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Abstract. A Minkowski geometry is Euclidean if and only if the altitudes of

any trigon are concurrent. A Minkowski geometry is Euclidean if and only if

the perpendicular bisectors of any trigon are concurrent.

1. Introduction

A Minkowski geometry is an affine geometry with distance function given by a
centrally symmetric convex body, the indicatrix. It is widely investigated if presence
of various geometric conditions in Minkowski geometry results in specific conditions
regarding the indicatrix. For further reference see [1] and [5, 6].

Thorough articles were devoted to existence of certain points regarding trian-
gles. See i.e. [10], [11] and [7, 8].

In this article we prove that the right-perpendicular bisectors are concurrent in
every triangle in a Minkowski geometry if and only if the indicatrix is an ellipsoid.
Then we prove that a Minkowski space, where triangles have concurrent right-
altitudes, is Euclidean. An alternate proof for the plane was already given in [13].

In the last section the analogous results are proved for the left-perpendicularity.
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2. Preliminaries

Points of Rn are denoted as a,b, . . . ; the line through different points a and b is
denoted by ab, the open segment with endpoints a and b is denoted by ab, the
ray (open half-line) with starting point a passing through point b is denoted by

−→
ab.

The arc of a curve C with endpoints a,b will be denoted by C(ab)1. Non-degenerate
triangles are called trigons.

A Minkowski geometry (An; In) is an affine space An of dimension n, provided
with a centrally symmetric, strictly convex body In, as the indicatrix of the geometry.
In this article we assume that ∂In is twice differentiable.

Our considerations regard perpendicularity of lines. However, perpendicularity
is not a symmetric relation as it is defined in Minkowski geometries (see [12, Def-
inition 3.2.2]). We say that line l is left-perpendicular to line m, if l′ ‖ l is a line
tangent to I at point p and m is parallel to line cp, where c is the center of I.
In this case we say that line m is right-perpendicular to the line l. Note that by
[13, Theorem 3.4.10] left- and right-perpendicularity coincide in dimensions higher
than 2 if and only if I is an ellipsoid. In the plane this coincidence is satisfied if
and only if ∂I is a Radon-curve (see [4]).

We are going to investigate the shape of I via considering triangles, that is
why observations in two dimensions are beneficial for us, especially the following
lemma which is the specific case of Theorem 1 [3], for δ = 0. Here Sd−1 denotes the
unit sphere in the n-dimensional Euclidean space.

Lemma 2.1. Let C be a convex body in Rd (d ≥ 3) and let us suppose that any

hyperplane through the origin meets the interior of C and its intersection with C is

a (d− 1)-dimensional ellipsoid. Then C is an ellipsoid.

In order to decide if a convex body is an ellipsoid or not, we shall compare it
to its Lowner–John ellipsoid.

Lemma 2.2. ([8, Lemma 3.3]) Let H be a convex body in the plane. Then

(i) there exists an ellipse E circumscribed around H with at least three different

contact points e1, e2, e3 lying in ∂H∩∂E such that the closed triangle �e1e2e3

contains the center c of E, and

(ii) if H �≡ E, then these contact points can be chosen so that in every neighborhood

of one of them ∂H \ ∂E �= ∅.

Let t1, t2, t3 be the common support lines at e1, e2, e3, respectively. Then

(iii) c is in the interior of �e1e2e3 if and only if t1, t2, t3 form a trigon with

vertices m1 = t2 ∩ t3, m2 = t3 ∩ t1 and m3 = t1 ∩ t2;

1Should this be not unique the context of its use will clarify what arc is thought about in the text.
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(iv) c is in one of the edges of �e1e2e3, say c ∈ e2e3, if and only if t1, t2, t3
form a half strip with vertices m2 = t1 ∩ t3, m3 = t2 ∩ t1 and the ideal point

m1 = t2 ∩ t3.

If b1,b2,b3 are the midpoints of the segments e2e3, e3e1 and e1e2, respectively,

then

(v) the straight lines mibi (i = 1, 2, 3) meet in c.

If H is centrally symmetric to a point c then the following complements
Lemma 2.2.

Lemma 2.3. The circumscribed Lowner–John-ellipse E of a convex body H centrally

symmetric to point c has center c.

For the proof one only has to observe that the reflection τc keeps H invariant
and therefore, by its uniqueness, E = τc(E).

We need some more technical lemmas.

Lemma 2.4. Let r,p : [0; 1] → R2 be continuously differentiable curves with non-

vanishing derivatives.

(1) If (i) r ‖ p, (ii) ṙ ‖ ṗ, and these curves intersect each other, then r = p.

