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Abstract. In this paper, we define z-ideals in bounded lattices. A separation

theorem for the existence of prime z-ideals is proved in distributive lattices. As

a consequence, we prove that every z-ideal is the intersection of some prime z-

ideals. Lastly, we prove a characterization of dually semi-complemented lattices.

1. Introduction

The concept of z-ideals, which are both algebraic and topological objects, were

first introduced by Kohls [9] and played a fundamental role in studying the ideal

theory of C(X), the ring of continuous real-valued functions on a completely regular

Hausdorff space X; see Gillman and Jerison [3]. An ideal I of a commutative ring

R with unity is a z-ideal if whenever any two elements of R are contained in the

same set of maximal ideals and I contains one of them, then it also contains the

other (see Gillman and Jerison [3] for an equivalent definition). Mason [10] studied

z-ideals in general commutative rings. He proved that maximal ideals, minimal

prime ideals and some other important ideals in commutative rings are z-ideals (see

[10, p. 281]). As a generalization of z-ideals, the concept of z0-ideals is introduced

and studied in C(X). Note that in [5], Huijsmans and de Pagter studied z0-ideals

under the name of d-ideals in Riesz spaces. Speed [14] introduced and studied

the concept of Baer ideals in a commutative Baer ring, which are essentially z0-

ideals (equivalently, d-ideals) and characterized regular rings and quasi-regular rings.

Jayaram [6], Anderson, Jayaram and Phiri [1] defined this concept (Baer ideals)

for lattices and multiplicative lattices respectively. Recently, Joshi and Mundlik [8]

extended the concept of Baer ideals to posets. Since z-ideal and z0-ideals (Baer

Received February 22, 2016 and in final form September 3, 2018.

AMS Subject Classification: 06B10, 06D75.

Key words and phrases: z-ideals, Baer ideal, 0-ideal, closed ideal, minimal prime ideal, maximal

ideal, dense ideal, dually semi-complemented lattice.



Acta Scientiarum Mathematicarum 85:1–2 (2019) c© Bolyai Institute, University of Szeged

60 V. Joshi and S. Kavishwar

ideals or d-ideals) are closely related in commutative rings, hence it is natural to

study the analogous concept of z-ideals in lattices.

In this paper, we define and study z-ideals in bounded lattices. A separation

theorem for the existence of prime z-ideals is proved in distributive lattices. As a

consequence, we prove that every z-ideal is the intersection of some prime z-ideals.

Lastly, we prove a characterization of dually semi-complemented lattices.

2. Preliminaries

We use the standard terminology of Lattice Theory; see, for example, Burris and

Sankappanavar [2], Grätzer [4], and Nation [11]. In particular, a nonempty subset

I of a lattice L is a down-set if (∀x ∈ I) (∀y ∈ L)(y ≤ x ⇒ y ∈ I); up-sets are

defined dually. A subset of L is proper if it is distinct from L. By a maximal ideal

or a maximal down-set, etc., we mean a maximal proper ideal, maximal proper

down-set, etc., respectively. A down-set or an ideal I is prime if it is proper and its

complement, L \ I, is meet-closed. A prime ideal P of L is a minimal prime ideal

if for any prime ideal Q of L, Q ⊆ P implies P = Q. The set of all minimal prime

ideals is denoted by Ip

min(L).

An ideal I is semiprime, if for all x, y, z ∈ L, the inclusion {x ∧ y, x ∧ z} ⊆ I

implies x∧(y∨z) ∈ I; see Rav [13]. A lattice L is 0-distributive if 0 ∈ L and {0} is a

semiprime ideal. If both L and its dual are 0-distributive then L is 0-1-distributive.

A lattice L with 0 is semi-complemented if for any element a ∈ L (with a �= 1,

if 1 exists) there exists a nonzero element b ∈ L such that a∧ b = 0. Dually, we can

define dually semi-complemented lattices. A lattice L with 0 is sectionally semi-

complemented (in brief SSC), if every interval [0, a] is semi-complemented for a > 0;

see Janowitz [7]. By Janowitz [7, Remark 2.2], a lattice L is SSC if and only if it

satisfies the condition (∗): For a, b ∈ L, if b < a, then there is a nonzero c ∈ L such

that c ≤ a and c∧b = 0. We observe that condition (∗) is equivalent to the following

condition (∗∗): For a, b ∈ L, if a � b, then there exists c ∈ L such that 0 < c ≤ a

and c ∧ b = 0. For this, if a �≤ b, then we can apply the condition (∗) to a ∧ b < a.

