check whether they significantly differ from 0 or not. If we put zeros into the no-

edge positions ij’s of the inverse covariance matrix, we can fit a so-called covariance

selection model. The restricted covariance matrix is denoted by Σ∗.

With the help of the concentration matrix K = Σ−1 and the vector h = Kμ,

the log-density of X has the following form:

ln f(x) = c−
1

2

∑
i∈V

kiix
2
i +

∑
i∈V

hixi −
∑
i�=j

kijxixj ,

where c is an appropriate normalizing constant. Compared to the log-linear model,

the log-density is additively decomposed of quadratic main effects with coefficients

− 1
2kii, linear main effects with coefficients hi, and quadratic interactions with

coefficients −kij . Observe that the interaction terms of the highest order involve

pairs of variables, and there are no terms involving groups of variables with more

than two elements. This is in contrast to the discrete case and it follows in particular

that within the normal distribution there are no hierarchical interaction models

which are not graphical. So it is an MRF.

Given the interaction graph and a sample (of more than d elements), we

want to fit a (Gaussian) distribution so that Xi is conditionally independent of

Xj given the remaining variables, denoted by Xi⊥⊥Xj |XV \{i,j}, whenever there

is no edge between i and j in G. (Actually, this is the pairwise Markov property,

which is equivalent to the local and global Markov properties, as we have a positive

distribution.) That is, we want to estimate the mean value parameters (μ and Σ)

from the i.i.d. sample X1, . . . ,Xn ∼ Nd(μ,Σ) (n > d), such that the concentration

matrix has zero entries in the no-edge positions: kij = 0 whenever {i, j} /∈ E.

This can be done by the covariance selection model: it can be proven (see

Theorem 5.3 of [14]) that under this model the ML-estimate of the parameters is:

μ̂ = X̄ = 1
n

∑n

i=1 Xi and that of the restricted covariance matrix Σ∗ = (σ∗
ij) can

be calculated as follows. We estimate the entries in the edge-positions as in the
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saturated model (no restrictions):

σ̂∗
ij =

1

n
sij , {i, j} ∈ E, (3.2)

where S = (sij) =
∑n

�=1(X� − X̄)(X� − X̄)T . The other entries (in the no-edge

positions) of Σ∗ are free, but satisfy the model conditions: after taking K∗ = (k∗ij) =

Σ∗−1
with these undetermined entries, we get the same number of equations for

them from k∗ij = 0 whenever {i, j} /∈ E. To do so, there are numerical algorithms at

our disposal, for instance, the IPS (Iterative Proportional Scaling (see [14, p. 134]),

already discussed in Section 2.5.

The quintessence of the IPS is that it suffices to state (3.2) for the cliques:

Σ̂∗
C =

1

n
SC , C ∈ C,

where the subscript indicates that we choose the quadratic (and symmetric) |C|×|C|

submatrix of the underlying covariance or empirical covariance matrix that contains

only variables in C. Note that instead of the n > d condition n > c would suffice,

where c is the cardinality of the largest (maximum) clique.

Then K∗ = Σ∗−1
is the fixed point of the equation TK = K, where T =∏k

i=1 TCi
with C1, . . . , Ck being the cliques of the graph and

TCi
K = K + [n(SCi

)−1 − (K−1
Ci

)−1]V ,

where, in general, [MC ]V denotes the d × d matrix containing the entries of the

larger matrix M in the |C| × |C| block corresponding to C, and otherwise zeros.

Then starting with an arbitrary K(0) which contains 0 entries exactly in the

no-edge positions of G, the iteration K(t) = TK(t−1), t = 1, 2, . . . , converges to

the inverse of the unique ML estimate:

K(t) → K̂
∗
= (Σ̂

∗
)−1, t→∞.

Here an infinite iteration is needed, because in general, there is no explicit

solution for the ML estimate. However, in the decomposable case there is no need

of running the IPS, but explicit estimates can be given as follows. Recall that

if the Gaussian graphical model is decomposable (its concentration graph G is

decomposable), then the cliques, together with their separators (with multiplicities),

form a JT structure. Denote C the set of the cliques and S the set of the separators

in G.

Then direct density estimates, like (2.7), are available:

f(x) =

∏k

j=1 f(xCj
)∏k

j=2 f(xSj
)
=

∏
C∈C f(xC)∏

S∈S f(xS)ν(S)
, x ∈ Rd. (3.3)
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There are also exact tests in decomposable models (see [14, p. 149]).

The ML estimator of K can be calculated based on the product moment

estimators applied for subsets of the variables, corresponding to the cliques and

separators. First, introduce the simpler form for K, see [14]:

K = Σ−1 =
∑
C∈C

[KC ]
V −

∑
S∈S

[KS ]
V =

∑
C∈C

[Σ−1
C ]V −

∑
S∈S

[Σ−1
S ]V ,

further,

|Σ| =

∏
C∈C |ΣC |∏
S∈S |ΣS |

.

