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Abstract. We survey the most recent results on the extension of isometries be-

tween special subsets of the unit spheres of C∗-algebras, von Neumann algebras,

trace class operators, preduals of von Neumann algebras, and p-Schatten–von

Neumann spaces, with special interest on Tingley’s problem.

1. Introduction

The problem of extending a surjective isometry between two subsets of the unit

spheres of two operator algebras was treated in several talks during the conference

on preservers problems held in Szeged in June 2017. The conference “Preservers

Everywhere” gathered a substantial group of world experts on these topics. It

became clear that the problems regarding the extension of this type of surjective

isometries constitute an intensively studied line in recent times. Let us try to unify

all these problems in the following statement.

Problem 1.1. Let X and Y be two Banach spaces whose unit spheres are denoted

by S(X) and S(Y ), respectively. Let S1 and S2 be two subsets of S(X) and S(Y ),

respectively. Suppose Δ: S1 → S2 is a surjective isometry. Does Δ extend to a real

linear isometry from X onto Y ?

Henceforth, we shall write T for the unit sphere of C. The complex conjugation

on T cannot be extended to a complex linear isometry on C. So, in the case of

complex Banach spaces, a complex linear extension is simply hopeless for all cases.

Similar constraints will appear in subsequent results.
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These problems, whose origins are in geometry, are nowadays a central topic

for those researchers working on preservers. If in Problem 1.1 we consider S1 =

S(X) and S2 = S(Y ), we meet the so-called Tingley’s problem. This problem was

named after the contribution of D. Tingley, who established that for any two finite

dimensional Banach spaces X and Y , every surjective isometry Δ: S(X) → S(Y )

preserves antipodal points, that is, Δ(−x) = −Δ(x), for every x in S(X) (see

[54, THEOREM in page 377]). Tingley’s problem remains open even in the case of

two-dimensional Banach spaces.

Let us observe that, given a surjective isometry Δ: S(X) → S(Y ), where X and

Y are Banach spaces, we can always consider the natural (positively) homogeneous

extension FΔ : X → Y given by FΔ(0) = 0, and FΔ(x) = ‖x‖Δ
(

x
‖x‖

)
for x = 0.

Clearly, FΔ is a bijection, however it is a hard question to decide whether FΔ is an

isometry. Actually, the Mazur–Ulam theorem implies that FΔ is real linear as soon

as it is an isometry.

We have already found our first connection with the Mazur–Ulam theorem.

Tingley’s problem and Problem 1.1 can be considered as generalization of this

pioneering result in Functional Analysis. P. Mankiewicz established in 1972 an

intermediate result which provides a useful tool for our purposes.

Theorem 1.2. ([32, Theorem 5 and Remark 7]) Every bijective isometry between

convex sets in normed linear spaces with nonempty interiors admits a unique exten-

sion to a bijective affine isometry between the corresponding spaces.

During the thirty years that elapsed after Tingley’s paper, a lot of hard efforts

from many authors, especially many Chinese mathematicians, and the elite Chinese

group led by G.G. Ding, have been conducted in the seeking of a solution to Tingley’s

problem in concrete spaces. The huge contribution due to mathematicians like R.S.

Wang, G.G. Ding, D. Tan, L. Cheng, Y. Dong, X.N. Fang, J.H. Wang, and R. Liu,

among others, have been overviewed in full detail in the excellent surveys published

by G.G. Ding [12] and X. Yang and X. Zhao [56].

A reborn interest in the problems concerning the extension of isometries

between subsets of the unit spheres of two operator algebras has been materialized

in a fruitful series of recent papers dealing with Tingley’s problem and related

questions for certain operator algebras, which have been published during the short

interval determined by the last three years. The abundance of new results for

operator algebras motivates and justifies the writing of this survey with the aim of

completing and updating the surveys [12, 56], and providing a recent state of the

art of these problems. The real “avalanche” of recent achievements provides enough

material to write a new and detailed survey on this topic.
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We strive for conciseness and restrict the results to the setting of operator

algebras, despite the fact that some of the results have been already extended to

the strictly wider setting of JB∗-triples (compare [25, 27]). So, few or none of the

proofs are explicitly included. The main tools and results are reviewed with a full

bibliographic information. We shall also insert some new arguments to establish

some additional statements.

In Section 2 we gather some of the key tools applied in many of the proofs

given to solve Tingley’s problem. Most of the studies make use of a result, which

was originally established by L. Cheng, Y. Dong in [5], and proves that a surjective

isometry Δ: S(X) → S(Y ) between the unit spheres of two Banach spaces maps

maximal proper faces of the closed unit ball of X to maximal proper proper faces

of the closed unit ball of Y (see Theorem 2.2). The section also contains a recent

generalization of this result due to F.J. Fenández-Polo, J. Garcés, I. Villanueva and

the author of this note, which assures the following: Let Δ: S(X) → S(Y ) be a

surjective isometry between the unit spheres of two Banach spaces, and suppose

that these spaces satisfy the following two properties:

(h.1) Every norm closed face of BX (respectively, of BY ) is norm-semi-exposed.

(h.2) Every weak∗ closed proper face of BX∗ (respectively, of BY ∗) is weak∗-semi-

exposed.

Then the following statements hold:

(a) Let F be a convex set in S(X). Then F is a norm closed face of BX if and

only if Δ(F) is a norm closed face of BY .

(b) Let e ∈ S(X). Then e ∈ ∂e(BX) if and only if Δ(e) ∈ ∂e(BY )

(see Corollary 2.3).

It should be remarked that hypotheses (h.1) and (h.2) above hold whenever

X and Y are C∗-algebras, hermitian parts of C∗-algebras, von Neumann algebra

preduals, preduals of the hermitian part of a von Neumann algebra, JB∗-triples,

and JBW∗-triple preduals (see [21] and the comments after Corollary 2.3).

In Section 2 we shall also survey the main results on the facial structure of

the closed unit ball of a C∗-algebra due to C.A. Akemann and G.K. Pedersen [1]

and C.M. Edwards and G.T. Rüttimann [17].

Section 3 is completely devoted to present the most recent achievements on

Tingley’s problem in the setting of C∗-algebras. In all sections we shall insert an

introductory paragraph with the equivalent results in the commutative setting. We

begin from the results by R. Tanaka, which assure that every surjective isometry

from the unit sphere of a finite-dimensional C∗-algebra A onto the unit sphere of

another C∗-algebra B extends to a unique surjective real linear isometry from A onto

B, and the same conclusion holds when A and B are finite von Neumann algebras
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(see Theorem 3.4). In Theorem 3.8 we revisit the solution to Tingley’s problem for

surjective isometries between the unit spheres of two compact C∗-algebras found by

R. Tanaka and the author of this survey in [44]. This solution also covers the case

of a surjective isometry between the unit spheres of two K(H) spaces. In this note

K(H) and B(H) will denote the spaces of compact and bounded linear operators

on a complex Hilbert space H, respectively.

Accordingly to the chronological order, the next step in the study of Tingley’s

problem on C∗-algebras is a result by F.J. Fernández-Polo and the author of this

note, which shows that for any two complex Hilbert spaces H1 and H2, every

surjective isometry Δ: S(B(H1)) → S(B(H2)) admits a unique extension to a

surjective complex linear or conjugate linear surjective isometry T from B(H1) onto

B(H2) (see Theorem 3.9). The most conclusive result on Tingley’s problem has been

also obtained by the same authors in a result showing that every surjective isometry

Δ: S(M) → S(N) between the unit spheres of two von Neumann algebras M and N ,

where M is not a factor, or is a finite factor, or a type I factor, or a type II∞ factor on

a separable Hilbert space, or a type III factor on a separable Hilbert space, admits a

unique extension to a surjective real linear isometry T : M → N . Furthermore, under

these hypotheses, there exist a central projection p in N and a Jordan ∗-isomorphism

J : M → N such that defining T : M → N by T (x) = Δ(1) (pJ(x) + (1− p)J(x)∗)
(x ∈ M), then T is a surjective real linear isometry and T |S(M) = Δ (see Theorem

3.15).

Section 4 is devoted to survey the results on Tingley’s problem for surjective

isometries between the unit spheres of von Neumann algebra preduals. In [21],

F.J. Fernández-Polo, J. Garcés, I. Villanueva and the author of this survey gave a

complete solution to Tingley’s problem for surjective isometries on the unit sphere

of the space C1(H) of trace class operators on an arbitrary complex Hilbert space

H (see Theorem 4.5).

It is well known that the space C1(H) can be identified with the dual of the

space K(H) and with the predual of B(H). It seems a natural question whether

the previous positive solution to Tingley’s problem in the setting of trace class

operators remains true for preduals of general von Neumann algebras.

When the writing of this survey was being completed (precisely, on December

27th, 2017), an alert message came to this author from arxiv. This alert was about

a very recent preprint by M. Mori (see [34]), which has been an impressive discovery,

and made this author change the original project to insert some nice achievements,

one of them is a positive solution to Tingley’s problem for preduals of general von

Neumann algebras (see Theorem 4.6).

Henceforth, the hermitian part of a C∗-algebra A will be denoted by Asa. As
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we commented before, when in Problem 1.1 the subsets S1 and S2 are the unit

spheres of two Banach spaces, we find the so-called Tingley’s problem. Another

interesting variant of Problem 1.1 is obtained when X and Y are von Neumann

algebras or C∗-algebras and S1 and S2 are the unit spheres of their respective

hermitian parts. In Section 5, we shall study the problem of extending a surjective

isometry Δ: S(Msa) → S(Nsa), where M and N are von Neumann algebras. In

this section we shall show that the same tools given by F.J. Fernández-Polo and

the author of this survey in [28] can be, almost literarily, applied to find a surjective

complex linear isometry T : M → N satisfying T (a∗) = T (a)∗ for all a in M and

T (x) = Δ(x) for all x in S(Msa) (see Theorem 5.8).

It should be remarked here that, after completing the writing of this chapter,

the preprint by M. Mori [34] became available in arxiv. Section 5 in [34] is devoted

to the study of Tingley’s problem for surjective isometries between the unit spheres

of the hermitian parts of two von Neumann algebras, and our Theorem 5.8 is also

established by M. Mori with an alternative proof.

The sixth and final section of this paper is devoted to review the main result on

a topic which had its own protagonism in the meeting held in Szeged. We are talking

about the problem of extending a surjective isometry between the sets of positive

norm-one operators of two type I von Neumann factors B(H1) and B(H2). During

the talk delivered by G. Nagy in this conference, he presented a recent achievement

which shows that, for a finite-dimensional complex Hilbert space H, every isometry

Δ: S(B(H)+) → S(B(H)+) admits a (unique) extension to a surjective complex

linear isometry T : B(H) → B(H) satisfying T (x) = Δ(x) for all x ∈ S(B(H)+)

(see Theorem 6.5), where for a C∗-algebra A, the symbol A+ will denote the cone

of positive elements in A, and S(A+) will stand for the sphere of positive norm-one

operators. It was conjectured by Nagy that the same conclusion holds for every

complex Hilbert space H.

We culminate this section, and the results in this note, by surveying a

recent work where we provide a proof to Nagy’s conjecture. The main result

is treated in Theorem 6.10, where it is shown that every surjective isometry

Δ: S(B(H1)
+) → S(B(H2)

+), where H1 and H2 are complex Hilbert spaces, admits

an extension to a surjective complex linear isometry (actually, a ∗-isomorphism or

a ∗-anti-automorphism) T : B(H1) → B(H2).

We shall revisit one of the main tools employed to establish the above result.

This tool is a geometric characterization of projections in atomic von Neumann

algebras. Let us recall some notation first. Suppose that E and P are non-empty

subsets of a Banach space X. Following the notation employed in the recent paper
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[43], the unit sphere around E in P is the set

Sph(E;P ) := {x ∈ P : ‖x− b‖ = 1 for all b ∈ E} .

To simplify the notation, given a C∗-algebra A, and a subset E ⊂ A, we shall write

Sph+(E) or Sph+A(E) for the set Sph(E;S(A+)). The geometric characterization of

projections reads as follows: Let M be an atomic von Neumann algebra, and let a

be a positive norm-one element in M . Then the following statements are equivalent:

(a) a is a projection;

(b) Sph+M
(
Sph+M (a)

)
= {a}.

(see Theorem 6.6). This characterization also holds when M is replaced by

K(H3), where H3 is a separable complex Hilbert space (Theorem 6.8). More-

over, if a is a positive norm-one element in an arbitrary C∗-algebra A satisfying

Sph+A
(
Sph+A(a)

)
= {a}, then a is a projection (see [43, Proposition 2.2]). ing This

geometric characterization has been also applied to prove that if H3 and H4 are

separable complex Hilbert spaces, then every surjective isometry

Δ: S(K(H3)
+) → S(K(H4)

+)

admits a unique extension to a surjective complex linear isometry T from K(H3)

onto K(H4) (see Theorem 6.9).