Hence there is a nonzero c such that c ≤ a and c ∧ b = c ∧ (a ∧ b) = 0. The other

implication (∗∗) ⇒ (∗) is trivial. Note that in [7], sectionally semi-complemented

lattices are known as section semi-complemented lattices.

For an ideal I and a prime ideal P of a lattice L, we define the set I[P ] as

follows:

I[P ] = {x ∈ L | x ∧ y ∈ I for some y ∈ L \ P}. If I = {0}, then I[P ] is

denoted by O[P ]. Let A be a nonempty subset and I be an ideal of a lattice L. We

define the set (I : A) as follows: (I : A) = {x ∈ L | x ∧ a ∈ I for all a ∈ A}. In
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particular, if A = {a}, we write (I : a) instead of (I : {a}). If I = {0}, then (I : A)

is denoted by A⊥ and is called the annihilator of A. For a ∈ L, we use the notation

a⊥ = {x ∈ L|x ∧ a = 0}. Note that A⊥ is not an ideal in general, but if L is a

0-distributive lattice, then A⊥ is an ideal.

An ideal I of a lattice L with 0 is a Baer ideal if a ∈ I implies a⊥⊥ ⊆ I. An

ideal I of a lattice L with 0 is a dense ideal if I⊥ = (0] and is a non-dense ideal if

I⊥ �= (0]. An ideal I of a lattice L with 0 is a 0-ideal if there exists a proper filter

F such that I = F 0, where F 0 = {x ∈ L|x ∧ y = 0 for some y ∈ F}. An ideal I of

a lattice L with 0 is a closed ideal if I = I⊥⊥.

Let Imax(L) denote the set of all maximal ideals of a lattice L and let

Max(a) = {M ∈ Imax(L) | a ∈ M} for a ∈ L. Further, the intersection of all

maximal ideals in L containing an element a of L is denoted by Ma, that is,

Ma =
⋂
Max(a). Note that M1 = L, if 1 ∈ L.

In the rest of the paper, L will denote a non-singleton lattice with the greatest

element 1.

3. z-ideals

Now, we define the concept of a z-ideal. Lemma 3.7 will provide a good connection

to the ring-theoretical concepts mentioned in the introduction.

Definition 3.1. Let L be a lattice. A proper ideal I of L is a z-ideal, if Max(b) ⊆

Max(a) and b ∈ I imply a ∈ I.

Since the assignment a �→ Max(a) is antitone, it is easy to see that the z-ideals

of a lattice L are exactly the join-closed nonempty subsets I with the property that

Max(b) ⊆ Max(a) and b ∈ I imply a ∈ I.

Since 1 ∈ L, Zorn’s Lemma implies that every proper ideal of L is a subset of

a maximal ideal. Hence, in particular, L has at least one maximal ideal.

Lemma 3.2. Every maximal ideal of a lattice L is a z-ideal. Moreover, if L has

only one maximal ideal, then no other ideal of L is a z-ideal.

Proof. Clearly, every maximal ideal is a z-ideal. To prove the moreover part, assume

that M is the unique maximal ideal of L and I is a proper ideal of L distinct from

M . Since every proper ideal is included in a maximal ideal, I � M . Hence there

exists x ∈M such that x /∈ I. Let i ∈ I. Since M is the unique maximal ideal, we

have Max(i) = Max(x). Thus I is not a z-ideal.

Lemma 3.3. (Pawar and Thakare [12]) Every maximal ideal of a 1-distributive (in

particular, a distributive) lattice is a prime ideal.
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Lemma 3.4. Let L be a lattice and a, b ∈ L. Then a ∈Mb if and only if Ma ⊆Mb

if and only if Max(b) ⊆ Max(a).

Proof. If Ma ⊆Mb, then a ∈Mb, since a ∈Ma. If a ∈Mb, then all maximal ideals

containing b also contain a, that is, Max(b) ⊆ Max(a). Finally, larger sets have

smaller intersections, whereby Max(b) ⊆ Max(a) implies that Ma ⊆Mb.