Let n be the sample size for the underlying d-variate normal distribution, and

assume that n > d. For the clique C ∈ C, let [SC ]
V denote n times the empirical

covariance matrix corresponding to the variables {Xi : i ∈ C} complemented with

zero entries to have a d × d (symmetric, positive semidefinite) matrix. Likewise,

for the separator S ∈ S, let [SS ]
V denote n times the empirical covariance matrix

corresponding to the variables {Xi : i ∈ S} complemented with zero entries to

have an d × d (symmetric, positive semidefinite) matrix. Then the ML estimator

of the mean vector is the sample average (as usual), while the ML estimator of the

concentration matrix is

K̂ = n
{∑

C∈C

[S−1
C ]V −

∑
S∈S

[S−1
S ]V

}
; further, |K̂| = nd ·

∏
S∈S |SS |∏
C∈C |SC |

.

Again, here the structure of K imitates the junction tree structure, through RZP’s.

Also, decomposable (multiplicative) models provide the Markov property through

a chain, and a factorization, resembling (2.9), also holds:

f(x) =

k∏
i=1

f(xRj
|xSj

) (3.4)

in the RIP ordering of the cliques, residuals, and separators.

By [7,21], the same can be done for all members of the exponential family.

3.4. Directed model, recursive linear regression, and path analysis

Now some causal relations are built in the covariance selection model. Using the

estimated inverse covariance matrix, we build a so-called regression graph, and

special constellation of the zeros in the concentration matrix, the RZP will give

an ordering of the vertices in which causation may happen. Again, it is important

that (marginal) independences are indicated by the zero entries of the covariance
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matrix (more exactly, entries of the sample covariance matrix which do not differ

significantly from 0); whereas, conditional independences can be concluded from the

(sample) concentration matrix, or can be supplanted in it via covariance selection.

For 2 ≤ k ≤ d, consider the following recursive system of linear equations:

X1 + a12X2 + a13X3 + · · ·+ a1dXd = ε1,

X2 + a23X3 + · · ·+ a2dXd = ε2,

...

Xk + · · ·+ akdXd = εk,

(3.5)

where X1, . . . , Xk are so-called endogenous, and Xk+1, . . . , Xd are fixed or so-called

exogenous (in other words, context) variables, whereas the errors are εi ∼ N (0, δi)

for i = 1, . . . , k and E(εiεj) = 0 for i �= j. So Xi’s are also Gaussians with zero

expectations, and for i = 1, . . . , k, Xi depends on Xi+1, . . . , Xd linearly, described

by (3.5) with the regression coefficients aij ’s which are estimated based on i.i.d.

measurements xi = (xi1, . . . , xin)
T ∈ Rd, i = 1, . . . , n. Assume that n > d and

the sample means (averages of the coordinates of xi’s) are zeros. Then the n× n

symmetric sample covariance matrix S has entries sij = 1
n
xT
i xj . If n > d, S is

positive definite with probability 1.

When there are no restrictions on aij ’s, the system is called complete, and when

some of the aij ’s are restricted to be zero, it is incomplete. In both cases the MLE’s

of the parameters can be obtained by applying the method of least squares to each

equation separately (where the variables with coefficients restricted to zero do not

enter into the regression). The forthcoming theory guarantees that the equations

need not be treated separately, but can be solved simultaneously with a convenient

decomposition of the concentration matrix (and of the sample concentration matrix)

of Xi’s. It is also interesting that which pattern of the parameters restricted to zero

makes it possible to use a unique method for the parameter estimation. It will turn

out that those are the decomposable, in other words, multiplicative models which

possess this property, and they are strongly related to the decomposable graphs

and JT’s. For this purpose, let us form a graph with the variables.

We form the directed graph G on d vertices, which correspond to X1, . . . , Xd.

For i = 1, . . . , k and j = i+1, . . . d, we draw a directed edge Xj → Xi if aij �= 0 (Xj

is explanatory for Xi) and there is no edge between them if aij = 0. Assume that

between the exogenous variables Xk+1, . . . , Xd all edges are present, but those are

bidirected and carry no information for the system. This notation was elaborated

in path analysis [33], but here we discuss the topic with the simpler notions of [28].

We can as well think of the biderected edges as undirected, and sometimes we will
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also forget the direction of the directed edges, as the criteria for decomposability

do not use the direction; however the directions somehow dictate the ordering of

the cliques in the JT and a perfect numbering of the vertices.

Now we do not regard Xk+1, . . . , Xd as fixed but as rv’s and consider X =

(X1, . . . , Xd) ∼ N (0,Σ). Assume that Σ > 0 and so K = Σ−1 > 0. We complete

the system (3.5) with further d− k complete recursive equations to get its matrix

form:

AX = ε with ε = (ε1, . . . , εd)
T , ε ∼ Nd(0,Δ), (3.6)

where A is a d×d upper triangular matrix with 1’s along its main diagonal, otherwise

it contains the aij ’s, and Δ = diag(δ1, . . . , δd) is d×d diagonal matrix with positive

diagonal entries.

From Equation (3.6) we get that E[(AX)(AX)T ] = AΣAT = Δ. So given

the covariance matrix Σ > 0, we have to find a decomposition

AΣAT = Δ, (3.7)

where A is upper triangular (with all 1’s along its main diagonal) and Δ is a

diagonal matrix with positive diagonal entries. If Σ > 0, then there is a one-to-

one correspondence between Σ and the pair (A,Δ), which provides the unique

solution of Equation (3.6). The entries of A and Δ are related to partial regression

coefficients and residual variances, see [28] and our forthcoming reasoning; further,

we can state the following.

Proposition 3.7. ([28, Proposition 1]) The following are equivalent:

(1) The system (A,Δ) of recursive linear equations is complete.