2. Geometric background

In this section we survey the basic geometric tools which are frequently applied in

most of the studies on extending isometries. The results gathered in this section

are established in the general setting of Banach spaces.

A non-empty convex subset F of a convex set C is said to be a face of C if

αx + (1 − α)y ∈ F with x, y ∈ C and 0 < α < 1 implies x, y ∈ F . An element x

in the unit sphere of a Banach space X is an extreme point of BX precisely when

the set {x} is a face of BX . Accordingly to the standard notation, from now on,

the extreme points of a convex set C will be denoted by ∂e(C). The Krein–Milman

theorem is a fantastic tool to assure the existence and abundance of extreme points

in any non-empty compact convex subset of a locally convex, Hausdorff, topological

vector space.

Up to now, most of the studies on Tingley’s problem have been based on a

good and appropriate knowledge of the geometric properties of the involved spaces.

This is because the most general geometric conclusion which can be derived from

the existence of a surjective isometry between the unit spheres of two Banach spaces

is the following result, which was originally established by L. Cheng and Y. Dong
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[5], and later rediscovered by R. Tanaka [50, 51]. From now on, given a normed

space X, the symbol BX will stand for the closed unit ball of X.

Theorem 2.1. ([5, Lemma 5.1], [51, Lemma 3.3], [50, Lemma 3.5]) Let Δ: S(X) →

S(Y ) be a surjective isometry between the unit spheres of two Banach spaces, and

let M be a convex subset of S(X). Then M is a maximal proper face of BX if and

only if Δ(M) is a maximal proper (closed) face of BY .

As we commented in the introduction, Tingley’s problem remains open even

in the case of two-dimensional Banach spaces, the reason, probably, being the lack

of a concrete description of the maximal convex subsets of the unit sphere of a

general Banach space.

All strategies based on Theorem 2.1 above require a concrete description of

the maximal proper norm-closed faces of BX in terms of the algebraic or geomet-

ric properties of X. This is the point where the results by C.A. Akemann and

G. K. Pedersen [1], C. M. Edwards and G.T. Rüttimann [17], C. M. Edwards, F. J.

Fernández-Polo, C. Hoskin and A.M. Peralta [14], and F. J. Fernández-Polo and

A.M. Peralta [24], describing the facial structure of the closed unit ball of C∗-
algebras, von Neumann algebra preduals, JB∗-triples and their dual spaces, and

JBW∗-triples and their preduals, become a useful tool.

We recall now the “facear” and “pre-facear” operations introduced in [17]. For

each F ⊆ BX and G ⊆ BX∗ , we define

F ′ = {a ∈ BX∗ : a(x) = 1 ∀x ∈ F}, G′ = {x ∈ BX : a(x) = 1 ∀a ∈ G}.

Then F ′ is a weak∗ closed face of BX∗ and G′ is a norm closed face of BX . The

subset F is said to be a norm-semi-exposed face of BX if F = (F ′)′, while the subset

G is called a weak∗-semi-exposed face of BX∗ if G = (G′)′. The mappings F �→ F ′

and G �→ G′ are anti-order isomorphisms between the complete lattices Sn(BX) of

norm-semi-exposed faces of BX , and Sw∗(BX∗) of weak∗-semi-exposed faces of BX∗

and are inverses of each other.

If in Theorem 2.1 we assume a richer geometric structure on the spaces X

and Y , then the conclusion of this result was improved in a recent paper by F.J.

Fernández-Polo, J. Garcés, I. Villanueva and the author of this note in [21].

Theorem 2.2. ([21, Proposition 2.4]) Let Δ: S(X) → S(Y ) be a surjective isometry

between the unit spheres of two Banach spaces, and let C be a convex subset of S(X).

Suppose that for every extreme point φ0 in ∂e(BX∗), the set {φ0} is a weak∗-semi-

exposed face of BX∗ . Then C is a norm-semi-exposed face of BX if and only if Δ(C)

is a norm-semi-exposed face of BY .
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The real interest of the previous theorem is the following corollary.

Corollary 2.3. ([21, Corollary 2.5]) Let X and Y be Banach spaces satisfying the

following two properties:

(1) every norm closed face of BX (respectively, of BY ) is norm-semi-exposed;

(2) every weak∗ closed proper face of BX∗ (respectively, of BY ∗) is weak∗-semi-

exposed.

Let Δ: S(X) → S(Y ) be a surjective isometry. The following statements hold:

(a) Let F be a convex set in S(X). Then F is a norm closed face of BX if and

only if Δ(F) is a norm closed face of BY .

(b) Let e ∈ S(X). Then e ∈ ∂e(BX) if and only if Δ(e) ∈ ∂e(BY ).

As it is observed in [21], the hypotheses of the above corollary hold whenever X

and Y are C∗-algebras [1, Theorems 4.10 and 4.11], hermitian parts of C∗-algebras

(see [16, Corollary 5.1] and [1, Theorem 3.11]), von Neumann algebra preduals

[17, Theorems 5.3 and 5.4], preduals of the hermitian part of a von Neumann algebra

(see [15, Theorem 4.4] and [17, Theorem 4.1]), or more generally, JB∗-triples (cf.

[14, Corollary 3.11] and [24, Corollary 1]), or JBW∗-triple preduals [17, Corollaries

4.5 and 4.7].

By extending a result of D. Tingley [54, §4], M. Mori has recently added in

[34, Proposition 2.3] more information to the conclusion of the above Corollary 2.3.

Actually with similar arguments we can deduce the following result.

Proposition 2.4. Let Δ: S(X) → S(Y ) be a surjective isometry between the unit

spheres of two Banach spaces. Then the following statements hold:

(a) If M is a maximal proper face of BX , then Δ(−M) = −Δ(M).

(b) If X and Y satisfy the hypotheses of Corollary 2.3, then Δ(−F ) = −Δ(F )

for every proper norm closed face of BX .

The elements a, b in a C∗-algebra A are said to be orthogonal if ab∗ = b∗a = 0.

The set of partial isometries in A can be equipped with a partial order defined by e ≤

v if v−e is a partial isometry orthogonal to e, equivalently, v = e+(1−ee∗)v(1−v∗v).
This seems to be an optimal moment to recall the facial structure of the closed

unit ball of a C∗-algebra. We recall first some basic notions required to understand

the results. Let A be a C∗-algebra. It was shown by Akemann and Pedersen in [1]

that norm closed faces of BA are in one-to-one correspondence with the compact

partial isometries in A∗∗. Let us recall that a projection p in A∗∗ is said to be open

if A ∩ (pA∗∗p) is weak∗ dense in pA∗∗p, equivalently, there exists an increasing net

of positive elements in A, all of them bounded by p, converging to p in the strong∗

topology of A∗∗ (see [42, §3.11], [47, §III.6 and Corollary III.6.20]). A projection
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p ∈ A∗∗ is called closed if 1 − p is open. A closed projection p in A∗∗ is called

compact if p ≤ x for some norm-one positive element x ∈ A.

Compact partial isometries in the bidual of a C∗-algebra were studied by C.M.

Edwards and G.T. Rüttimann in [18, §5] as an application of the more general

notion of compact tripotent in the bidual of a JB∗-triple. C.A. Akemann and G.K.

Pedersen consider an alternative term for the same notion. A partial isometry

v ∈ A∗∗ belongs locally to A if v∗v is a compact projection and there exists a norm-

one element x in A satisfying v = xv∗v (compare [1, Remark 4.7]). It was shown by

C.A. Akemann and G.K. Pedersen that a partial isometry v in A∗∗ belongs locally

to A if and only if v∗ belongs locally to A (see [1, Lemma 4.8]). We know from

[18, Theorem 5.1] that a partial isometry v in A∗∗ belongs locally to A if and only

if it is compact in the sense introduced in [18].

Akemann and Pedersen gave in [1, Lemma 4.8 and Remark 4.11] an interesting

procedure to understand well those partial isometries in A∗∗ belonging locally to

A. Borrowing a paragraph from the just quoted paper we recall that “the partial

isometries v in A∗∗ that belong locally to A are obtained by taking an element x in

A with norm 1 and polar decomposition x = u|x| (in A∗∗), and then letting v = ue

for some compact projection e contained in the spectral projection χ
{1}

(|x|) of |x|

corresponding to the eigenvalue 1.” Similarly to most of the basic references, for

each element x in A we set |x| = (x∗x)
1
2 .

We are now in a position to revisit the results by C.A. Akemann and G.K.

Pedersen.

Theorem 2.5. ([1, Theorems 4.10 and 4.11]) Let A be a C∗-algebra. The following

statements hold:

(a) For each norm closed face F of BA there exists a unique partial isometry v

in A∗∗ belonging locally to A such that

F = Fv ={v}
′′
=(v+(1− vv∗)BA∗∗(1− v∗v))∩BA ={x ∈ BA : xv∗ = vv∗}.

Furthermore, the mapping v �→ Fv is an anti-order isomorphism from the

complete lattice of partial isometries in A∗∗ belonging locally to A onto the

complete lattice of norm closed faces of BA.

(b) For each weak∗ closed face G of BA∗ there exists a unique partial isometry v

in A∗∗ belonging locally to A such that G = {v}
′
, and the mapping v �→ {v}

′

is an order isomorphism from the complete lattice of partial isometries in A∗∗

belonging locally to A onto the complete lattice of weak∗ closed faces of BA∗ .

A non-zero projection p in a C∗-algebra A is called minimal if pAp = Cp. A

non-zero partial isometry e in a C∗-algebra A is minimal if ee∗ (equivalently, e∗e)
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is a minimal projection in A. By Kadison’s transitivity theorem, minimal partial

isometries in A∗∗ belong locally to A, and hence every maximal proper face of the

unit ball of a C∗-algebra A is of the form

(v + (1− vv∗)BA∗∗(1− v∗v)) ∩ BA (1)

for a unique minimal partial isometry v in A∗∗ (compare [1, Remark 5.4 and Corol-

lary 5.5]).

Another technical result of geometric nature, which is frequently applied in

the study of Tingley’s problem and should be considered in any survey on this

topic, was established by X.N. Fang, J.H. Wang and G.G. Ding in [20] and [11],

respectively.

Theorem 2.6. ([20, Corollary 2.2], [11, Corollary 1]) Let X and Y be normed spaces

and let Δ: S(X) → S(Y ) be a surjective isometry. Then, for any x, y in S(X), we

have ‖x+ y‖ = 2 if and only if ‖Δ(x) + Δ(y)‖ = 2.

This result plays a role, for example, in some of the proofs in [21,43].

2.1. A taste of Jordan structures

Many recent advances on Tingley’s problem and its variants on C∗-algebras make

an explicit use of the Jordan theory of JB∗-triples (see, for example, the proofs in

[26–28,44] and [21]). Although we are not going to enter in the deep details of the

proofs, it seems convenient to recall the basic notions and connections with this

theory.

We recall that, according to the definition introduced in [31], a JB∗-triple is a

complex Banach space E admitting a continuous triple product {a, b, c} which is

conjugate linear in b and linear and symmetric in a and c, and satisfies the following

axioms:

(JB∗1) L(a, b)L(c, d)− L(c, d)L(a, b) = L(L(a, b)(c), d)− L(c, L(b, a)(d)), for every

a, b, c, d in E, where L(a, b) is the operator on E defined by L(a, b)(x) =

{a, b, x};

(JB∗2) L(a, a) is an hermitian operator on E with non-negative spectrum;

(JB∗3) ‖{a, a, a}‖ = ‖a‖3, for every a ∈ E.

Examples of JB∗-triples include the space B(H,H ′) of bounded linear oper-

ators and the space K(H,H ′) of compact operators between two complex Hilbert

spaces, complex Hilbert spaces, and all C∗-algebras when equipped with the triple

product defined by {x, y, z} := 1
2 (xy

∗z + zy∗x). JB∗-triples constitute a category

which produces a Jordan model valid to generalize C∗-algebras. Every JB∗-algebra
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is a JB∗-triple under the triple product

{a, b, c} = (a ◦ b∗) ◦ c+ (c ◦ b∗) ◦ a− (a ◦ c) ◦ b∗.

For the basic notions and results on JB∗-triples the reader is referred to the mono-

graph [6].

A linear mapping between JB∗-triples is called a triple homomorphism if it

preserves triple products. Surjective real linear isometries between C∗-algebras and

JB∗-triples are deeply connected to triple isomorphisms (see [7, 8] and [23]). Many

of the results in this survey can be complemented with a good description of the

real triple isomorphisms between von Neumann algebras. Let us add that real linear

triple isomorphisms play a fundamental role in the original proofs of the main

results in [26–28,44].