(2) If ṙ(0) ‖ ṗ(0) and ṙ(1) ‖ ṗ(1), then there exists a t0 ∈ (0, 1) such that

ṙ(t0) ‖ ṗ(t0).

Proof. (1) Conditions (i) and (ii) imply the existence of differentiable non-vanishing
real functions λ and μ, respectively such that μ and r = λp and μ and ṙ = μṗ

respectively. Substituting the latter equation into the derivative of the first one,
results in μṗ = λ̇p+ λṗ, hence

0 = λ̇p+ (λ− μ)ṗ.

If p ∦ ṗ then this gives λ̇ = 0 and that implies the statement. If p ‖ ṗ then p is a
segment, hence we get the statement.

(2) It is enough to apply the mean value theorem to the function
arccos(〈ṙ1, ṙ2〉).

Lemma 2.5. ([8, Lemma 3.4]) For a small ε > 0 let r,p : (−ε, 0] → R2 be twice

differentiable convex curves such that p(τ) = p(τ)uτ and r(τ) = r(τ)uτ , where

p, r : (−ε, 0] → R+, λ(τ) := r(τ)/p(τ) takes its minimum value 1 at τ = 0, and

max(−δ,0] λ > 1 for every δ ∈ (0, ε).

Let τn be a sequence in (−ε, 0] tending to 0 such that λ(τn) > 1 for every

n ∈ N. Then the tangent lines of r and p at r(τn) and p(τn), respectively, intersect

each other in a point m(τn) that tends to p(0) as τn → 0 so that it is on the same

side of the line 0p(τn) as p(0) is.
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3. Characterization by right-circumcenter and right-orthocenter

Three right-perpendicular bisectors of a trigon pairwise have point of intersection.
If all of them pass through one point we can call it the right-circumcenter of the
trigon. In this section we prove that the existence of right-circumcenter for every
trigon implies that the geometry is Euclidean. We use ideas taken from [7,8].

Theorem 3.1. If in a Minkowski geometry the right-perpendicular bisectors of every

trigon are concurrent, then the geometry is Euclidean.

Proof. For easier references later on, we number the main steps of our proofs.
(Step a1) In virtue of Lemma 2.1, it is enough to show that every two-

dimensional sections of the border of the indicatrix containing its center is an
ellipse.

Take a plane through the origin o, and let I ′ be its intersection with the border
of the indicatrix. Furthermore take the circumscribed Lowner–John ellipse E of I ′.

We shall conduct an indirect proof. Assuming that I ′ �= E , we want to arrive
at a contradiction.

Let us take an affinity of the plane, keeping the origin o fixed, and mapping
the ellipse E into a circle C with center o, I ′ into a curve I, centrally symmetric in
the origin, and inscribed into the circle. Since any affinity of the plane keeps the
incidence of points and lines, it keeps perpendicularity of lines, as well. So we can
deal with a centrally symmetric curve I and its circumscribed circle C, concentric
with I.

Let us notice that under these circumstances, a tangent to the circle is right-
perpendicular to another tangent to the circle if and only if they are perpendicular
in Euclidean terms.

(Step a2) According to Lemma 2.2, there exist three points in I ∩ C. Because
of central symmetry, common points occur in pairs symmetric with respect to o,
so we have at least four points in common. We shall investigate basically two cases:
(1) the number of points of the set I ∩C is not less than 5; (2) the number of points
of the set I ∩ C is 4.

These two cases will be related to non-perpendicularity respectively perpen-
dicularity of certain sides of the trigon we construct to gain contradiction.

Case 1. Curves I and E have at least five common points.
(Step a3) Common points of the symmetric curves are in antipodal pairs, so

we can chose and number five common points ei i = 1, . . . , 5 such that (e1, e2) and
(e3, e4) are antipodal pairs. We shall denote the common tangents at these points
by ti respectively. Then the tangents t3 and t5 meet t1 and t2, moreover, either t3
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or t5 is not right-perpendicular to them. Let us change indexes, if necessary, in such
a way that t3 and t2 are not perpendicular.

So we can suppose that we have four points e1 ≺ e4 ≺ e2 ≺ e3 in a circuit of
C such that t1 ‖ t2 and t3 is not right-perpendicular to t2.

(Step a4) As a consequence of the central symmetry of the two different curves,
we know that equalities C(e1e4) = I(e1e4) and C(e4e2) = I(e4e2) can not hold
simultaneously, otherwise C = I would follow. Without loss of generality we may
suppose that C(e1e4) �= I(e1e4).2

(Step a5) Tangents t2 and t3 are not parallel, because e2 and e3 are not
antipodal points. Furthermore, all tangents to the open arc C(e1e4) meet both t2
and t3. Applying Lemma 2.4 to the arcs C(e1e4) and I(e1e4) one obtains that there
must be points pC

1 ∈ C(e1e4) and pI
1 ∈ I(e1e4) such that the following properties

hold true:

(i) pC
1 ∦ pI

1 ;
(ii) the respective tangents tC1 , t

I
1 at these points are parallel.