(2) The covariance matrix Σ of X is unrestricted.

How to get the decomposition of Equation (3.7)? Since Σ and A are invertible

matrices, equivalently we have that Σ = A−1Δ(AT )−1 and

Σ−1 = ATΔ−1A. (3.8)

In fact, we have to perform the Cholesky decomposition (in this form called LDL

decomposition) of the symmetric, positive definite matrix K = Σ−1, to obtain the

decomposition K = LDLT , where L is lower triangular, and, with the convenient

choice of the diagonal matrix D, we can achieve that its diagonal entries are 1’s.

Then A := LT and Δ := D−1.

For example, to get the first row of A, that is the first column of L, we just

divide the first column (row) of K by k11. So d−1
11 = k11 and a11 = 1, while

a1j =
k1j
k11

, j = 2, . . . , d.
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In view of Theorem 3.5, a1j ’s (j = 2, . . . , d) are −1 times the partial regression

coefficients of X1 when regressed with X2, . . . , Xd. The negative sign comes from

the equivalent form X1 = −a12X2 − a13X3 − · · · − a1dXd + ε1 of the first equation

of (3.5), which shows that −aij ’s are the partial regression coefficients. Further on,

with the notation of Definition 3.4, we get that

aij = −βji·{i+1,...,d}, j ∈ {i+ 1, . . . , d}, i = 1, . . . , d− 1, (3.9)

and

δi = Var(Xi|X{i+1,...,d}), i = 1, . . . , d, (3.10)

is the conditional (residual) variance of Xi conditioned on the variables X{i+1,...,d}.

Due to Cochran [4], there is also a recursion for the correlations and the partial

regression coefficients, when the variables are standardized:

rij =

d∑
k=i+1

βki·{i+1,...,d} rkj , j ∈ {i+ 1, . . . , d}. (3.11)

This is the base of the path analysis.

To treat the incomplete cases, we need a definition, already used for discrete

variables and undirected models in Proposition 2.7.

Definition 3.8. Let I ⊆ Ĩ be a subset of the set Ĩ = {(i, j) : 1 ≤ i < j ≤ d}, i.e.,

the set of the edges of the complete graph over the d-element vertex-set V . We say

that I is reducible if for each (i, j) ∈ I and h = 1, . . . , i − 1, we have (h, i) ∈ I or

(h, j) ∈ I or both.

We say that the symmetric p × p matrix M has zero structure with respect

to I if the upper-diagonal entries of M are zeros exactly in positions (i, j) ∈ I. If I

is reducible, we say that M has a reducible zero pattern (RZP).

Proposition 3.9. ([28, Proposition 2]) Let Σ(1,...,k) and A(1,...,k) be the submatrices

of Σ and A, which remain after deleting rows and columns 1, . . . , k. I∅ := Ĩ and

I(1,...,k) is obtained from Ĩ by deleting all pairs (i, j) with i ∈ {1, . . . , k}. With

this notation, for every reducible I ⊆ Ĩ and k ∈ {0, . . . d − 2}, the following are

equivalent:

(1) (Σ(1,...,k))
−1

has zero structure with respect to I(1,...,k).

(2) A(1,...,k) has zero structure with respect to I(1,...,k).

In the proof, the formulas (2.8), (2.9) of [28] are used, and the fact, that

Σ = A−1ΔA−1T implies (by the nature of the Cholesky decomposition) that

Σ(1,...,k) = (A−1)(1,...,k)Δ(1,...,k)(A
−1T )(1,...,k). So to find the (k + 1)th row of A,

only the entries of Σ(1,...,k) are used.

The next proposition applies to the case k = 0.
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Proposition 3.10. ([28, Proposition 3]) For every reducible I ⊆ Ĩ and every pair

(A,Δ),Σ∗
(latter one denoting the restricted covariance matrix), the following are

equivalent:

(1) A has zero structure with respect to I.

(2) (Σ∗)−1
has zero structure with respect to I.

So only in the labelling of the vertices that gives an RZP is it true that the

zeros of (Σ∗)−1 and A coincide.

To find the ML estimate Σ̂∗ of Σ∗, the covariance selection method of Sec-

tion 3.3 is applicable. Now we will clarify which class of covariance selection models

can be characterized by a reducible zero pattern in the concentrations (entries of

Σ−1). The author of [28] shows (Section 3) the following:

(1) Every incomplete system (A,Δ) with reducible zero pattern can be equiv-

alently described by a decomposable (multiplicative) covariance selection

model.

(2) Every decomposable (multiplicative) covariance selection model can, after

a proper reordering of the variables, be described by an incomplete system

(A,Δ) with reducible zero pattern.

(3) The decomposition rule can be derived from a given reducible zero pattern.

(4) A reducible zero pattern facilitates computation of the ML estimates of the

parameters in a covariance selection model, i.e., there are closed forms for

the clique concentrations (see Section 3.3) and hence, for the least squares

estimates of the corresponding incomplete system.

It is important that in decomposable models the regression coefficients have the

same reducible zero pattern as the concentration matrix (see [28, Propositions

5,6,7]). The proofs use the equivalent statements of decomposability, which comply

with our Proposition 2.7 of Section 2.3. In Sections 4 and 5 of [28], testing hypotheses

to find the zero patterns and a practical example are also considered.