The following lemma is frequently used in the sequel.

Lemma 3.5. Let L be a 1-distributive lattice and a, b ∈ L. Then the following

statements hold.

(1) Ma∧b = Ma ∩Mb.

(2) If Max(b) ⊆ Max(a), then Max(b ∧ c) ⊆ Max(a ∧ c) for any c ∈ L.

Proof. 1) Since the assignment x �→ Max(x) is antitone, Lemma 3.4 gives that

x ≤ y implies Mx ⊆My. We conclude from this fact that Ma∧b ⊆Ma ∩Mb.

Now, let x ∈Ma ∩Mb and x /∈Ma∧b. Then there is a maximal ideal, say M ′,

such that a ∧ b ∈M ′ but x /∈M ′. Since L is 1-distributive, Lemma 3.3 gives that

M ′ is prime. This gives that a ∈M ′ or b ∈M ′. Without loss of generality, assume

that a ∈ M ′. But then x ∈ Ma ⊆ M ′, a contradiction. Hence Ma ∩Mb ⊆ Ma∧b.

Thus Ma∧b = Ma ∩Mb.

2) Let M be a maximal ideal containing b ∧ c, i.e., M ∈ Max(b ∧ c). By

Lemma 3.3, M is a prime ideal. Therefore b ∈ M or c ∈ M . If c ∈ M , then

a ∧ c ∈M , and we are through. Now, let b ∈M . Then M ∈ Max(b) ⊆ Max(a), so

a ∈M . This gives a ∧ c ∈M . Thus M ∈ Max(a ∧ c).

Remark 3.6. Note that the assertion of Lemma 3.5 is not true, if we drop 1-

distributivity. Consider the lattice L depicted in Figure 1. Clearly, L is not 1-

distributive. In this lattice, Ma = (d] = Mb. Hence Ma ∩Mb = (d] and Ma∧b = (0].

Thus Ma∧b � Ma ∩Mb. Also Max(a) = Max(d) = (d] but Max(a∧ b) �= Max(d∧ b).

L

0

a b c

d

1

Figure 1. Ma∧b � Ma ∩Mb
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In the following result, we characterize z-ideals in lattices.

Lemma 3.7. Let I be an ideal of a 1-distributive lattice L. Then the following

statements are equivalent.

(1) I is a z-ideal.

(2) If Max(a) = Max(b) and b ∈ I, then a ∈ I.

(3) Ma ⊆ I for all a ∈ I.

(4) If Mb ⊆Ma and a ∈ I, then b ∈ I.

Proof. (1) ⇒ (2): Obvious.

(2) ⇒ (3): Let x ∈Ma. Then by Lemma 3.4, Mx ⊆Ma. Hence Mx = Mx ∩Ma =

Ma∧x by Lemma 3.5. This further gives Max(x) = Max(x ∧ a), by Lemma 3.4. If

a ∈ I, then a ∧ x ∈ I. Thus if a ∈ I, then by (2), x ∈ I proving that Ma ⊆ I for

a ∈ I.

(3) ⇒ (4): Let a ∈ I. Then by (3), Ma ⊆ I. Now, if Mb ⊆Ma, then b ∈Mb ⊆ I.

(4) ⇒ (1): This follows from Lemma 3.4.

Theorem 3.8. (Grätzer [4]) Let L be a distributive lattice. If I ∩F = ∅ for an ideal

I and for a filter F in L, then there exists a prime ideal P containing I and disjoint

from F . Consequently, every ideal of L is the intersection of some prime ideals.

Now, we prove a separation theorem for z-ideals. It is known that the behavior

of ideals is influenced by that of prime ideals. The following result is an example of

such type of behavior. In fact, we prove a stronger version mentioned below.

Theorem 3.9. Let L be a distributive lattice. If I ∩ F = ∅ for a z-ideal I and for a

filter F in L, then there exists a prime z-ideal P containing I and disjoint from F .

Consequently, every z-ideal of L is the intersection of some prime z-ideals.