3. Tingley’s problem on C
∗-algebras

Tingley’s problem for surjective isometries between the unit spheres of two com-

mutative C∗-algebras are completely covered by the results for C0(L)-spaces [55],

�∞(Γ)-spaces [9], and Lp(Ω,Σ, μ) spaces [48]. It should be remarked that in [9]

and [48] the authors only consider real sequences and real-valued measurable func-

tions, respectively, that is, their results are restricted to the hermitian parts of the

corresponding C∗-algebras.

According to the chronological order, and for our own convenience, we highlight

a pioneering result due to R.S. Wang. Let us recall the prototype example of

commutative C∗-algebras. Given a locally compact Hausdorff space L, we shall write

C0(L) for the commutative C∗-algebra of all complex-valued continuous functions

on L which vanish at infinity.

Theorem 3.1. ([55]) Let L1 and L2 be two locally compact Hausdorff spaces, and let

Δ: S(C0(L1)) → S(C0(L2)) be a surjective isometry. Then there exists a real linear

surjective isometry T : C0(L1) → C0(L2) satisfying T |S(C0(L1)) = Δ. Furthermore,

there exist two disjoint subsets A and B of L1 such that A ∪ B = L1, T |C0(A) is

complex linear, and T |C0(B) is conjugate linear, where C0(A) = {f ∈ C0(L1) : f |B ≡

0}, and C0(B) = {f ∈ C0(L1) : f |A ≡ 0}.

Wang’s theorem, whose proof is based on Urysohn’s lemma and fine geo-

metric arguments, solves Tingley’s problem for commutative C∗-algebras. Actu-

ally, if Δ: S(�∞(Γ1)) → S(�∞(Γ2)) (respectively, Δ: S(c(Γ1)) → S(c(Γ2)), or

Δ: S(c0(Γ1)) → S(c0(Γ2))) is a surjective isometry, then we can always find an

extension to a surjective real linear isometry between the corresponding spaces,
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where c0(Γ), c(Γ1), and �∞(Γ) denote the spaces of all complex null, convergent,

and bounded functions on Γ, respectively. A similar conclusion holds for a surjective

isometry Δ: S(L∞(Ω,Σ, μ)) → S(L∞(Ω,Σ, μ)).

The previous result reveals the importance of considering real linear surjective

isometries between C0(L) spaces. A generalization of the Banach–Stone theorem to

real linear surjective isometries (see [19] and [33]) assures that for each surjective real

linear isometry T : C0(L1) → C0(L2) there exist a homeomorphism ϕ : L2 → L1, a

clopen subset K2 of L2, and a unitary continuous function u : L2 → C such that

T (f)(s) = u(s) f(ϕ(s)), ∀f ∈ C0(L1), s ∈ K2,

and

T (f)(s) = u(s) f(ϕ(s)), ∀f ∈ C0(L1), s ∈ L2\K2.

Having this theorem in mind, the conclusion in [9] can be explicitly obtained as a

consequence of the above Theorem 3.1.

In 2014, 2016, and 2017, R. Tanaka publishes the first achievements on Tin-

gley’s problem for surjective isometries between the unit spheres of two non-

commutative C∗-algebras; his results focus on finite-dimensional C∗-algebras, and

more generally on finite von Neumann algebras (see [50–53]). From now on, we

shall write Mn(C) for the space of all n× n matrices with complex entries.

Theorem 3.2. ([51, Theorem 6.1]) Let Δ: S(Mn(C)) → S(Mn(C)) be a surjective

isometry. Then Δ admits a (unique) extension to a complex linear or to a conjugate

linear surjective isometry on Mn(C). Furthermore, there exist a complex linear or

conjugate linear ∗-automorphism Φ: Mn(C) → Mn(C) and a unitary matrix u in

Mn(C) such that one of the next statements holds:

(a) Δ(x) = uΦ(x), for all x ∈ S(Mn(C));

(b) Δ(x) = uΦ(x)∗, for all x ∈ S(Mn(C)).

Again surjective real linear isometries seem to be behind the results. The proof

of the above Theorem 3.2 is based on the following well-known fact: The extreme

points of the closed unit ball of Mn(C) are precisely the unitary matrices in Mn(C).

Let Un denote the set of all unitary matrices in Mn(C). It follows from the above fact

and from Corollary 2.3 that a surjective isometry Δ: S(Mn(C)) → S(Mn(C)) maps

Un onto itself, and thus the restriction Δ|Un
: Un → Un gives a surjective isometry

too. Similar conclusions also hold when Mn(C) is replaced by a finite-dimensional

C∗-algebra, or more generally, by a finite von Neumann algebra. We are naturally

lead to an outstanding theorem due to O. Hatori and L. Molnár.
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Theorem 3.3. ([29, Corollary 3]) Every surjective isometry between the unitary

groups of two von Neumann algebras extends to a surjective real linear isometry

between the von Neumann algebras. More concretely, let M1 and M2 be von Neu-

mann algebras whose unitary groups are denoted by U1 and U2. Let Υ: U1 → U2

be a bijection. Then Υ is a surjective isometry if and only if there exist a central

projection p ∈ M2 and a Jordan ∗-isomorphism Φ: M1 → M2 such that

Υ(u) = Υ(1)(p Φ(u) + (1− p) Φ(u)∗), for all u ∈ U1.

R.V. Kadison and G.K. Pedersen showed in [30] that every element in a finite

von Neumann algebra M can be expressed as the convex combination (actually

as the midpoint) of two unitary elements in M . Tanaka’s arguments rely on the

facial structure of von Neumann algebras and the property of preservation of mid-

points between unitary elements. By these arguments the above Theorem 3.2 was

generalized by R. Tanaka in the following form:

Theorem 3.4. ([53, Theorem 4.2] and [52]) Let Δ: S(M1) → S(M2) be a surjec-

tive isometry, where M1 and M2 are finite von Neumann algebras. There exists

a surjective real linear isometry T : M1 → M2 satisfying Δ(a) = T (a) for all

a ∈ S(M1). More concretely, we can find a central projection p ∈ M2 and a Jordan
∗-isomorphism Φ: M1 → M2 such that

Δ(a) = Δ(1)(p Φ(a) + (1− p) Φ(a)∗),

for all a ∈ S(M1). The same conclusion holds when Δ: S(A) → S(B) is a surjective

isometry from the unit sphere of a finite-dimensional C∗-algebra onto the unit sphere

of another C∗-algebra.

The Hatori–Molnár theorem is applied by Tanaka to synthesize a surjective

real linear isometry T : M1 → M2.

The first results on Tingley’s problem for (non-necessarily commutative) op-

erator algebras opened the exploration of this problem for more general classes of

operator algebras.

The next natural steps are perhaps, the C∗-algebras K(H) and B(H) of all

compact and bounded linear operators on an infinite-dimensional complex Hilbert

space H, respectively. There is a clear obstruction in the case of K(H) because

∂e(BK(H)) = ∅, even more, K(H) contains no unitary elements, and hence Theorem

3.3 is meaningless to synthesize a surjective real linear isometry in this setting.

Surprisingly, we shall get back to the Hatori–Molnár theorem (Theorem 3.3) when

we survey the recent solution to Tingley’s problem for a wide family of von Neumann

algebras obtained in [28].
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3.1. Tingley’s problem for compact C
∗-algebras

Along the paper, given a vector x0 in a Banach space X, the translation with respect

to x0 will be denoted by Tx0
.

Let us consider the C∗-algebra K(H) of all compact operators on an arbitrary

complex Hilbert space H. It is well known that K(H)∗∗ = B(H). There is a clear

advantage in this case because minimal partial isometries in K(H)∗∗ = B(H) are

precisely the rank-one partial isometries, which clearly belong to K(H). Further-

more, compact partial isometries in K(H)∗∗ are all finite rank partial isometries in

K(H).

A C∗-algebra A is called compact if it can be written as a c0-sum of the form

A = ⊕c0
j K(Hj), where each Hj is a complex Hilbert space (compare [2,57]). In this

case A∗∗ = ⊕∞j B(Hj), and every minimal partial isometry in A∗∗ is a rank-one

partial isometry in one of the factors, and hence belongs to A. Actually compact

partial isometries in A∗∗ are finite rank partial isometries, and hence they all belong

to A. The following proposition was derived in [44] by combining these facts with

Corollary 2.3, the Akemann–Pedersen theorem (see Theorem 2.5), the comments

in (1), and Mankiewicz’ theorem (see Theorem 1.2).

Proposition 3.5. ([44, Proposition 3.2]) Let A and B be compact C∗-algebras, and

suppose that Δ: S(A) → S(B) is a surjective isometry. Then the following state-

ments hold:

(a) Δ maps norm closed proper faces of BA to norm closed proper faces of BB.

(b) For each (minimal) partial isometry e1 in A there exists a unique (minimal)

partial isometry u1 in B such that Δ((e1 + (1− e1e
∗
1)BA∗∗(1− e∗1e1)) ∩ BA) =

(u1 + (1− u1u
∗
1)BB∗∗(1− u∗1u1))∩BB. Moreover, there exists a surjective real

linear isometry Te1 : (1− e1e
∗
1)A(1− e∗1e1) → (1−u1u

∗
1)B(1−u∗1u1) such that

Δ(e1 + x) = u1 + Te1(x),

for every x ∈ B
(1−e1e∗1)A(1−e∗1e1)

.

(c) The restriction of Δ to each norm closed proper face of BA is an affine

function.

(d) For each partial isometry e1 in A there exists a unique partial isometry u1 in

B such that Δ(e1) = u1. Moreover, the rank of e1 coincides with the rank of

u1 and both are finite.

The proof of the above result can be outlined and guessed by the reader from

the previously commented results.

A result determining when a partial isometry is at distance two from another

minimal partial isometry in a compact C∗-algebra was first considered in [44].
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Lemma 3.6. ([44, Lemma 3.5]) Let e and w be partial isometries in a compact

C∗-algebra A. Suppose that e is minimal and ‖e− w‖ = 2. Then

w = −e+ (1− ee∗)w(1− e∗e).

Let Δ: S(A) → S(B) be a surjective isometry between the unit spheres of two

compact C∗-algebras. Let us pick a minimal partial isometry e in A. Proposition

3.5 implies that Δ(e) and Δ(−e) are minimal partial isometries in B. Since ‖Δ(e)−

Δ(−e)‖ = ‖e+ e‖ = 2, Lemma 3.6 assures that

Δ(−e) = −Δ(e) + (1−Δ(e)Δ(e)∗)Δ(−e)(1−Δ(e)∗Δ(e)),

and we derive from the minimality of Δ(−e) that Δ(−e) = −Δ(e). A more elaborate

argument was applied in [44], via similar arguments, to establish a version of the

original theorem of Tingley [54] for finite rank partial isometries.

Theorem 3.7. ([44, Theorem 3.7]) Let Δ: S(A) → S(B) be a surjective isometry

between the unit spheres of two compact C∗-algebras. The following statements hold:

(a) If e is a partial isometry in A, then Δ(−e) = −Δ(e).

(b) If e1, . . . , em are mutually orthogonal partial isometries in A, then Δ(e1), . . . ,

Δ(em) are mutually orthogonal partial isometries in B and

Δ(e1 + · · ·+ em) = Δ(e1) + · · ·+Δ(em).

If we take a projection p in a C∗-algebra A, the subspace (1− p)A(1− p) is

a C∗-subalgebra of A. However, if we take a partial isometry e in A, the subspace

(1− ee∗)A(1− e∗e) need not be, in general, a C∗-subalgebra of A. However, the set

(1− ee∗)A(1− e∗e) is a norm closed subspace of A which is also closed under the

triple product given by

{a, b, c} =
1

2
(ab∗c+ cb∗a). (2)

This is equivalent to saying that (1− ee∗)A(1− e∗e) is a JB∗-subtriple of A in the

sense defined in [31] (see Subsection 2.1).

Suppose that e is a partial isometry in a compact C∗-algebra A, and let B

be another compact C∗-algebra. Suppose Δ: S(A) → S(B) is a surjective isometry.

Let us consider the surjective real linear isometry

Te : (1− ee∗)A(1− e∗e) → (1−Δ(e)Δ(e)∗)A(1−Δ(e)∗Δ(e))

given by Proposition 3.5(b). Let e1 be any partial isometry in (1− p)A(1− p). By

Propositions 3.5 and 3.7 we have

Δ(e) + Te(e1) = Δ(e+ e1) = Δ(e) + Δ(e1),
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we get Te(e1) = Δ(e1). Furthermore, let e1, . . . , em be mutually orthogonal partial

isometries in (1− ee∗)A(1− e∗e), and let α1, . . . , αm be positive real numbers with

max{α1, . . . , αm} ≤ 1. By the same arguments as above we deduce that

Δ
(
e+

∑
j=1

αjej

)
= Δ(e)+Te

(∑
j=1

αjej

)
= Δ(e)+

∑
j=1

αjTe(ej) = Δ(e)+
∑
j=1

αjΔ(ej).