Consequently, the condition for a directed graph to be decomposable (has

no sink V pattern) corresponds to the condition of its undirected skeleton to be

decomposable (have an RZP). If we order the variables according to this RZP, then

the recursive regressions give the same estimates for the correlations by the path

coefficients as those expected via ML estimation.

The relation to path analysis is also discussed in [28]. If the Gaussian vari-

ables are standardized (they are not only mean centered, but have unit variance),

then the estimated regression coefficients are the path coefficients, and with them,

there are recursions for the correlations rij ’s (they are consequences of similar

recursions between the usual and partial correlations, due to Cochran, see [31]).

With equation (3.11), and denoting by âik’s the ML-estimates of the so-called path
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coefficients, rij =
∑d

k=i+1 âikr̂kj holds, if we estimate rkj ’s in the usual way. When

we start from Σ∗, and the correlations are estimated by covariance selection, then

r∗ij =
∑d

k=i+1 âikr̂
∗
kj is the correlation expected from the path diagram. Then the

ML ratio test can be used to decide whether the estimated correlations (r̂ij ’s) and

the path correlations (r∗ij ’s) differ significantly or not. If not, then the path analysis

model with existing arrows fits to our data.

4. Composite models

Models with both discrete and continuous (Gaussian) variables are discussed as

Conditional Gaussian (CG) models in [14]. Here we rather focus on graphs with

both directed and undirected edges.

4.1. Edge matrices and V’s

For edge matrices see [31, p. 8]. An edge-matrix A corresponding to a DAG is upper

triangular, contains 1’s along its main diagonal, and for i < j its ij entry is 1 if there

is a j → i edge, and 0, otherwise. If the graph also contains undirected edges, the

1’s in adjacency positions appear below the diagonal. It is shown in [31, p. 9] that

the matrix A− = In[(2I −A)−1] brings in additional dependences and conditional

dependences. Here In is an indicator function that assigns 1 to non-zero entries

and 0 to the zero ones. The idea is that inversion means a geometric sum, where

the powers of the adjacency matrix (edge matrix minus I) introduce 1’s between

ancestral relations up to the order d− 1. In this way, additional 1’s will appear in

the covariance and concentration graphs which means that there are induced edges

in them. For example, the existence of a ‘sink’ i→ k ← j for k < i, k < j when the

distinct vertices i and j are not connected with an arrow, induces an i ∼ j edge in

the concentration graph, as Xi and Xj are conditionally dependent on Xk and so,

on all the remaining vertices.

Such operations are called fill-in, ‘moralization’ in [13,14]. These procedures

also ensure Markov equivalence between two graphs (partially directed and undi-

rected). Two so-called regression graphs (to be introduced next) are Markov equiv-

alent if they define the same independence structure, i.e., the set of independences

implied by the graph that goes into the joint distribution of the variables corre-

sponding to the graph’s vertices.

4.2. Regression graphs

A regression graph is, in fact, a chain graph that contains both directed and undi-

rected edges in the following way. If we keep only the undirected edges, the graph
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falls apart into connected components. The components are numbered such that

the last ones (with highest indices) correspond to the so-called context variables

that are given in the context of the experiment. Typically they form the last con-

nected components, and context variables of the same component are connected

with undirected edges based on the concentration graph on them. From the context

variables arrows show to variables in the lower index boxes (components), which are

primary, secondary, etc. responses. From the response variables arrows may show

to the response (target) variable(s) which are in lower index boxes (the primary

response variables are in the first box, from the left). Between the non-context and

non-response variables in the same connected component, there are dashed lines,

which indicate dependences on a covariance base. Variables connected by dashed

lines are also said to be on equal standing; i.e., there is no dashed line between

two variables if they are (marginally) independent (the corresponding entry of the

covariance matrix of that component, within that box, is 0). Then we can trace the

so-called regressions along the arrows. For traceable regressions, see [29, 30], and

our examples in Section 4.3.

The simplest version of a regression graph is the so-called recursive casual

model of Kiiveri et al. [10]. Here the context variables X, called exogenous, are

in one component (the last one in our labelling, but the first one in the labeling

of the authors); whereas the other variables Y, called endogenous, as singletons

form the other chain components. Here arrows may show from the exogenous

variables to endogenous ones, and from endogenous variables arrows show to other

endogenous one. As the variables (vertices) connected by directed edges form a

DAG, by Section 1.1, there is a topological labeling, here called recursive ordering,

of them, so that j → i implies i < j, in accord with the paper [30]. Note that, on

the contrary, j → i implies i > j in the Kiiveri et al. paper [10], where a reversed

numbering is used. The authors also prove that every causal graph has at least one

so-called extreme endogenous vertex, such that there is no directed arrow starting

from it, i.e., it is the first one in the topological ordering. Indeed, it is the ‘youngest’

vertex with no children at all, and also a simplicial one in the skeleton of the DAG.

Obviously, the exogenous vertices can have only outgoing arrows, and assume that

the endogenous ones are labeled as Y1, . . . , Yd in the ordering of [30]. Again, the

first some vertices are extreme (the first one is surely that), which are the targets

to be predicted.

Theorem 4.1. ([10, part of Theorem]) For a strictly positive density (pmf or

pdf) p(x,y) corresponding to the casual recursive graph G (here x belongs to

the states of the exogenous, and y to those of the endogenous variables), we have

(RCF)⇐⇒ (GM)⇐⇒ (LM), where (GM) and (LM) are the global and local Markov
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properties for recursive causal graphs (they amalgamate the properties (DG), (UG),

and (DL), (UL)), and (RCF) means the recursive casual factorization as follows.