Proof. Consider F = {J | J is a z-ideal including I and J ∩ F = ∅}. Since I ∈ F ,

F �= ∅. Similarly to Grätzer [4], Zorn’s Lemma yields a maximal element P of F . We

claim that P is a prime ideal. Let a∧b ∈ P and a, b /∈ P . Then (P ∨(a])∩F �= ∅ and

(P ∨ (b])∩F �= ∅. Let x ∈ (P ∨ (a])∩F and y ∈ (P ∨ (b])∩F . Then x ≤ p1 ∨ a and

y ≤ p2∨b for some p1, p2 ∈ P . This gives x∧y ≤ (p3∨a)∧(p3∨b) = p3∨(a∧b) ∈ P ,

where p3 = p1 ∨ p2. Thus x ∧ y ∈ P . Also x ∧ y ∈ F gives that P ∩ F �= ∅, a

contradiction. Hence P is a prime z-ideal.

Clearly, the intersection of z-ideals is a z-ideal. Thus the second part of this

theorem follows in the same way as in the case of Theorem 3.8.

From the above result, it is clear that in a distributive lattice every prime

ideal is a z-ideal if and only if every ideal is a z-ideal.
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Now, we characterize dually semi-complemented lattices in terms of maximal

ideals.

Lemma 3.10. A lattice L with 0 is dually semi-complemented if and only if⋂
{M |M ∈ Imax(L)} = {0}.

Proof. Let L be a dually semi-complemented lattice and suppose
⋂
{M |M ∈

Imax(L)} �= {0}. Let a ∈
⋂
{M |M ∈ Imax(L)} and a �= 0. Since L is dually

semi-complemented, there exists b �= 1 such that a ∨ b = 1. This implies that

b /∈
⋂
{M |M ∈ Imax(L)}. Since b �= 1, there exists a maximal ideal, say M ′,

such that b ∈ M ′. Since a ∈
⋂
{M |M ∈ Imax(L)}, this implies a ∈ M ′. Thus

1 = a ∨ b ∈M ′, a contradiction. Hence
⋂
{M |M ∈ Imax(L)} = {0}.

Conversely, suppose that
⋂
{M |M ∈ Imax(L)} = {0}. Let (0 �=) a ∈ L. Clearly,

a /∈
⋂
{M |M ∈ Imax(L)} = {0}. Then there exists a maximal ideal M ′ such that

a /∈ M ′. Therefore (a] ∨M ′ = L implies 1 ∈ (a] ∨M ′. Hence 1 = a ∨ b for some

b ∈M ′. Clearly, b �= 1. Thus L is dually semi-complemented.

Proposition 3.11. Let L be a dually semi-complemented lattice with 0. Then (0] is

a z-ideal. If, in addition, L is a 1-distributive lattice and a ∈ L, then a⊥ =
⋂
{M ∈

Imax(L)| a /∈M} for a ∈ L.

Proof. Let Max(a) ⊆ Max(b) and a ∈ I = (0]. Then Max(b) = Imax(L) implies

that b ∈
⋂
{M |M ∈ Imax(L)} = {0}, by Lemma 3.10. Hence b = 0. Thus (0] is a

z-ideal.

To prove the second part, let x ∈ a⊥ and M ∈ Imax(L). By Lemma 3.3, M is

prime. If a /∈M , then x ∈M . Thus a⊥ ⊆
⋂
{M ∈ Imax(L)| a /∈M}.

Conversely, with the notations I1 = {M ∈ Imax(L) : a /∈M} and I2 = {M ∈

Imax(L) : a ∈ M}, assume that x ∈
⋂
I1. For M ∈ I1, a ∧ x ≤ x gives that

a∧ x ∈M . Similarly, for M ∈ I2, we obtain a∧ x ∈M , since a∧ x ≤ a. Thus a∧ x

belongs to
⋂
(I1 ∪ I2) =

⋂
Imax(L), which is (0] by Lemma 3.10. Thus, x ∈ a⊥, as

required.

Remark 3.12. Note that, by Lemma 3.2, every finite chain with at least three ele-

ments exemplify that dual semi-complementedness cannot be omitted from Propo-

sition 3.11.

Let I be an ideal of a lattice L. Define the set Iz =
⋂
{J ⊇ I| J is a z-ideal}.

Clearly, Iz is the smallest z-ideal and the assignment I ⊆ Iz is a closure operator.
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Theorem 3.13. Let L be a 1-distributive, dually semi-complemented lattice with 0

and I be an ideal of L. Then each of the following five conditions implies that I is

a z-ideal:

(1) I is a non-dense prime ideal;

(2) I = A⊥
for some subset A of L;

(3) I is a closed ideal;

(4) I is 0-ideal;

(5) I = O[P ] for some prime ideal P of L.