Furthermore, if w is a partial isometry in A such that e, ej ∈ (1−ww∗)A(1−w∗w)
for all j, we also have

Δ
(
e+

∑
j=1

αjej

)
= Δ(e) +

∑
j=1

αjΔ(ej)

= Tw(e) +
∑
j=1

αjTw(ej) = Tw

(
e+

∑
j=1

αjej

) (3)

A triple spectral resolution assures that every compact operator can be ap-

proximated in norm by finite linear combinations of mutually orthogonal minimal

partial isometries, and the same statement holds for every element in a compact

C∗-algebra. Therefore, under the above hypotheses, we deduce from the continuity

of Tw and Δ that for each non-zero partial isometry w ∈ A we have

Δ(x) = Tw(x), for all x ∈ S((1− ww∗)A(1− w∗w)). (4)

A straight consequence of (4) gives the following: if w1 and w2 are non-zero partial

isometries, we have

Tw2
(x) = Δ(x) = Tw1

(x), (5)

for all x ∈ S((1− w1w
∗
1)A(1− w∗1w1)) ∩ S((1− w2w

∗
2)A(1− w∗2w2)).

The lack of possibility to apply the Hatori–Molnár theorem to synthesize

a surjective real linear isometry between A and B forces us to apply a different

strategy in [44]. This different approach is worth to be, at least, outlined here.

In the first step we assume that we can find a non-zero subfactor K(H1) of

A such that A is the orthogonal sum of K(H1) and its orthogonal complement

J = K(H1)
⊥ and the latter is non-zero. Let us take two non-zero projections p1 in

K(H1) and p2 ∈ J , and define the mapping T : A = K(H1)⊕
⊥ J → B given by

T (x) = Tp1(π2(x)) + Tp2(π1(x))

where π1 and π2 denote the canonical projections of A onto K(H1) and J , respec-

tively, and Tp1 and Tp2 are defined by Proposition 3.5. The mapping T is real linear

because Tp1 and Tp2 are. Clearly T is bounded with ‖T‖ ≤ 2. A minimal partial
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isometry in A either lies in K(H1) or in J . Let us pick an element x in S(A) which

can be written in the form x = e +
∑

j=1 αjej +
∑

k=1 βkek, where e, ej , ek are

mutually orthogonal minimal partial isometries in A, αj , βk ∈ R+, ej ∈ B(H1) and

ek ∈ J for all j, k, and e either lies in B(H1) or in J . If e ∈ K(H1) (respectively,

e ∈ J), by (4), we have Δ(e) = Tp1
(e) = T (e) (respectively, Δ(e) = Tp2

(e) = T (e)).

Now, by (3) and (4), we have

Δ(x) = Δ(e) +
∑
j=1

αjΔ(ej) +
∑
k=1

βkΔ(ek) = Δ(e) +
∑
j=1

αjTp2(ej) +
∑
k=1

βkTp1(ek)

= T (e) +
∑
j=1

αjT (ej) +
∑
k=1

βkT (ek) = T (x).

The norm density of this kind of elements x in S(A) together with the norm

continuity of T and Δ prove that T (x) = Δ(x) for all x ∈ S(A).

In the second case we assume that A = K(H) for some complex Hilbert space

H. If H is finite-dimensional, Theorem 3.4 proves that our mapping Δ: S(A) →

S(B) admits a unique extension to a surjective real linear isometry from A onto B.

We can therefore assume that H is infinite-dimensional.

Let us take three mutually orthogonal minimal projections p1, p2 and p3 in A,

and the corresponding surjective real linear isometries Tp1
, Tp2

, and Tp3
given by

Proposition 3.5. We can decompose A in the form

A = Cp1 ⊕ (p1Ap2 ⊕ p2Ap1)⊕ ((1− p2)Ap1 ⊕ p1A(1− p2))⊕ (1− p1)A(1− p1),

where Cp1⊕(p1Ap2⊕p2Ap1) ⊂ (1−p3)A(1−p3), and ((1−p2)Ap1⊕p1A(1−p2)) ⊂

(1 − p2)A(1 − p2). Let π1, π2, and π3 denote the corresponding projections of A

onto Cp1 ⊕ (p1Ap2 ⊕ p2Ap1), ((1 − p2)Ap1 ⊕ p1A(1 − p2)) and (1 − p1)A(1 − p1),

respectively. We synthesize the mapping T : A → B given by

T (x) = Tp3(π1(x)) + Tp2(π2(x)) + Tp1(π3(x)).

The mapping T is continuous and real linear because Tp1 , Tp2 and Tp3 are.

If we prove that

T (e) = Δ(e), for every minimal partial isometry e in A,

then a similar argument to that given in the first step above, based on (3) and (4),

the norm density in S(A) of those elements which can be written as finite positive

combinations of mutually orthogonal minimal partial isometries, and the continuity

of T and Δ, shows that T (x) = Δ(x) for all x ∈ S(A).
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Let e be a minimal partial isometry in A. Since H is infinite-dimensional, we

can find another minimal projection p4 which is orthogonal to p1, p2, p3, e.

Since e ∈ (1− p4)A(1− p4), the statement in (4) implies that Δ(e) = Tp4(e).

Let us write e = p1ep1+p1ep2+p2ep1+p1e(1−p2)+(1−p2)ep1+(1−p1)e(1−p1).

Clearly, p1ep1, p1ep2, p2ep1 ∈ (1− p4)A(1− p4). Since p1, p2, e ∈ (1− p4)A(1− p4),

we also deduce that p1e(1− p2), (1− p2)ep1, (1− p1)e(1− p1) ∈ (1− p4)A(1− p4).

By applying (5) to Tp4 and Tp3 (respectively, to Tp4 and Tp2 , and Tp4 and Tp3) we

get

T (e)

= Tp3
(p1ep1+p1ep2+p2ep1)+Tp2

(p1e(1−p2)+(1−p2)ep1)+Tp1
((1−p1)e(1−p1))

= Tp4
(p1ep1+p1ep2+p2ep1)+Tp4

(p1e(1−p2)+(1−p2)ep1)+Tp4
((1−p1)e(1−p1))

= Te4(e) = Δ(e).

We have sketched the main arguments leading to one of the main achievements

in [44].

Theorem 3.8. ([44, Theorem 3.14]) Let Δ: S(A) → S(B) be a surjective isometry

between the unit spheres of two compact C∗-algebras. Then there exists a (unique)

surjective real linear isometry T : A → B such that T (x) = Δ(x), for every x in

S(A). In particular, the same conclusion holds when A = K(H1) and B = K(H2),

where H1 and H2 are arbitrary complex Hilbert spaces.

Surjective real linear isometries between (real) C∗-algebras were studied in

depth by Ch.H. Chu, T. Dang, B. Russo, B. Ventura in [7]. Theorem 6.4 in [7]

proves that every surjective real linear isometry between (real) C∗-algebras is a triple

isomorphism with respect to the triple product defined in (2). Studies on surjective

real linear isometries on JB∗-triples and real JB∗-triples have been considered by

T. Dang [8] and F. J. Fernández-Polo, J. Martínez and the author of this survey in

[23].

3.2. Tingley’s problem for B(H)

After having revisited the solution to Tingley’s problem for compact C∗-algebras

published in [44], the next natural challenge is to consider a surjective isometry

Δ: S(B(H1)) → S(B(H2)), where H1, H2 are arbitrary complex Hilbert spaces.

Let us observe that if H1 or H2 is finite-dimensional, then the extension of Δ to a

surjective real linear isometry is guaranteed by Tanaka’s theorem (see Theorem 3.4).

The problem in the setting of B(H) spaces has been recently solved in a

contribution by F.J. Fernández-Polo and the author of this survey in [26].
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Theorem 3.9. ([26, Theorem 3.2]) Let H1 and H2 be complex Hilbert spaces. Sup-

pose that Δ: S(B(H1)) → S(B(H2)) is a surjective isometry. Then there exists a

surjective complex linear or conjugate linear surjective isometry T from B(H1) onto

B(H2) satisfying Δ(x) = T (x), for every x ∈ S(B(H1)).

Actually, a stronger conclusion has been achieved.

Theorem 3.10. ([26, Theorem 3.2]) Let (Hi)i∈I and (Kj)j∈J be two families of com-

plex Hilbert spaces. Suppose Δ: S
(⊕�∞

j B(Kj)
)
→ S

(⊕�∞
i B(Hi)

)
is a surjective

isometry. Then there exists a surjective real linear isometry

T :

�∞⊕
j

B(Kj) →

�∞⊕
i

B(Hi) satisfying T |
S(⊕�∞

j
B(Kj))

= Δ.

The strategy to obtain the previous two theorems also begins with results based

on the facial structure of the closed unit ball of B(H), Theorem 2.1, Corollary 2.3

and the Akemann–Pedersen theorem (Theorem 2.5). The latter result forces us to

face a serious additional obstacle which requires a completely new strategy. More

concretely, we have already seen in the previous subsection that, for a compact

C∗-algebra A, the norm closed faces of BA are determined by finite rank partial

isometries in A. However, for a general C∗-algebra A the maximal proper faces of

BA are determined by minimal partial isometries in A∗∗. This is a serious obstacle

which makes invalid the arguments in previous subsections and in [25,44] to the case

of a surjective isometry Δ: S(B(H1)) → S(B(H2)), because, in principle, Δ cannot

be applied to every minimal projection in B(H1)
∗∗. The novelties in [26] are based

on certain technical results which provide an antidote to avoid these difficulties.

Two results from [26] deserve to be highlighted by their own right.

Theorem 3.11. ([26, Theorem 2.3]) Let A and B be C∗-algebras, and suppose that

Δ: S(A) → S(B) is a surjective isometry. Let e be a minimal partial isometry in

A. Then 1 is isolated in the spectrum of |Δ(e)|.

The consequences of the previous result are stronger after the next additional

theorem.

Theorem 3.12. ([26, Theorem 2.5]) Let A be a C∗-algebra, and let H be a complex

Hilbert space. Suppose that Δ: S(A) → S(B(H)) is a surjective isometry. Let e be

a minimal partial isometry in A. Then Δ(e) is a minimal partial isometry in B(H).

Moreover, there exists a surjective real linear isometry

Te : (1− ee∗)A(1− e∗e) → (1−Δ(e)Δ(e)∗)B(H)(1−Δ(e)∗Δ(e))
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such that Δ(e+ x) = Δ(e) + Te(x), for all x in B(1−ee∗)A(1−e∗e). In particular, the

restriction of Δ to the face Fe = e+ (1− ee∗)BA(1− e∗e) is a real affine function.

Technical algebraic and geometric manipulations combined with the previ-

ous theorem determine a precise control of a surjective isometry Δ: S(B(K)) →

S(B(H)) on algebraic elements in the sphere which can be expressed as finite

positive linear combinations of mutually orthogonal minimal partial isometries. It

should be remarked here that a traditional spectral resolution with finite linear com-

binations of mutually orthogonal projections is only valid to approximate hermitian

elements in the sphere.

Theorem 3.13. ([26, Theorem 2.7]) Let Δ: S(B(H1)) → S(B(H2)) be a surjective

isometry where H1 and H2 are complex Hilbert spaces with dimension greater than

or equal to three. Then the following statements hold:

(a) For each minimal partial isometry v in B(H1), the mapping

Tv : (1− vv∗)B(H1)(1− v∗v) → (1−Δ(v)Δ(v)∗)B(H2)(1−Δ(v)∗Δ(v))

given by Theorem 3.12 is complex linear or conjugate linear.

(b) For each minimal partial isometry v in B(H1) we have Δ(−v) = −Δ(v) and

Tv = T−v. Furthermore, Tv is weak∗-continuous and Δ(e) = Tv(e) for every

minimal partial isometry e ∈ (1− vv∗)B(H1)(1− v∗v).
(c) For each minimal partial isometry v in B(H1) the equality Δ(w) = Tv(w)

holds for every partial isometry w ∈ (1− vv∗)B(H1)(1− v∗v)\{0}.
(d) Let w1, . . . , wn be mutually orthogonal non-zero partial isometries in B(H1),

and let λ1, . . . , λn be positive real numbers with λ1 = 1, and λj ≤ 1 for all j.

Then Δ
(∑n

j=1 λjwj

)
=
∑n

j=1 λjΔ(wj).

(e) For each minimal partial isometry v in B(H1) we have Δ(x) = Tv(x) for

every x ∈ S(B(1−vv∗)B(H1)(1−v∗v)).

(f) For each partial isometry w in B(H1) the element Δ(w) is a partial isometry.

(g) Suppose v1, v2 are mutually orthogonal minimal partial isometries in B(H1)

then Tv1(x) = Tv2(x) for every x in the intersection

((1− v1v
∗
1)B(H1)(1− v1v

∗
1)) ∩ ((1− v2v

∗
2)B(H1)(1− v2v

∗
2)) .