The exogenous variables form an MRF over the undirected part of the graph (for

Gaussian variables with positive definite covariance matrix it always holds) and

p(x,y) = p(x)

d∏
i=1

p(yi|ypar(i)). (4.1)

Now we are interested in the following: What happens if we forget the direc-

tions, and consider the underlying graph G as undirected, by just replacing the

directed edges with undirected ones? This undirected graph is the skeleton of G.

The answer is as follows.

Proposition 4.2. ([10, Corollary]) Assume that the recursive casual graph G of

Theorem 4.1 has no sink V configuration, see Section 4.1. Then the conditions

(RCF), (GM) and (LM) are equivalent to each other and to the undirected Markov

property (UM), i.e., the joint distribution is Markov (MRF) over the undirected

skeleton of G. Further, if the graph of the exogenous variables is decomposable, then

the skeleton of G is also decomposable.

The authors in [10] also give a variant of the Cholesky decomposition, that

triangulates only for the endogenous variables. They prove the following.

Proposition 4.3. ([10, Lemma 2]) The (positive definite) concentration matrix K

of the Gaussian system (Y,X) of endogenous and exogenous random vectors has a

unique representation K = LDLT
with L and D having the form

L =

(
AT O

BT I

)
, D =

(
Δ−1 O

O C−1,

)
where A is d× d upper triangular having 1’s along its main diagonal, Δ is d× d

diagonal with positive diagonal entries; whereas the positive definite C and the

identity matrix I are of the dimension of X (say, q).

Then the entries of A = (aij) and Δ = diag(δ1, . . . , δd) are determined by

(3.9) and (3.10) as

aij = −βji·{i+1,...,d+q}, j ∈ {i+ 1, . . . , d+ q}, i = 1, . . . , d− 1

and

δi = Var(Yi|Y{i+1,...,d}X), i = 1, . . . , d− 1.
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The q × q positive definite matrix C is just the covariance matrix of X, while the

q × d matrix B comes by stopping the Cholesky decomposition after the first d

columns/rows of K were eliminated.

A strict ordering of the vertex set is defined by [10] as any labeling of the

exogenous variables together with a topological labeling of the endogenous ones.

Proposition 4.4. ([10, Proposition 1]) A distribution p(x,y) satisfies the equivalent

conditions of Theorem 4.1 if and only if for all strict orderings of the vertex set the

elements of the associated L,D,C in the Cholesky factorization of Σ−1
satisfy the

zero constraints: the zeros in the exogenous part (of C−1
) correspond to no-edges

(covariance selection model), while zeros of L indicate no directed edges from the

endogenous variables to another endogenous, or from an exogenous to an endogenous

one.

The authors of [10] also investigate relation to Structural Equation Modelling

(SEM) and establish the following.

Proposition 4.5. If K is decomposed as in Proposition 4.3, then Y and X satisfy the

linear structural equations AY+BX = ε, where ε and X are independent Gaussian

random vectors with covariance matrices Δ and C. Conversely, if Y and X satisfy

the above structural equation, further, if ε and X are independent with covariance

matrices Δ and C, and if A is upper triangular with 1’s along its diagonal and Δ

is diagonal, then the matrices A,B,C,Δ combine as in Proposition 4.3 to give K.

Note that A is not necessarily upper triangular, it is that only if the structural

equations are recursive. For more general setups see Jöreskog [9].

Some remarks are in order.

• A DAG has a topological ordering (j → i means i < j for all directed

edges). If the DAG does not contain any sink V, then the undirected skeleton is

triangulated, so decomposable, and has a perfect numbering of its vertices (see

Proposition 2.7). This perfect numbering is not unique, but it can be the same as

a topological ordering of the DAG. Further, in lack of a sink V, any topological

ordering of the DAG gives the RZP. So we may call a DAG decomposable if it does

not contain a sink V.

Consider a DAG which does not contain any sink V together with a topological

ordering of its vertices. The undirected skeleton G is triangulated, so decomposable,

and has a JT. The cliques of the JT of G in the RIP ordering can be obtained

as follows. Let us form the sets Mi := {i} ∪ par(i) = cl(i). They will be complete

subgraphs (because G is triangulated). Delete those that are contained in another

one. The remaining Mi’s will be the cliques of the JT.
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• If the DAG has a sink V, then its moral graph is not necessarily triangulated.

Also note that even if a DAG has sink V’s, its skeleton can be triangulated, so is

decomposable, and the adjacency matrix has an RZP in a convenient labeling of the

vertices. However, this labeling is not topological in the original DAG, where the

direction of the edges correspond to real causation given by the real-life problem.

For example, let the directed adjacency matrix be

A =

⎛⎜⎜⎝
1 1 1 1

0 1 0 1

0 0 1 1

0 0 0 1

⎞⎟⎟⎠ .

Then the upper diagonal part of A does not have the RZP, due to the sink V

2 → 1 ← 3. However, the undirected skeleton of this DAG is triangulated, so

has a labeling of the vertices in which it has the RZP (for example, in the 2,1,3,4

permutation of the vertices), but this ordering is not topological in the DAG.