Moreover, if L is SSC, then every principal ideal is a z-ideal.

Proof. (1) Let I be a non-dense prime ideal and Max(b) ⊆ Max(a), b ∈ I. Hence

there is a nonzero element x such that x ∈ I⊥. Hence x ∧ b = 0, as b ∈ I. Since

Max(b) ⊆ Max(a), by Lemma 3.5, we have Imax(L) = Max(b ∧ x) ⊆ Max(a ∧ x).

Thus a∧x ∈M for all M ∈ Imax(L). Thus a∧x = 0, as
⋂
{M |M ∈ Imax(L)} = {0},

by Lemma 3.10. This yields a ∧ x ∈ I. Since I is a prime ideal, a ∈ I or x ∈ I. If

x ∈ I, then x ∈ I ∩ I⊥ = {0}, a contradiction. Thus a ∈ I. Hence I is a z-ideal.

(2) Let I = A⊥ = {x ∈ L|x ∧ a = 0 for all a ∈ A} and Max(b) ⊆ Max(a) with

b ∈ I. Now, b ∈ I = A⊥ implies b ∧ c = 0 for all c ∈ A. Since Max(b) ⊆ Max(a), we

have Imax(L) = Max(b∧ c) ⊆ Max(a∧ c), by Lemma 3.5. Hence a∧ c ∈
⋂
{M |M ∈

Imax(L)} = {0}, by Lemma 3.10. Therefore a∧c = 0 for all c ∈ A. Thus a ∈ A⊥ = I.

Hence I is a z-ideal.

(3) follows from (2) by substituting A = I⊥.

(4) Let I be a 0-ideal. Then I = F 0 = {x ∈ L|x ∧ y = 0 for some y ∈ F} for

some proper filter F of L. Let Max(b) ⊆ Max(a) and b ∈ I. Since b ∈ I = F 0, we

have b ∧ y = 0 for some y ∈ F . Now, Max(b) ⊆ Max(a) and Lemma 3.5 imply that

Imax(L) = Max(b ∧ y) ⊆ Max(a ∧ y). Hence a ∧ y ∈
⋂
{M |M ∈ Imax(L)} = {0},

by Lemma 3.10. Thus a ∧ y = 0 for some y ∈ F , that is, a ∈ F 0 = I. Hence I is a

z-ideal.

(5) Let I = O[P ] = {x ∈ L| x ∧ y = 0 for some y /∈ P} for some prime ideal

P of L. Then F = L \P is a proper filter. This gives that I = F 0. Hence the result

follows from (4).

In order to prove the last statement, assume that L is an SSC lattice. Let

I = (x] be a principal ideal of L. Let Max(b) ⊆ Max(a) and b ∈ I. Now, suppose

a /∈ I. Then there exists a nonzero c such that c ≤ a and c ∧ x = 0. This gives

b∧c = 0. Thus Imax(L) = Max(b∧c) ⊆ Max(a∧c), by Lemma 3.5. Then c = a∧c ∈⋂
{M |M ∈ Imax(L)} = {0}, by Lemma 3.10. Therefore c = 0, a contradiction. Thus

a ∈ I.

As mentioned in the introduction, the concept of Baer ideals (equivalently
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z0-ideals) and z-ideals are related in commutative rings with unity. In the following

remark, we show that in general lattices they are not related.

Remark 3.14. In view of Lemma 3.10 and Theorem 3.13, it is clear that in a

1-distributive, dually semi-complemented lattice with 0 every closed ideal is a z-

ideal. However, the assertion is not true, if we drop the condition of dual semi-

complementedness. Consider the three-element chain C3. Then the ideal (0] is a

closed ideal and hence a Baer ideal but not a z-ideal. Now, if we consider the nonzero

proper ideal in C3, then it is a z-ideal but not a Baer ideal and hence not a closed

ideal.

However, in a 0-1-distributive lattice with the additional condition
⋂
{M |M ∈

Imax(L)} = {0}, we prove that every Baer ideal is a z-ideal. For this purpose, we

need the following three results.