(h) Suppose v1, v2 are mutually orthogonal minimal partial isometries in B(H1)

then exactly one of the following statements holds:

(1) The mappings Tv1 and Tv2 are complex linear.

(2) The mappings Tv1 and Tv2 are conjugate linear.

The synthesis of a surjective real linear isometry in the proof of Theorem 3.9

(see [26, Theorem 3.2]) is given with similar arguments to those we sketched in page
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97 with the obvious modifications and the new tools developed in Theorems 3.12

and 3.13. That is, assuming that H is infinite-dimensional, we pick three mutually

orthogonal minimal projections p1, p2 and p3 in A, and the corresponding surjective

real linear isometries Tp1 , Tp2 , and Tp3 given by Theorem 3.12. By decomposing

B(H1) in the form

B(H1) = Cp1 ⊕ (p1B(H1)p2 ⊕ p2B(H1)p1)⊕

⊕ ((1− p2)B(H1)p1 ⊕ p1B(H1)(1− p2))⊕ (1− p1)B(H1)(1− p1),

with

Cp1 ⊕ (p1B(H1)p2 ⊕ p2B(H1)p1) ⊂ (1− p3)B(H1)(1− p3),

and

((1− p2)B(H1)p1 ⊕ p1B(H1)(1− p2)) ⊂ (1− p2)B(H1)(1− p2),

and denoting by π1, π2, and π3 the corresponding projections of B(H1) onto

Cp1 ⊕ (p1B(H1)p2 ⊕ p2B(H1)p1), ((1 − p2)B(H1)p1 ⊕ p1B(H1)(1 − p2)) and

(1− p1)B(H1)(1− p1), respectively. We synthesize a mapping T : B(H1) → B(H2)

given by T (x) = Tp3(π1(x)) + Tp2(π2(x)) + Tp1(π3(x)). The mapping T is weak∗

continuous and real linear because Tp1
, Tp2

and Tp3
are. By the new tools given by

Theorem 3.13 it is shown in the proof of [26, Theorem 3.2] that Δ(e) = T (e) for

every minimal partial isometry e in B(H1).

Contrary to the case of K(H) spaces and compact C∗-algebras, where every

element in the sphere can be approximated in norm by norm-one elements which

are finite linear combinations of mutually orthogonal minimal partial isometries,

elements in the sphere of B(H) can be approximated only in the weak∗ topology by

these kind of algebraic elements. To solve this additional obstacle, it is established

in [26] an identity principle in the following terms.

Proposition 3.14. ([26, Proposition 3.1]) Let H1 and H2 be complex Hilbert spaces.

Suppose that Δ: S(B(H1)) → S(B(H2)) is a surjective isometry, and there exists a

weak∗-continuous real linear operator T : B(H1) → B(H2) such that Δ(v) = T (v),

for every minimal partial isometry v in B(H1). Then T and Δ coincide on the

whole S(B(H1)).

The above proposition, Theorem 3.13 and the above observation are, in essence,

all the arguments required to prove Theorem 3.9. The proof of Theorem 3.10 required

additional technical adaptations which can be found in [26].

3.3. Tingley’s problem for von Neumann algebras

The most recent, and for the moment, the most general conclusion on Tingley’s

problem is an affirmative solution to this problem for surjective isometries between
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the unit spheres of two von Neumann algebras in a wide class, which has been

recently obtained by F.J. Fernández-Polo and the author of this survey in [28]. The

result reads as follows:

Theorem 3.15. ([28, Theorem 3.3]) Let Δ: S(M) → S(N) be a surjective isometry

between the unit spheres of two von Neumann algebras. Suppose M is not a factor,

or it is a finite factor, or a type I factor, or a type II∞ factor on a separable Hilbert

space, or a type III factor on a separable Hilbert space. Then there exists a surjective

real linear isometry T : M → N whose restriction to S(M) is Δ. More precisely,

there exist a central projection p in N and a Jordan ∗-isomorphism J : M → N

such that, defining T : M → N by T (x) = Δ(1) (pJ(x) + (1− p)J(x)∗) (x ∈ M),

then T is a surjective real linear isometry and T |S(M) = Δ.

The mathematical difficulties of the problem in this general setting are con-

siderable. The techniques, procedures and strategies applied in the previous case

to synthesize a surjective real linear isometry and to apply the facial structure are

no longer valid under the new hypotheses.

Let Δ: S(A) → S(B) be a surjective isometry between the unit spheres of

two C∗-algebras. A combination of Theorem 2.5 and Corollary 2.3 (see also the

subsequent comments) gives a one-to-one correspondence between compact partial

isometries in the corresponding second duals.

Theorem 3.16. Let Δ: S(A) → S(B) be a surjective isometry between the unit

spheres of two C∗-algebras. Then the following statements hold:

(a) For each non-zero compact partial isometry e ∈ A∗∗ there exists a unique

(non-zero) compact partial isometry φΔ(e) ∈ B∗∗ such that Δ(Fe) = FφΔ(e),

where Fe = (e+ (1− ee∗)BA∗∗(1− e∗e)) ∩ BA.

(b) The mapping e �→ φΔ(e) defines an order preserving bijection between the set

of non-zero compact partial isometries in A∗∗ and the set of non-zero compact

partial isometries in B∗∗.
(c) φΔ maps minimal partial isometries in A∗∗ to minimal partial isometries

in B∗∗.

The above result produces no alternative to our obstacles because compact

partial isometries in the second dual cannot be transformed under Δ. Technical

arguments based on ultraproducts techniques and a subtle uniform generalization of

Lemma 3.6 are appropriately applied in [28] to obtain generalizations of the above

Theorems 3.11 and 3.12.

Theorem 3.17. ([28, Theorem 2.7]) Let Δ: S(A) → S(B) be a surjective isometry

between the unit spheres of two C∗-algebras. Let e be a non-zero partial isometry in

A. Then 1 is isolated in the spectrum of |Δ(e)|.
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Mankiewicz’s theorem (Theorem 1.2) plays a fundamental role in the second

part of the statement of the next theorem.

Theorem 3.18. ([28, Theorem 2.8]) Let Δ: S(A) → S(B) be a surjective isometry

between the unit spheres of two C∗-algebras. Then Δ maps non-zero partial isome-

tries in A to non-zero partial isometries in B. Moreover, for each non-zero partial

isometry e in A, we have φΔ(e) = Δ(e), and there exists a surjective real linear

isometry Te : (1− ee∗)A(1− e∗e) → (1−Δ(e)Δ(e)∗)B(1−Δ(e)∗Δ(e)) such that

Δ(e+ x) = Δ(e) + Te(x), for all x in B(1−ee∗)A(1−e∗e).

In particular the restriction of Δ to the face Fe = e+ (1− ee∗)BA(1− e∗e) is a real

affine function.

Another crucial step in the study of Tingley’s problem on von Neumann

algebras asserts that the mapping φΔ given by Theorem 3.16 preserves antipodal

points.

Theorem 3.19. ([28, Theorem 2.11]) Let Δ: S(A) → S(B) be a surjective isometry

between the unit spheres of two C∗-algebras. Then, for each non-zero compact partial

isometry e in A∗∗, we have φΔ(−e) = −φΔ(e), where φΔ is the mapping given by

Theorem 3.16. Consequently, for each non-zero partial isometry e ∈ A, we have

Δ(−e) = −Δ(e).

The orthogonal complement of a subset S in a C∗-algebra A is defined by

S⊥ := {x ∈ A : x ⊥ a, for all a ∈ S}.

The previous theorems provide the key tools to extend Theorem 3.13 to the

setting of von Neumann algebras.

Proposition 3.20. ([28, Proposition 2.12]) Let Δ: S(A) → S(B) be a surjective

isometry between the unit spheres of two C∗-algebras. Then the following statements

hold:

(a) For each non-zero partial isometry v in A, the surjective real linear isometry

Tv : (1− vv∗)A(1− v∗v) → (1−Δ(v)Δ(v)∗)B(1−Δ(v)∗Δ(v))

given by Theorem 3.18 satisfies Δ(e) = Tv(e), for every non-zero partial

isometry e ∈ (1− vv∗)A(1− v∗v).
(b) Let w1, . . . , wn be mutually orthogonal non-zero partial isometries in A, and

let λ1, . . . , λn be real numbers with 1 = |λ1| ≥ max{|λj |}. Then

Δ
( n∑

j=1

λjwj

)
=

n∑
j=1

λjΔ(wj).
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(c) Suppose v, w are mutually orthogonal non-zero partial isometries in A. Then

Tv(x) = Tw(x) for every x ∈ {v}⊥ ∩ {w}⊥.

(d) If A is a von Neumann algebra, then for each non-zero partial isometry v in

A we have Δ(x) = Tv(x) for every x ∈ S((1− vv∗)A(1− v∗v)).

Given a surjective isometry Δ: S(M) → S(N) between the unit spheres of

two von Neumann algebras, the synthesis of a surjective real linear extension to a

surjective real linear isometry T : M → N follows completely different arguments

than those in the cases of compact C∗-algebras and B(H). The technique in this

case relies again on the Hatori–Molnár theorem (Theorem 3.3). R. Tanaka proves in

[53] that a surjective isometry between the unit spheres of two finite von Neumann

algebras maps unitary elements to unitary elements. This result has been extended

to general von Neumann algebras in [28, Theorem 3.2].

Theorem 3.21. ([28, Theorem 3.2]) Let Δ: S(M) → S(N) be a surjective isometry

between the unit spheres of two von Neumann algebras. Then Δ maps unitaries in

M to unitaries in N .

From now on, let the symbol U(A) denote the unitary group of a C∗-algebra

A. The above Theorem 3.21 opens the door to apply the Hatori–Molnár theorem

(Theorem 3.3) to synthesize a surjective real linear isometry T : M → N satisfying

T (u) = Δ(u) for all u ∈ U(M). The difficulties to finish the proof of Theorem 3.15

reside in proving that Δ(x) = T (x) for all x ∈ S(M). This is solved in [28] with a

convenient application of the theory of convex combinations of unitary operators

in von Neumann algebras developed by C. L. Olsen and G. K. Pedersen in [39] and

[40]. These are the main lines in the proof of Theorem 3.15.

It is worth making a stop to comment on the first connection with a very recent

contribution of M. Mori. In the preprint [34], M. Mori establishes a generalization

of the above Theorem 3.21.

Theorem 3.22. ([34, Theorem 3.2]) Let Δ: S(A) → S(B) be a surjective isometry

between the unit spheres of two unital C∗-algebras. Then Δ maps unitaries in A to

unitaries in B.

The proof presented by M. Mori in [34] is based on the following geometric

result, which is a nice discovery by itself, and might be useful in some other contexts.

Lemma 3.23. Let A be a unital C∗-algebra, and let x be an element in ∂e(BA).

Then x is a unitary if and only if the set Ax := {y ∈ ∂e(BA) : ‖x± y‖ =
√
2} has

an isolated point as a metric space.

We finish this section with a couple of open problems.
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Open Problem 1. (Tingley’s problem for C∗-algebras) Let Δ: S(A) → S(B) be a

surjective isometry between the unit spheres of two C∗-algebras. Does Δ admit an

extension to a surjective real linear isometry from A onto B?

When A is a unital C∗-algebra, M. Mori shows in [34, Proposition 3.4 and

Problem 6.1] that a particular version of the above problem can be restated in the

following terms:

Open Problem 2. Let A be a unital C∗-algebra and let Δ: S(A) → S(A) be a

surjective isometry. Suppose that Δ(x) = x for every invertible element in the unit

sphere of A. Is Δ equal to the identity mapping on S(A)?

4. Tingley’s problem on von Neumann algebra preduals

Let us begin this section with another result due to G.G. Ding. Let Γ be an index

set, we denote by �1
R
(Γ) the Banach space of all absolutely summable families of

real numbers equipped with the norm ‖(ξj)j‖1 =
∑

j∈Γ |ξj |.

Theorem 4.1. ([10, Theorem 1]) Let Δ: S(�1
R
(Γ1)) → S(�1

R
(Γ2)) be a surjective

isometry. Then there exists a one-to-one bijection σ : Γ1 → Γ2 and a family of real

numbers {θj : j ∈ Γ1} ⊆ T such that

Δ
( ∑

j∈Γ1

ξjej

)
=

∑
j∈Γ2

θjξσ(j)êj ,

where {ej : j ∈ Γ1} and {êj : j ∈ Γ2} are the canonical basis of �1
R
(Γ1) and �1

R
(Γ2),

respectively. In particular, there exists a surjective real linear isometry T : �1
R
(Γ1) →

�1
R
(Γ2) whose restriction to S(�1

R
(Γ1)) coincides with Δ.