Note that when the DAG has sink V, then to that a triplet i → h ← j

corresponds with h < i < j and ahi �= 0, ahj �= 0, but aij = 0, see vertices 1,2,3 in

the above A, in contrast to the definition of RZP (see Proposition 2.7).

• Conversely: let us have a decomposable (triangulated) graph G, and a perfect

numbering of its vertices. Let us form a directed graph on the same vertex set in the

following way: consider a perfect numbering of the vertices and for i < j we draw

the edge j → i whenever i ∼ j in G. This results in a DAG. The perfect numbering

of the vertices of G also gives a topological ordering of the DAG’s vertices.

For example, let the directed adjacency matrix be

A =

⎛⎜⎜⎝
1 0 1 1

0 1 0 1

0 0 1 1

0 0 0 1

⎞⎟⎟⎠ .

This DAG has no sink, and the given topological labeling of the vertices indeed

defines the RZP.

• The message of Proposition 4.2 is that in lack of a sink, the skeleton graph

is Markov equivalent to the original recursive casual G, and it is also decomposable

if the undirected part of G is decomposable. So the directed part can fully describe

the independence statements if there are no sink V’s in it.

The other message is that if the exogenous part is decomposable, then the

exogenous vertices can form the first cliques of a JT, and the others are formed by the

endogenous ones, in their reversed topological ordering. So the topological ordering
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of the DAG gives the perfect ordering of its decomposable skeleton, provided there

are no sink in it.

Going back to the more general case, [30] formulates more general statements

about the Markov equivalences of regression graphs. By [32, p. 11], two different

graphs are Markov equivalent if they define the same independence structure. Some

more notions are also needed. In a regression graph, above a sink V, other types of

so-called collision V’s exist. These are

◦- - - ◦ - - -◦, ◦ → ◦ ← ◦, ◦- - -◦ ← ◦.

Further, a collision path has as inner nodes exclusively collision nodes (like the

middle nodes in the above collision V’s), see [30, p. 222].

Theorem 4.6. ([30, Theorem 1]) Two regression graphs are Markov equivalent if

and only if they have the same skeleton and the same set of collision Vs, irrespective

of the type of edge.

Note that a directed ‘sink’ pattern i → k ← j and an undirected pattern

i− k − j cannot be equivalent. Consequently, the ‘sink’ pattern should be filled-in

(i and j should be connected in the undirected version). Then they won’t have the

same skeleton, but they can be Markov equivalent.

Theorem 4.7. ([30, Theorem 2]) A regression graph with a chordal graph for the

context variables can be oriented to be Markov equivalent to a DAG on the same

skeleton if and only if it does not contain any chordless collision path in four nodes.

Note that only the following three types of chordless collision paths in four

nodes exist:

◦- - - ◦ - - - ◦ - - -◦, ◦ → ◦- - -◦ ← ◦, ◦- - - ◦ - - -◦ ← ◦

Then the authors of [30, p. 241] define an algorithm (Algorithm 1) for labeling

the vertices of a regression graph so that to obtain a Markov equivalent DAG,

provided it has a chordal concentration graph (for the context variables) and has no

chordless collision path on four nodes. Actually, they use the MCS algorithm for the

subgraph spanned by the context variables. These will have the higher labels in the

reversed RIP ordering. Then directed edges start from higher number components

to lower number ones, while within the components the labeling is immaterial. All

the collision V’s are replaced by sink V’s; and when a dashed line in a component is

replaced by an arrow, then they label the endpoints such that the arrow is from a

higher label to a lower label one if the labels do not already exist. The authors prove

(Lemma 1) that their Algorithm 1 generates a DAG that is Markov equivalent to

the original regression graph. Then for the DAG, the recursive linear regression of

Section 3.4 can be applied, possibly with linearizing formulas.
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4.3. Application

Based on the 2014’s Egypt Demographic and Health Survey (EDHS 2014), we

examined the effect of background characteristics on the ideal number of children

a family thinks manageable to have. The research question is: to what extent do

age and education level of married couples affect the conceivable ideal number of

children, through intermediate variables (wife’s age at first marriage, family’s wealth

index, total number of births a wife had, and use of contraception). The focus is on

a selected random sample of 626 urban married women aged 20-49 years.
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Figure 5. Opposite ordering of the variables as they enter into the model.

The variables are selected from the Egyptian ever-married women’s

questionnaire of EDHS 2014 study.

The joint distribution of them is approximately multivariate Gaussian, and

their labeling is based on the expected relationships between the variables based on

the literature. The far right-hand box includes the relevant context variables. These

are the background variables in the model: husband’s and wife’s education level

in years (for both X9 and X8, min = 0, max = 28); husband’s age (X7; min = 20,

max = 77) and wife’s age (X6; min = 20, max = 49). The next box from the

right contains the two intermediate variables, woman’s age at the first marriage

(X5; min = 10, max = 40) and the family wealth index (X4; min = 1, max = 5).

Moving to the next box, the secondary responses are represented. These variables

are the number of years the woman has been using any contraception method (X3;

min = 0, max = 28) and the total number of births (X2; min = 0, max = 9). The

first box on the left is the primary response variable, the ideal number of children

the family thinks to be optimal (X1, min = 0, max = 11).

To examine this model, we first build a regression graph based on the partial

correlation coefficients between the variables and their ancestors, see Figure 6.
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Figure 6. Regression graph of the model. Circles represent the examined

continuous random variables.