Lemma 3.15. (Thakare and Pawar [15, Theorem 4]) A prime ideal M is a minimal

prime ideal in a 0-distributive lattice L if and only if it contains precisely one of

(x] or x⊥
for every x ∈ L.

Lemma 3.16. (Thakare and Pawar [15, Theorem 7]) In a 0-distributive lattice L,

the pseudocomplement of any ideal I is the intersection of all minimal prime ideals

not containing I.

Lemma 3.17. In a 0-distributive lattice L, a⊥⊥ =
⋂
{P ∈ I

p

min(L)|a ∈ P} for

a ∈ L.

Proof. Let I = a⊥. By Lemma 3.16, we have a⊥⊥ =
⋂
{P ∈ I

p

min(L)|a
⊥ � P}.

Further, by Lemma 3.15, it is clear that {P ∈ Ip

min(L)|a
⊥ � P} = {P ∈ Ip

min(L)|a ∈

P}. Hence a⊥⊥ =
⋂
{P ∈ Ip

min(L)|a ∈ P} for a ∈ L.

With this preparation, we now prove that in a 0-1-distributive, dually semi-

complemented lattice, every Baer ideal is a z-ideal.

Lemma 3.18. Let L be a 0-1-distributive, dually semi-complemented lattice. Then

every Baer ideal is a z-ideal.

Proof. Suppose I is a Baer ideal and Max(a) = Max(b), a ∈ I but b /∈ I. By

Lemma 3.17, we have a⊥⊥ =
⋂
{P ∈ I

p

min(L)|a ∈ P} = Pa (say). Since I is

Baer and a ∈ I, we have a⊥⊥ = Pa ⊆ I. Note that (b] ∩ a⊥ �= {0}, otherwise

b ∈ a⊥⊥ ⊆ I, a contradiction. Since L is dually semi-complemented, by Lemma

3.10,
⋂
{M |M ∈ Imax(L)} = {0}. Hence there exists a maximal ideal M such that

(b] ∩ a⊥ � M . Clearly, a⊥ � M and b /∈ M . By 1-distributivity, M is a prime
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ideal. Since (a] ∩ a⊥ = {0} ⊆ M and a⊥ � M , we have a ∈ M . Thus there exists

a maximal ideal M such that a ∈ M and b /∈ M . Hence Max(a) �= Max(b) , a

contradiction to Max(a) = Max(b). So b ∈ I. Thus I is a z-ideal.

Remark 3.19. Note that in a 0-1-distributive, dually semi-complemented lattice L

a z-ideal is not a Baer ideal in general. For this, consider the set L = {X ⊆ N|X
is an infinite set } ∪ {∅}, where N is the set of natural numbers. Clearly, L is a

0-distributive lattice under the set inclusion and
⋂
{M |M ∈ Imax(L)} = {0}. Let

I = (N− {1}], the principal ideal generated by N− {1}. Since every maximal ideal

is a z-ideal, we have (N − {1}] is a z-ideal. Clearly, (N − {1}]⊥ = {0} and hence

(N− {1}]⊥⊥ = {0}⊥ = L. This gives (N− {1}]⊥⊥ � (N− {1}]. Therefore (N− {1}]
is not a Baer ideal.

Lemma 3.20. Let L be a 0-1-distributive lattice such that every Baer ideal is a

z-ideal. Then L is dually semi-complemented.

Proof. Suppose that every Baer ideal is a z-ideal. On the contrary, assume that L is

not dually semi-complemented. Hence by Lemma 3.10,
⋂
{M |M ∈ Imax(L)} �= {0}.

Then for a nonzero element a ∈
⋂
{M |M ∈ Imax(L)}, we have Max(a) = Max(0).

Since (0] is a Baer ideal, by the hypothesis, (0] is a z-ideal. Then Max(0) = Max(a)

and 0 ∈ (0] imply a ∈ (0], a contradiction.

We conclude the paper by combining Lemma 3.10, Lemma 3.18 and Lemma

3.20 to obtain the following result.

Theorem 3.21. Let L be a 0-1-distributive lattice. Then the following statements

are equivalent.

(1) Every Baer ideal is a z-ideal.

(2) L is dually semi-complemented.

(3)
⋂
{M |M ∈ Imax(L)} = {0}.
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