Given a σ-finite measure space (Ω,Σ, μ), the symbol L1
R
(Ω,Σ, μ) will denote the

Banach space of real-valued measurable functions f : Ω → R satisfying
∫
Ω
|f |dμ <

∞, with norm ‖f‖1 =
∫
Ω
|f |dμ. The Banach space of all essentially bounded real

valued measurable functions on Ω will be denoted by L∞
R
(Ω,Σ, μ).

The previous result of Ding is complemented by the following theorem due to

D. Tan.

Theorem 4.2. ([49, Theorem 3.4]) Let (Ω,Σ, μ) be a σ-finite measure space and let Y

be a real Banach space. Then every surjective isometry Δ: S(L1
R
(Ω,Σ, μ)) → S(Y )

can be uniquely extended to a surjective real linear isometry from L1
R
((Ω,Σ, μ))

onto Y .
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Regarding �1
R
(Γ1) and L1

R
(Ω,Σ, μ) as predual spaces of the hermitian parts of

the von Neumann algebras �∞
R
(Γ1) and L∞

R
(Ω,Σ, μ), respectively, it seems natural

to ask whether Theorems 4.1 and 4.2 admit non-commutative counterparts. The

dualities c∗0 = �1 and (�1)∗ = �∞ admit a non-commutative alter ego in the form

K(H)∗ = C1(H) and C1(H)∗ = B(H), where C1(H) is the space of trace class

operators on a complex Hilbert space H. This will be treated in the next subsection.

4.1. Tingley’s problem on trace class operators

Tingley’s problem for surjective isometries between unit spheres of spaces of trace

class operators has been approached by F.J. Fernández-Polo, J.J. Garcés, I. Vil-

lanueva and the author of this note in [21]. We shall review here the main achieve-

ments in this line.

When the space C1(H) is regarded as the predual of the von Neumann algebra

B(H), or as the dual space of the C∗-algebra K(H), we can get back to Corollary

2.3 and subsequent comments whose consequences were already observed in [21].

Proposition 4.3. ([21, Proposition 2.6]) Let Δ: S(C1(H)) → S(C1(H
′)) be a sur-

jective isometry, where H and H ′ are complex Hilbert spaces. Then the following

statements hold:

(a) A subset F ⊂ S(C1(H)) is a proper norm-closed face of BC1(H) if and only

if Δ(F) is.

(b) Δ maps ∂e(BC1(H)) into ∂e(BC1(H′)).

(c) dim(H) = dim(H ′).
(d) For each e0 ∈ ∂e(BC1(H)) we have Δ(ie0) = iΔ(e0) or Δ(ie0) = −iΔ(e0).

(e) For each e0 ∈ ∂e(BC1(H)) if Δ(ie0) = iΔ(e0) (respectively, Δ(ie0) = −iΔ(e0))

then Δ(λe0) = λΔ(e0) (respectively, Δ(λe0) = λΔ(e0)) for every λ ∈ C with

|λ| = 1.

The strategy to solve Tingley’s problem on C1(H) is based on techniques of

linear algebra and geometry to obtain first a solution in the case of finite-dimensional

spaces.

Theorem 4.4. ([21, Theorem 3.7]) Let Δ: S(C1(H)) → S(C1(H)) be a surjective

isometry, where H is a finite-dimensional complex Hilbert space. Then there exists a

surjective complex linear or conjugate linear isometry T : C1(H) → C1(H) satisfying

Δ(x) = T (x) for every x ∈ S(C1(H)). More concretely, there exist unitary elements

u, v ∈ Mn(C) = B(H) such that one of the following statements holds:

(a) Δ(x) = uxv, for every x ∈ S(C1(H));

(b) Δ(x) = uxtv, for every x ∈ S(C1(H));
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(c) Δ(x) = uxv, for every x ∈ S(C1(H));

(d) Δ(x) = ux∗v, for every x ∈ S(C1(H)),

where (xij) = (xij).

Surprisingly, the solution in the finite-dimensional case is applied, in a very

technical argument, to derive a solution to Tingley’s problem for surjective isometries

between the unit spheres of two spaces of trace class operators.

Theorem 4.5. ([21, Theorem 4.1]) Let Δ: S(C1(H)) → S(C1(H)) be a surjective

isometry, where H is an arbitrary complex Hilbert space. Then there exists a sur-

jective complex linear or conjugate linear isometry T : C1(H) → C1(H) satisfying

Δ(x) = T (x), for every x ∈ S(C1(H)).

4.2. Tingley’s problem on von Neumann preduals

According to what is commented on in the introduction, a very recent contribution

by M. Mori has changed the original plans and the structure of this survey. The

preprint [34] contains, among other interesting results, a complete positive solution

to Tingley’s problem for surjective isometries between the unit spheres of von

Neumann algebra preduals.

Theorem 4.6. ([34, Theorem 4.3]) Let M and N be von Neumann algebras, and let

Δ: S(M∗) → S(N∗) be a surjective isometry. Then there exists a (unique) surjective

real linear isometry T : M∗ → N∗ satisfying T (x) = Δ(x), for every x ∈ S(M∗).

It is perhaps interesting to take a brief look at the method applied by M. Mori

to synthesize the surjective real linear isometry T . Let Δ: S(M∗) → S(N∗) be a

surjective isometry, where M and N are von Neumann algebras. When Corollary 2.3

and the subsequent comments are combined with the Akemann–Pedersen theorem

(see Theorem 2.5), we can conclude that for each maximal partial isometry u ∈

∂e(BM ) there exists a unique maximal partial isometry T1(u) ∈ ∂e(BN ) satisfying

Δ({u}′) = {T1(u)}′. This gives a bijection T1 : ∂e(BM ) → ∂e(BN ).

Let (E, d) be a metric space. The Hausdorff distance between two sets S1,S2 ⊆

E is defined by

dH(S1,S2) := max{ sup
x∈S1

inf
y∈S2

d(x, y), sup
y∈S2

inf
x∈S1

d(x, y)}.

The lattice of partial isometries can be equipped with a distance defined by

δH(v, w) := dH({v}′, {w}′).

It is shown by M. Mori that this distance enjoys the following properties:
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Proposition 4.7. ([34, Lemmas 4.1 and 4.2]) Let M be a von Neumann algebra.

Then the following statements hold:

(a) δH(u, v) = ‖u− v‖, for every u ∈ U(M) and every v ∈ ∂e(BM ).

(b) An element u ∈ ∂e(BM ) is a unitary if and only if the set

M̂u := {e ∈ ∂e(BM ) : δH(u,±e) ≤
√
2}

has an isolated point with respect to the metric δH .

Applying Proposition 2.4(a) and Proposition 4.7(b), M. Mori concludes that

T1(U(M)) = U(N), and, by Proposition 4.7(a), T1|U(M) : U(M) → U(N) is a surjec-

tive isometry. The mapping T1 fulfills the hypothesis of the Hatori–Molnár theorem

(see Theorem 3.3), and thus there exists a surjective real linear (weak∗-continuous)

isometry T̃1 : M → N whose restriction to U(M) is T1. The technical arguments de-

veloped by M. Mori in the proof of [34, Theorem 4.3] finally show that the mapping

T2 : N
∗ → M∗ defined by

T2(ϕ)(x) := Reϕ(T̃1(x))− iReϕ(iT̃1(x)), ϕ ∈ N∗, x ∈ M,

is a real linear isometry whose restriction to N∗ gives a surjective real linear isometry

T2|N∗
: N∗ → M∗ and (T2|N∗

)−1(φ) = Δ(φ) for all φ in M∗.

5. Isometries between the spheres of hermitian operators

A second and interesting variant of Problem 1.1 is obtained when X and Y are

von Neumann algebras or C∗-algebras and S1 and S2 are the unit spheres of their

respective hermitian parts. In this section we consider two von Neumann algebras

M , N and a surjective isometry Δ: S(Msa) → S(Nsa). Our goal will consist in

showing that the same tools in [28] can be, almost literarily, applied to find a

surjective complex linear isometry T : M → N satisfying T (a∗) = T (a)∗ for all

a ∈ M and T (x) = Δ(x) for all x ∈ S(Msa).

Given a C∗-algebra A, its hermitian part, Asa, is not, in general, a C∗-
subalgebra of A. However, Asa is a real closed subspace of A which satisfies the

hypotheses of Corollary 2.3 (see the comments after this corollary). After applying

this corollary, we find the necessity of describing the facial structure of BAsa
. For-

tunately for us, the Akemann–Pedersen theorem (Theorem 2.5) has a forerunner in

[16, Corollary 5.1] where C.M. Edwards and G.T. Rüttimann described the facial

structure of the closed unit ball of the hermitian part of every C∗-algebra. We recall

that partial isometries in Asa are all elements of the form e = p− q, where p and q

are orthogonal projections in A.
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Theorem 5.1. ([16, Corollary 5.1]) Let A be a C∗-algebra. Then for each norm-

closed face F of BAsa
, there exists a unique pair of orthogonal compact projections

p, q in A∗∗ such that

F = {x ∈ BAsa
: x(p− q) = p+ q} = {p− q}

′′

= {x ∈ BAsa
: x = (p− q) + (1− p− q)x(1− p− q)}.

Combining this theorem of Edwards and Rüttimann with the above Corollary

2.3 we easily get the following version of Theorem 3.16.

Theorem 5.2. Let Δ: S(Asa) → S(Bsa) be a surjective isometry, where A and B

are C∗-algebras. Then the following statements hold:

(a) For each non-zero compact partial isometry e ∈ A∗∗sa there exists a unique

(non-zero) compact partial isometry φs
Δ(e) ∈ B∗∗sa such that Δ(Fe) = Fφs

Δ(e),

where Fe =
(
e+ (1− e2)BA∗∗

sa
(1− e2)

)
∩ BAsa

.

(b) The mapping e �→ φs
Δ(e) defines an order preserving bijection between the set

of non-zero compact partial isometries in A∗∗sa and the set of non-zero compact

partial isometries in B∗∗sa .

(c) φs
Δ maps minimal partial isometries in A∗∗sa to minimal partial isometries in

B∗∗sa .

The arguments in the proofs of [28, Theorems 2.7, 2.8 and 2.11 and Proposition

2.12] literarily work to obtain the following four results.

Theorem 5.3. ([28, Theorem 2.7]) Let Δ: S(Asa) → S(Bsa) be a surjective isome-

try, where A and B are C∗-algebras. Let e be a non-zero partial isometry in Asa.

Then 1 is isolated in the spectrum of |Δ(e)|.

Theorem 5.4. ([28, Theorem 2.8]) Let Δ: S(Asa) → S(Bsa) be a surjective isom-

etry, where A and B are C∗-algebras. Then Δ maps non-zero partial isometries

in Asa into non-zero partial isometries in Bsa. Moreover, for each non-zero par-

tial isometry e in Asa, we have φs
Δ(e) = Δ(e), where φs

Δ is the mapping given by

Theorem 5.2, and there exists a surjective (real) linear isometry

Te : (1− e2)Asa(1− e2) → (1−Δ(e)2)Bsa(1−Δ(e)2)

such that Δ(e+ x) = Δ(e) + Te(x), for all x in B(1−e2)Asa(1−e2). In particular the

restriction of Δ to the face Fe = e+ (1− e2)BAsa
(1− e2) is a real affine function.

Theorem 5.5. ([28, Theorem 2.11]) Let Δ: S(Asa) → S(Bsa) be a surjective isom-

etry, where A and B are C∗-algebras. Then, for each non-zero compact partial

isometry e in A∗∗sa we have φs
Δ(−e) = −φs

Δ(e), where φs
Δ is the mapping given by
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Theorem 5.2. Consequently, for each non-zero partial isometry e ∈ Asa we have

Δ(−e) = −Δ(e).

Proposition 5.6. ([28, Proposition 2.12]) Let Δ: S(Asa) → S(Bsa) be a surjective

isometry, where A and B are C∗-algebras. Then the following statements hold:

(a) For each non-zero partial isometry v in Asa, the surjective real linear isometry

Tv : (1− v2)Asa(1− v2) → (1−Δ(v)2)Bsa(1−Δ(v)2)

given by Theorem 5.4 satisfies Δ(e) = Tv(e), for every non-zero partial isom-

etry e ∈ (1− v2)Asa(1− v2).

(b) Let w1, . . . , wn be mutually orthogonal non-zero partial isometries in Asa, and

let λ1, . . . , λn be real numbers with 1 = |λ1| ≥ max{|λj |}. Then

Δ
( n∑

j=1

λjwj

)
=

n∑
j=1

λjΔ(wj).

(c) Suppose v, w are mutually orthogonal non-zero partial isometries in Asa then

Tv(x) = Tw(x) for every x ∈ {v}⊥ ∩ {w}⊥.