The graph summarizes important aspects of the relationships between the

variables. It represents the direct causality between some variables by an arrow that

goes directly from the explanatory variable pointing to the response. Indirect rela-

tionships are represented by a sequence of arrows linking the explanatory variable

to an intermediate variable and then continuing to the response variable. As shown

in the graph, the context variable components, both age of the married couples, and

their education are connected to each other by a solid line that means they are adja-

cent and influence each other. The intermediate variables in the secondary response

components are connected with dashed lines if they are marginally dependent, but

are on equal standing.

Later, statistical regression analysis is conducted for the regression graph. The

regression results (see Tables 4.1, 4.2, 4.3, 4.4, 4.5) confirm the links in the plotted

regression graph, due to Corollary 3.6. The significance of variables in the tested

models show which variables are directly explanatory and which are important for

generating and predicting a response, and which ones affect only indirectly the

response. 

 

 

 

 

 

 

 

 

 

Explanatory variables Coeff Scoeff Std. Error Sig 
Constant 2.427 -- .358 .000 

X2, number of births --� .432 .044 .000 
X3, using contraception method. --� -.096 .008 .066 

X4, family wealth index� --� -.018 .051 .661 
X5, woman age at first marriage� --� .056 .013 .236 

X6, wife age� --� -.126 .011 .098 
X7, husband age� --� .045 .008 .512 

X8, wife education� --� -.057 .011 .250 
X9, husband education� --� -.040 .010 .374 

R2 = .38; The model:  X1 = 2.43 + .43 X2  
Table 4.1. Response X1, linear regression
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Explanatory variables Coeff Scoeff Std. Error Sig 
Constant 3.062 -- .318 .000 

X4, family wealth index� -- -.092 .047 .003 
X5, woman age at first marriage� -- -.419 .011 .000 

X6, wife age� -- .628 .010 .000 
X7, husband age� -- -.082 .008 .112 

X8, wife education� -- -.037 .011 .328 
X9, husband education� -- -.053 .010 .132 

R2 = .46; The model:  X2 = 3.06 - .09 X4 - .42X5 + 0.63 X6  
Table 4.2. Response X2, linear regression 

 

 

 

 

 

 

 

 

  

 

Explanatory variables Coeff Scoeff Std. Error Sig 
Constant 3.97 -- 1.678 .018 

X4, family wealth index -- .030 .251 .435 
X5, woman age at first marriage -- -.276 .058 .000 

X6, wife age -- .395 .052 .000 
X7, husband age -- -.003 .042 .960 

X8, wife education -- -.022 .055 .642 
X9, husband education -- -.081 .051 .058 

R2 = .21; The model:  X3 = 3.97 - .28 X5 + .40X6  
Table 4.3. Response X3, linear regression 

 

 

 

 

 

 

 

  

 

Explanatory variables Coeff Scoeff Std. Error Sig 
Constant 3.14 -- .183 .000 

X6, wife age -- .108 .007 .074 
X7, husband age -- -.037 .006 .543 

X8, wife education -- .389 .008 .000 
X9, husband education -- .075 .008 .005 

R2 = .19;  The model:  X4 = 3.14 + .39X8 + .08 X9   

Table 4.4. Response X4, linear regression 

 

 

 

  

 

 

 

Explanatory variables Coeff Scoeff Std. Error Sig 
Constant 15.58 -- .796 .000 

X6, wife age -- .561 .032 .000 
X7, husband age -- -.428 .027 .000 

X8, wife education -- .240 .034 .000 
X9, husband education -- .130 .034 .002 

R2 = .21; The model: X5 = 15.58 + .56 X6  - .43X7 + .24X8 + .13 X9  

Table 4.5. Response X5, linear regression
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The listed variables to the right of a response without an arrow pointing to the

response are not essential to improve the prediction of the response when they are

used in addition to the directly explanatory variables. As for the conceivable ideal

number of children (X1), only the number of births (X2) is directly explanatory. The

number of births is an important mediator between the woman’s current age (X6),

the family wealth index (X4), her age at first marriage (X5) and the response (X1).

The results suggest that the woman’s age at first marriage is crucial, and

that it is strongly affected by her education. Well-educated women are more likely

to be older at the first marriage. That reduces the number of births the woman

has had, and thus her conceivable ideal number of children. Some of variables are

indirectly explanatory. An arrow starts from an explanatory variable and points,

via a sequence of arrows, through intermediate variables, to the response variable.

For example, the husband’s education (X9) indirectly affects the conceivable ideal

number of children (X1). It directly affects the family wealth index (X4), which,

in turn, affects directly the number of births (X2), while this, in turn, affects the

conceivable ideal number of children (X1).

4.4. Further perspectives

Conditional independences and dependences are captured by regression graphs

if the generated distribution shares some properties with a multivariate Gaussian

distribution. After a thorough statistical analysis and applying Theorem 4.7 together

with its construction, we construct a DAG. In the topological ordering of the vertices,

given by the construction of the theorem, instead of linear, linearized, or logistic

regression we take conditional expectation in a nonparametric way, like the ACE

(Alternating Conditional Expectation) algorithm [2]. Here we need not alternate,

we just take directed conditional expectations, see [8].

Say, we have a data set of cases x(i) that are multidimensional observations

with coordinates labeled as x(i) = (x
(i)
1 , . . . , x

(i)
d ), i = 1, . . . , n (we call it corpus).

We also have a DAG on d vertices constructed in the above way, based on the corpus.

Then a new case x(n+1) comes with missing variables, we know only some of the

the last coordinates of it. We never know the first coordinate, which is the very

target to be predicted, but we know at least the coordinates corresponding to its

context variables. So let 1 ≤ k < d be an integer, so that the last d− k coordinates

of our new case are known, and d−k is at least the number of the context variables.

Then to predict the first k coordinates, we successively proceed as follows. First,

x
(n+1)
k := E(Xk |x

(n+1)
k+1,...,d) = E(Xk |x

(n+1)
par(k)),

where the second equality follows by Markovity. When k > 1, we proceed backward
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for j = k − 1, k − 2, . . . , 1: x
(n+1)
j := E(Xj |x

(n+1)
j+1,...,d) = E(Xj |x

(n+1)
par(j)). If our data

are from multivariate Gaussian distribution, then the above conditional expectations

are linear functions of the variables in the condition, and are obtainable by linear

regression (better to say, the coefficients are estimated from the corpus). Otherwise,

we take the conditional expectation in a nonparametric way, by the smoothing

algorithms discussed in [2]. We illustrate it with a symmetric, bivariate kernel K

that depends on some parameters and is also translation invariant. The estimates

are as follows:

x̂
(n+1)
k =

n∑
i=1

x
(i)
k K(x

(i)
par(k),x

(n+1)
par(k))/

n∑
i=1

K(x
(i)
par(k),x

(n+1)
par(k))

which is a Nadaraya–Watson type local averaging estimate, see [18,27].

Then for j = k − 1, . . . , 1 we continue with

x̂
(n+1)
j =

n∑
i=1

x
(i)
j K(x

(i)
par(j),x

(n+1)
par(j))/

n∑
i=1

K(x
(i)
par(j),x

(n+1)
par(j)). (4.2)

In a greedy way, we could put the already existing estimates for the coordinates

j + 1, . . . , k of case n+ 1 into the corpus, and then the summation for i goes from

1 to n + 1. Likewise, if the next incomplete case n + 2 comes, we either use the

learning sample of n cases, or all of the n+ 1 cases before, etc.

In [2] and [8], other types of smoothings are also introduced, especially for dis-

crete (sometimes categorical) variables. So we could apply smoothings successively

for new-coming data through the corpus, and the selection of the kernel should be

automated.

If no regression graph is known, but the skeleton is triangulated, we can find

a junction tree, and make predictions from separators to residuals according to

the factorization p(x) =
∏k

i=1 p(xRj
|xSj

), where Equation (4.2) is applied to a

multidimensional target.

Consider the ordering of the cliques, obeying the running intersection property

with cliques Cj , residuals Rj and separators Sj (indexed from the past to the future),

S1 = ∅ and R1 = C1. Assume that we have the coordinates of x(n+1) corresponding

to C1. Then x
(n+1)
Rj

:= E(XRj
|x

(n+1)
Sj

) for j = 2, . . . , k, where k now denotes the

number of cliques. Because of Cj = Rj ∪Sj , we so get x
(n+1)
Cj

and via marginalizing,

the new x
(n+1)
Sj+1

is obtained. In a nonparametric way, dropping the new-coming case

into the corpus, for j = 2, . . . , k we have the estimate

x̂
(n+1)
Rj

=

n∑
i=1

x
(i)
Rj

K(x
(i)
Sj
,x

(n+1)
Sj

)/

n∑
i=1

K(x
(i)
Sj
,x

(n+1)
Sj

).
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We plan to make the selection of the best kernel automatic, depending on

the type and the range of the variables The above algorithm is also applicable to

time series, mainly to Gauss–Markov processes, where the directions of the arrows

indicate not only causation but time sequence of the observations. Longitudinal

data can also be treated. We also plan to involve SEM and PLS techniques by

distinguishing between measurement and latent variables, see e.g., [24].
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Abbreviations.

An(A) ancestral set of the vertex-set A, which is the smallest possible

vertex-set (including A) containing all vertices from where

a directed path emanates to vertices of A in a directed graph

ant(i) anteriors of the vertex i in a directed graphs

(non-descendants except its parents)

bd(i) boundary of the vertex i (its neighbors in the undirected,

and its parents in the directed case)

BN Bayesian Network

CG Conditional Gaussian

cl(i) closure of the vertex i (it and its biundary)

DAG Directed Acyclic Graph

DF Directed Factorization Property

DG Directed Global Markov Property

DL Directed Local Markov Property

DP Directed Pairwise Markov Property

EDHS Egypt Demographic and Health Survey

iid independent identically distributed

IPS Iterative Proportional Scaling

JT Junction Tree

MCS Maximal Cardinality Search

ML Maximum Likelihood

MRF Markov Random Field

par(i) parents of the vertex i (from where directed edge shows to it)

in a directed graph

pdf Probability Density Function

pmf Probability Mass Function
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RCF Recursive Casual Factorization

RIP Running Intersection Property

rv random variable

RZP Reducible Zero Pattern

SEM Structural Equation Modeling

UF Undirected Factorization Property

UG Undirected Global Markov Property

UL Undirected Local Markov Property

UP Undirected Pairwise Markov Property
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