(d) If A is a von Neumann algebra, then for each non-zero partial isometry v in

Asa we have Δ(x) = Tv(x) for every x ∈ S((1− vv∗)Asa(1− v∗v)).

Back to our goal, we observe that the case of M2(C) of all 2× 2 matrices with

complex entries must be treated independently.

Proposition 5.7. Let A = M2(C), B be a C∗-algebra, and let Δ: S(Asa) → S(Bsa)

be a surjective isometry. Then there exists a surjective complex linear isometry

T : A → B satisfying T (a∗) = T (a)∗, for all a ∈ A, and T (x) = Δ(x), for all

x ∈ S(Asa).

Proof. Since A is finite-dimensional, it follows from the hypotheses that S(Bsa) is

compact, and hence B is finite-dimensional. Having in mind that the rank of a von

Neumann algebra M is the cardinality of a maximal set of mutually orthogonal

non-zero projections, Proposition 5.6 assures that B must have rank 2. Therefore

B = C⊕∞ C or B = M2(C). We shall show that the first case is impossible.

Suppose B = C⊕∞C. We pick two orthogonal minimal projections p1 = ( 1 0
0 0 )

and p2 = ( 0 0
0 1 ) , and a symmetry s = ( 0 1

1 0 ) in A.

By Theorem 5.2(b) and Proposition 5.6, Δ(p1) and Δ(p2) are orthogonal

minimal partial isometries in Bsa, and Δ(s) is a symmetry in B. We can assume,

without loss of generality, that Δ(p1) = (±1, 0), Δ(p2) = (0,±1), and Δ(s) =
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(σ1, σ2), where σ1, σ2 ∈ {±1}. By hypotheses,

1 +
√
5

2
=

∥∥∥∥( 1 −1

−1 0

)∥∥∥∥ = ‖p1 − s‖ = ‖Δ(p1)−Δ(s)‖

= ‖(±1, 0)− (σ1, σ2)‖ ∈ {1, 2},

which is impossible. Therefore, B = M2(C).

Let us take a surjective complex linear and symmetric isometry T1 : M2(C) →

M2(C) mapping Δ(p1) and Δ(p2) to p1 and p2, respectively. We set Δ1 = T1 ◦Δ.

Then Δ1 : S(Asa) → S(Bsa) is a surjective isometry with Δ1(pi) = pi for i = 1, 2.

An arbitrary pair of orthogonal minimal projections in Asa can be written

in the form q1 =

(
s0 λ

√
s0(1−s0)

λ
√

s0(1−s0) 1−s0

)
and q2 =

(
1−s0 −λ

√
s0(1−s0)

−λ
√

s0(1−s0) s0

)
for

a unique s0 ∈ (0, 1) and a unique λ ∈ T (the cases s0 = 0, 1 give p1 and p2). By

Theorem 5.2(b) and Proposition 5.6, Δ1(q1) and Δ1(q2) are orthogonal minimal

partial isometries in Bsa. It is well known that Δ1(q1)=±

(
t0 μ

√
t0(1−t0)

μ
√

t0(1−t0) 1−t0

)
for a unique t0 ∈ [0, 1] and a unique μ ∈ T (compare [45, Theorem 1.3] or [41, §3]).

If Δ1(q1) = −

(
t0 μ

√
t0(1−t0)

μ
√

t0(1−t0) 1−t0

)
, then by hypothesis,

1 +
√
t0 =

∥∥∥∥( t0 + 1 μ
√
t0(1− t0)

μ
√
t0(1− t0) 1− t0

)∥∥∥∥
= ‖ −Δ1(q1) + Δ1(p1)‖ = ‖ − q1 + p1‖ = ‖q1 − p1‖

=

∥∥∥∥( s0 − 1 λ
√

s0(1− s0)

λ
√

s0(1− s0) 1− s0

)∥∥∥∥ =
√
(1− s0),

which is impossible.

If Δ1(q1) =

(
t0 μ

√
t0(1−t0)

μ
√

t0(1−t0) 1−t0

)
, then by hypothesis,

√
(1− t0) =

∥∥∥∥( t0 − 1 μ
√
t0(1− t0)

μ
√
t0(1− t0) 1− t0

)∥∥∥∥
= ‖Δ1(q1)−Δ1(p1)‖ = ‖q1 − p1‖

=

∥∥∥∥( s0 − 1 λ
√

s0(1− s0)

λ
√

s0(1− s0) 1− s0

)∥∥∥∥ =
√

(1− s0),

which implies that t0 = s0. That is, for each s0 ∈ [0, 1] and λ ∈ T, there exists a

unique μ ∈ T such that

Δ1

((
s0 λ

√
s0(1− s0)

λ
√

s0(1− s0) 1− s0

))
=

(
s0 μ

√
s0(1− s0)

μ
√
s0(1− s0) 1− s0

)
. (6)
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In particular, Δ1

((
1
2

1
2

1
2

1
2

))
=
(

1
2 μ0

1
2

μ0
1
2

1
2

)
, for a certain μ0 ∈ T.

Let us take a surjective complex linear symmetric isometry T2 : M2(C) →

M2(C) satisfying T2(pj) = pj for every j = 1, 2 and T2Δ1

((
1
2

1
2

1
2

1
2

))
=
(

1
2

1
2

1
2

1
2

)
. We

set Δ2 = T2 ◦Δ1 : S(Asa) → S(Bsa). Proposition 5.6(b) applied to Δ2 gives

1 = Δ2(p1) + Δ2(p2) = Δ2(1) = Δ2

((
1
2

1
2

1
2

1
2

))
+Δ2

((
1
2 − 1

2

− 1
2

1
2

))
,

which assures that Δ2

((
1
2 − 1

2

− 1
2

1
2

))
=
(

1
2 − 1

2

− 1
2

1
2

)
. Let us denote r1 =

(
1
2

1
2

1
2

1
2

)
, and

r2 = 1− r1. A new application of Proposition 5.6(b) gives

Δ2(r1 − r2) = Δ2(r1)−Δ2(r2) = r1 − r2.

Take an arbitrary projection q1 =

(
s0 λ

√
s0(1−s0)

λ
√

s0(1−s0) 1−s0

)
with s0 ∈ (0, 1) and

λ ∈ T. We deduce from the hypothesis and (6) (applied to Δ2) that

1 +
√

5− 8Re(λ)
√

s0(1− s0)

2

=

∥∥∥∥( s0 λ
√

s0(1− s0)

λ
√

s0(1− s0) 1− s0

)
−

(
0 1

1 0

)∥∥∥∥
=

∥∥∥∥Δ2

(
s0 λ

√
s0(1− s0)

λ
√

s0(1− s0) 1− s0

)
−Δ2

(
0 1

1 0

)∥∥∥∥
=

∥∥∥∥( s0 μ
√
s0(1− s0)

μ
√
s0(1− s0) 1− s0

)
−

(
0 1

1 0

)∥∥∥∥
=

1 +
√
5− 8Re(μ)

√
s0(1− s0)

2
,

which assures that the scalar μ in (6) for Δ2 must satisfy μ = λ or μ = λ. Conse-

quently, for each s0 ∈ (0, 1) and λ ∈ T, we have

Δ2

((
s0 λ

√
s0(1− s0)

λ
√

s0(1− s0) 1− s0

))
=

(
s0 λ

√
s0(1− s0)

λ
√

s0(1− s0) 1− s0

)
(7)

or

Δ2

((
s0 λ

√
s0(1− s0)

λ
√

s0(1− s0) 1− s0

))
=

(
s0 λ

√
s0(1− s0)

λ
√

s0(1− s0) 1− s0

)
.
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We can also deduce from the above identities and Proposition 5.6(b) that

Δ2

((
0 i

−i 0

))
=

(
0 i

−i 0

)
, or Δ2

((
0 i

−i 0

))
=

(
0 −i

i 0

)
.

Suppose first that Δ2

((
0 i
−i 0

))
=

(
0 i
−i 0

)
. Given s0 ∈ (0, 1) and λ ∈ T, we

have

1+
√

5+8 Im(λ)
√

s0(1− s0)

2
=

∥∥∥∥( s0 λ
√

s0(1− s0)

λ
√

s0(1− s0) 1− s0

)
−

(
0 i

−i 0

)∥∥∥∥ ,
1+

√
5−8 Im(λ)

√
s0(1− s0)

2
=

∥∥∥∥( s0 λ
√

s0(1− s0)

λ
√

s0(1− s0) 1− s0

)
−

(
0 i

−i 0

)∥∥∥∥ ,
and thus, (7) and the hypothesis prove that

Δ2(q1) = Δ2

((
s0 λ

√
s0(1− s0)

λ
√

s0(1− s0) 1− s0

))
=

(
s0 λ

√
s0(1− s0)

λ
√

s0(1− s0) 1− s0

)
= q1,

for every q1 as above. Let q2 = 1− q1. By Proposition 5.6(b) we also have

1 = Δ2(p1) + Δ2(p2) = Δ2(1) = Δ2(q1) + Δ2(q2),

which assures that Δ2(q2) = q2. We have therefore proved that Δ2(qi) = qi, for

every pair of orthogonal minimal projections q1, q2 in Asa. Since every element x in

S(Asa) can be written as a linear combination of the form x =
∑2

j=1 μjqj , where

q1 and q2 are orthogonal minimal projections in Asa, μj ∈ R and max{|μj |} = 1, a

new application of Proposition 5.6(b) gives

Δ2(x) = Δ2

( 2∑
j=1

μjqj

)
=

2∑
j=1

μjΔ2(qj) =

2∑
j=1

μjqj = x.

This shows that Δ2(x) = x, for every x in S(Asa), and hence Δ(x) = T−1
1 T−1

2 (x),

for every x in S(Asa).

Assume now that Δ2

((
0 i
−i 0

))
=

(
0 −i
i 0

)
. Similar arguments to those given

above show that, in this case, we have

Δ2(q1) = Δ2

((
s0 λ

√
s0(1− s0)

λ
√

s0(1− s0) 1− s0

))
=

(
s0 λ

√
s0(1− s0)

λ
√

s0(1− s0) 1− s0

)
= q1,
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for every minimal projection q1 as above, where (xij) = (xi,j), and Δ2(x) = x, for

every x in S(Asa). Therefore, Δ(x) = T−1
1 T−1

2 (x), for every x in S(Asa). Denoting

S = T−1
1 T−1

2 we have a complex linear and symmetric isometry S : M2(C) → M2(C).

We define T : M2(C) → M2(C) by

T (h+ ik) := S(h) + iS(k) = S(h+ ik) = S(h− ik) = S((h+ ik)∗) = S((h+ ik)t),

for every h, k ∈ Asa, which provides the mapping T in the statement of the propo-

sition.

We can state now the desired result and its proof, where we show that the

synthesis of a surjective isometry is even easier in this setting.

Theorem 5.8. Let Δ: S(Msa) → S(Nsa) be a surjective isometry, where M and N

are von Neumann algebras. Then there exists a surjective complex linear isometry

T : M → N satisfying T (a∗) = T (a)∗, for all a ∈ M, and T (x) = Δ(x), for all

x ∈ S(Msa).

Proof. We shall distinguish the following three cases:

(1) M contains no type I2 von Neumann factors;

(2) M contains a type I2 von Neumann factor but M is not a type I2 von Neumann

factor;

(3) M is a type I2 von Neumann factor.

Case (3) is solved by Proposition 5.7.

Case (2). We can assume that M = J1 ⊕ J2, where J1 and J2 are non-zero

orthogonal weak∗ closed ideals of M and J1 = M2(C). We can now mimic the

arguments we gave in the solution to Tingley’s problem for compact operators on

page 96. Let us take two non-zero projections p1 in J1 and p2 ∈ J2, and define

the mapping T : M → N given by T (x) = Tp1
(π2(x)) + Tp2

(π1(x)), where π1

and π2 stand for the canonical projections of M onto J1 and J2, respectively, and

Tp1
and Tp2

are the surjective weak∗ continuous complex linear and symmetric

isometries given by Theorem 5.4. The mapping T is complex linear and weak∗

continuous because Tp1
and Tp2

are. Any projection p in M can be written in

the form p = p1 + p2 where pj is a projection in Jj . Let us pick an algebraic

element x in S(Msa) which can be written in the form x =
∑

j=1 αjpj +
∑

k=1 βkqk,

where pj , qk are mutually orthogonal non-zero projections in Msa, αj , βk ∈ R\{0},

max{|αj |, |βk|} = 1, pj ∈ J1 and qk ∈ J2 for all j, k. By the definition of T and
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Proposition 5.6(b) we have

Δ(x) =
∑
j=1

αjΔ(pj) +
∑
k=1

βkΔ(qk) =
∑
j=1

αjTp2
(pj) +

∑
k=1

βkTp1
(qk)

=
∑
j=1

αjT (pj) +
∑
k=1

βkT (qk) = T (x).

The norm density of this kind of algebraic elements x in S(Msa) together with the

norm continuity of T and Δ prove that T (x) = Δ(x) for all x ∈ S(M).

Case (1). M contains no type I2 von Neumann factors. Let us define a vector

measure on the lattice Proj(M) of all projections of M defined by μ : Proj(M) → N ,

μ(p) = Δ(p) if p ∈ S(M) and μ(0) = 0. Proposition 5.6(b) assures that μ is finitely

additive, that is μ
(∑m

j=1 pj
)

=
∑m

j=1 μ(pj), whenever p1, . . . , pm are mutually

orthogonal projections in M . We further have ‖μ(p)‖ ≤ 1 for every p ∈ Proj(M). By

the Bunce–Wright–Mackey–Gleason theorem (see [3, Theorem A] or [4, Theorem A])

there exists a bounded (complex) linear operator T : M → N satisfying T (p) =

μ(p) = Δ(p), for every p ∈ Proj(M)\{0}. By definition T (p) ∈ Nsa for every

projection p in M . Therefore T is a symmetric map, that is, T (a∗) = T (a)∗ for all

a ∈ M .

Finally, Proposition 5.6(b) also guarantees that Δ and T coincide on algebraic

elements in S(Msa) which can be written as finite real linear combinations of

mutually orthogonal projections. Since this kind of algebraic elements are norm

dense in S(Msa), we deduce from the norm continuity of Δ and T that T (x) = Δ(x)

for all x ∈ S(Msa).

Remark 5.9. After completing the writing of this chapter, the preprint by M. Mori

[34] became available in arxiv. Section 5 in the just quoted paper is devoted to study

Theorem 5.8 with a different proof based on a theorem of Dye on orthoisomorphisms

(see [34, §5] and [13]). So, Theorem 5.8 should be also credited to M. Mori. It is

surprising that the arguments developed by Mori find a similar obstacle with type

I2 von Neumann factors when applying Dye’s theorem. To solve the difficulties

Mori built an analogue to our Proposition 5.7 in [34, Proposition 5.2 and its proof].

The proof of Proposition 5.7 is a bit simpler with pure geometry-linear algebra

arguments.

Open Problem 3. Let Δ: S(Asa) → S(Bsa) be a surjective isometry between the

unit spheres of the hermitian parts of two C∗-algebras. Does Δ admit an extension

to a surjective complex linear isometry from A onto B?
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6. Isometries between the spheres of positive operators

Contrary to the results revised in the previous sections, in the third variant of

Problem 1.1 treated in this survey the theory on the facial structure of a C∗-
algebra revised in Section 2 will not play any role. Let us establish the concrete

statement. Given a subset B of a Banach space X, the symbol S(B) will stand for

the intersection of B and S(X). Given a C∗-algebra A, the symbol A+ will denote

the cone of positive elements in A, while S(A+) will stand for the sphere of positive

norm-one operators. The concrete variant of Problem 1.1 reads as follows.

Problem 6.1. Let Δ: S(X+) → S(Y +) be a surjective isometry, where X and Y

are Banach spaces which can be regarded as linear subspaces of two C∗-algebras A

and B, S(X+) = S(X)∩A+ and S(Y +) = S(Y )∩B+. Does Δ admit an extension

to a surjective complex linear isometry T : X → Y ?

Problem 6.1 is too general. We can easily find non-isomorphic Banach spaces

X and Y which are linear subspaces of two C∗-algebras A and B, for which S(X+)

and S(Y +) reduce to a single point.

Before dealing with the historical background and forerunners, we shall make

some observations. If we have a surjective isometry Δ: S(A+) → S(B+) between

the spheres of positive elements in two arbitrary C∗-algebras, the application of

Theorems 2.1 and 2.2 is non-viable because A+ and B+ are not Banach spaces.

Another comment: the hypotheses in Problem 6.1 are strictly weaker than

those in Theorems 3.4, 3.8, 3.10, 3.15, 4.5, 4.6, and 5.8. However, the conclusion

is also weaker because we need to find a surjective isometry T : A → B whose

restriction to S(A+) coincides with Δ, we do not have to show that T and Δ

coincide on the whole S(A) nor on S(Asa). That is, the synthesis of the mapping

T is, a priori, easier at the cost of losing the main geometric tools.

We can now survey the main achievements in this line. Let us recall some

terminology. According to the notation in previous sections, we shall denote by

(Cp(H), ‖ · ‖p) the Banach space of all p-Schatten–von Neumann operators on a

complex Hilbert space H, where 1 ≤ p ≤ ∞. For p = 1 we find the space of trace

class operators. By a standard abuse of notation we identify C∞(H) with B(H). Let

the symbol Cp(H)+ denote the set of all positive operators in Cp(H). The elements

in the set S(C1(H)+) = S(C1(H)) ∩ C1(H)+ are usually called density operators.

Our first result, which was obtained by L. Molnár and W. Timmermann in

[36], provides a complete positive solution to Problem 6.1 for the space C1(H) of

trace class operators on an arbitrary complex Hilbert space H.
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Theorem 6.2. ([36, Theorem 4]) Let H be an arbitrary complex Hilbert space. Then

every surjective isometry Δ: S(C1(H)+) → S(C1(H)+) admits a unique extension

to a surjective complex linear isometry on C1(H).

In 2012, G. Nagy and L. Molnár studied a problem connected to our Problem

6.1 in the finite-dimensional case for every 1 ≤ p.

Theorem 6.3. ([35, Theorem 1]) Let H be a finite-dimensional complex Hilbert

space, and let ∞ > p ≥ 1. Then every isometry Δ: (S(C1(H)+), ‖.‖p) →

(S(C1(H)+), ‖.‖p) admits a unique extension to a surjective complex linear isometry

on C1(H), where (S(C1(H)+), ‖.‖p) denotes the unit sphere of C1(H)+) equipped

with the norm ‖.‖p.

Let us observe that the mapping Δ in the above theorem is not assumed to

be surjective a priori. However, as a consequence of the result, Δ is surjective.

Theorem 6.3 has been extended by G. Nagy in [37].

Theorem 6.4. ([37, Theorem 1]) Let H be an arbitrary complex Hilbert space, and

let p ∈ (1,∞). Then every surjective isometry Δ: S(Cp(H)+) → S(Cp(H)+) admits

a unique extension to a surjective complex linear isometry on Cp(H).

Problem 6.1 has been explored, in a very recent paper due to G. Nagy, for

surjective isometries Δ: S(B(H)+) → S(B(H)+) under the hypothesis of H being

finite-dimensional. In the paper [38] we can find the following result.

Theorem 6.5. ([38, Theorem]) Let H be a finite-dimensional complex Hilbert space,

and let Δ: S(B(H)+) → S(B(H)+) be an isometry. Then Δ is surjective and there

exists a (unique) surjective complex linear isometry T : B(H) → B(H) satisfying

T (x) = Δ(x), for all x ∈ S(B(H)+).

The arguments developed by Nagy in the paper [38] develop some interesting

tools and results in the finite-dimensional setting. Some of them have been suc-

cessfully extended to arbitrary dimensions. Let E and P be subsets of a Banach

space X. Following the notation employed in the recent paper [43], the unit sphere

around E in P is defined as the set

Sph(E;P ) := {x ∈ P : ‖x− b‖ = 1 for all b ∈ E} .

To simplify the notation, given a C∗-algebra A and a subset E ⊂ A, we shall write

Sph+(E) or Sph+A(E) for the set Sph(E;S(A+)).

In [38, Proof of Claim 1] G. Nagy proves that if H is a finite-dimensional

complex Hilbert space, and a is a positive norm-one element in B(H) = Mn(C),

then

a is a projection if, and only if, Sph+Mn(C)
(Sph+Mn(C)

(a)) = {a}.
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We have recently generalized Nagy’s result to the setting of atomic von Neu-

mann algebras. We recall that a von Neumann algebra M is called atomic if it

coincides with the weak∗ closure of the linear span of its minimal projections. It

is known that every atomic von Neumann algebra M can be written in the form

M =
⊕�∞

j B(Hj), where each Hj is a complex Hilbert space (compare [47, §V.1]

or [46, §2.2]).

Theorem 6.6. ([43, Theorem 2.3]) Let M be an atomic von Neumann algebra,

and let a be a positive norm-one element in M . Then the following statements are

equivalent:

(a) a is a projection;

(b) Sph+M
(
Sph+M (a)

)
= {a}.

Actually, if a is a positive norm-one element in an arbitrary C∗-algebra A

satisfying Sph+A
(
Sph+A(a)

)
= {a}, then a is a projection (see [43, Proposition 2.2]).

Open Problem 4. Does the equivalence in Theorem 6.6 hold when M is a general

von Neumann algebra or a C∗-algebra?

For a separable infinite-dimensional complex Hilbert space H3 and the C∗-
algebra K(H3) of compact operators on H3, we have actually established a more

general result, whose finite-dimensional version was given by G. Nagy in [38, Proof

of Claim 1].

Theorem 6.7. ([43, Theorem 3.3]) Let H3 be a separable infinite-dimensional com-

plex Hilbert space. Then the identity

Sph+K(H3)

(
Sph+K(H3)

(a)
)
=
{
b ∈ S(K(H3)

+) :
s
K(H3)

(a) ≤ s
K(H3)

(b), and

1− r
B(H3)

(a) ≤ 1− r
B(H3)

(b)

}
,

holds for every a in the unit sphere of K(H3)
+.

A consequence of the above theorem gives an appropriate version of Theorem

6.6 for K(H3).

Theorem 6.8. ([43, Theorem 2.5]) Let a be a positive norm-one element in K(H3),

where H3 is a separable complex Hilbert space. Then the following statements are

equivalent:

(a) a is a projection;

(b) Sph+K(H3)

(
Sph+K(H3)

(a)
)
= {a}.
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Thanks to Theorems 6.6 and 6.8 it can be concluded that given two atomic

von Neumann algebras M and N (respectively, separable complex Hilbert spaces

H3 and H4), and a surjective isometry Δ: S(M+) → S(N+) (respectively,

Δ: S(K(H3)
+) → S(K(H4)

+)), then Δ maps Proj(M)\{0} onto Proj(N)\{0}

(respectively, Proj(K(H3))\{0} onto Proj(K(H4))\{0}), and the restriction

Δ|Proj(M)\{0} : Proj(M)\{0} → Proj(N)\{0}

(respectively, Δ|Proj(K(H3))\{0} : Proj(K(H3))\{0} → Proj(K(H4))\{0}) is a sur-

jective isometry.

These are some of the tools that, combined with many other technical argu-

ments, are applied to give a partial solution to Problem 6.1 in the setting of compact

operators.

Theorem 6.9. ([43, Theorem 3.7]) Let H3 and H4 be separable complex

Hilbert spaces. Let us assume that H3 is infinite-dimensional. We suppose that

Δ: S(K(H3)
+) → S(K(H4)

+) is a surjective isometry. Then there exists a surjec-

tive complex linear isometry T : K(H3) → K(H4) satisfying T (x) = Δ(x), for all

x ∈ S(K(H3)
+). We can further conclude that T is a ∗-isomorphism or a ∗-anti-

isomorphism.

Additional technical results are given in [43, §4] to give a complete solution

to Problem 6.1 in the setting of atomic von Neumann algebras. For brevity we

shall not comment on some of the deep technical results required to establish this

solution. The final statement reads as follows:

Theorem 6.10. ([43, Theorem 4.5]) Let Δ: S(B(H1)
+) → S(B(H2)

+) be a

surjective isometry, where H1 and H2 are complex Hilbert spaces. Then there

exists a surjective complex linear isometry (actually, a ∗-isomorphism or a ∗-
anti-automorphism) T : B(H1) → B(H2) satisfying Δ(x) = T (x), for all x ∈

S(B(H1)
+).

Open Problem 5. Let Δ: S(A+) → S(B+) be a surjective isometry, where A and B

are C∗-algebras. Does Δ admit an extension to a surjective complex linear isometry

from A onto B?

Open Problem 6. Let H be an arbitrary complex Hilbert space, and let p ∈ (1,∞).

Suppose Δ: S(Cp(H)) → S(Cp(H)) is a surjective isometry. Does Δ admit a unique

extension to a surjective real linear isometry on Cp(H)?

A more general version has been also posed by M. Mori in [34, Problem 6.3].
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Open Problem 7. Let 1 < p < ∞, p = 2, let M , N be von Neumann algebras and

Δ: S(Lp(M)) → S(Lp(N)) be a surjective isometry between the unit spheres of two

noncommutative Lp-spaces (with respect to fixed normal semifinite faithful weights).

Does Δ admit an extension to a real linear surjective isometry T : Lp(M) → Lp(N)?

Note added in proof. Problem 6 has been recently solved by F. J. Fernández-Polo,

E. Jordá and the author of this note in [22].
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