Further
(iii) tC1 and tI1 meet both t2 and t3,
(iv) pC

1 ,p
I
1 are not perpendicular to t3, or to t2,

otherwise a point, sufficiently close to pC
1 , could be used instead of pC

1 .

(Step a6) Let m1 = t2 ∩ t3, mC
2 = tC1 ∩ t3, mC

3 = tC1 ∩ t2, mI
2 = tI1 ∩ t3,

mI
3 = tI1 ∩ t2. (See Figure 3.1.)
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3
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3

bI
3

sC

sI

Figure 3.1. Left-perpendicular bisectors if sC �= pC
1

2If C(e1e4) �= I(e1e4), we can exchange indexes 1 and 2, without disimproving the non-

perpendicularity of t3 and t2.
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Furthermore denote the midpoints of the edges of trigon �m1m
I
2m

I
3 by

bI
3 ,b

I
1 ,b

I
2 ; the midpoints of the edges of trigon �m1m

C
2m

C
3 by bC

3 ,b
C
1 ,b

C
2 respec-

tively. Perpendicular bisectors of the trigon �m1m
C
2m

C
3 , by Euclidean geometry,

have a common point sC . It is different from bC
i , since this trigon is not a right one.

Furthermore, bC
i s

C ‖ eio for i = 2, 3, and bC
1s

C ‖ pC
1o.

By assumption, the intersection of the right-perpendicular bisectors of trigon
�m1m

I
2m

I
3 through the midpoints bI

3 and bI
2 is sI , the right-circumcenter of

�m1m
I
2m

I
3 . Trigons �m1m

C
2m

C
3 and �m1m

I
2m

I
3 are homothetic with center m1

since tC1 ‖ tI1 . This homothety χ sends bC
i to bI

i (i = 1, 2, 3), hence it sends lines
bC
i s

C to the lines going through bI
i , parallel with them (i = 2, 3). Therefore, χ

maps point of intersection sC into point of intersection sI , with sC different from
bI
i . Consequently, we have pC

1o ‖ bC
1s

C ‖ bI
1 s

I . The right-perpendicular bisector,
through midpoint bI

1 must go through sI , the point of intersection of the other
two right-perpendicular bisectors, therefore is parallel to pC

1o on one hand, and
parallel to pI

1o, by the definition of right-perpendicularity, on the other hand. This
contradiction proves the theorem in this case.

Case 2. Curves I and C have exactly four common points.

(Step a7) We can number the common points so that one has the order
e1 ≺ e4 ≺ e2 ≺ e3 in a circuit of C.

If e2 is not perpendicular to e3 then for the tangents at these points t1 ‖ t2
and t3 is not right-perpendicular to t2.

Furthermore, the following open arcs have no common points: C(e1e4) ∩

I(e1e4) = ∅ and C(e4e2) ∩ I(e4e2) = ∅.

So one can go back to the end of (Step a4), continue with (Step a5) and finish
with (Step a6), completing the proof.

(Step a8) If e2 is perpendicular to e3, we have two antipodal pairs of common
points such that e1 ≺ e4 ≺ e2 ≺ e3 in a circuit of C with corresponding tangents
t3 perpendicular to t2.

Applying Lemma 2.4 to the open arcs C(e3e1) and I(e3e1) we can find points
pC
3 , pI

3 collinear with o such that their respective tangents tC3 , t
I
3 to C and I, re-

spectively, are parallel. Moreover, these tangents are not perpendicular to t2. Let
us denote the magnitude of the angle ∠(e3op

C
3 ) by α3.

(Step a9) We can apply Lemma 2.5 to the open arcs C(e4e1) and I(e4e1) to
find points pC

1 , pI
1 arbitrarily close to e4 on the respective arcs such that

(i) pC
1 ‖ pI

1 ,
(ii) the respective tangents tC1 , t

I
1 to C and I, respectively, are not parallel,

(iii) tC1 ∩ tI1 is close to e4, and is on the same side of opC
1 where e4 is.

We can chose pC
1 so much close to e4 that the magnitude α1 of angle ∠(pC

1oe4) is
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smaller than min(α3, π/2− α3).
(Step a10) Tangent tC1 meets tangent t2 in a point mC

3 since t4 meets it and
directions of tC1 and t4 are close to each other. Tangent tI1 meets tangent t2 in a
point mI

3 for the same reason. Angles ∠pC
1m

C
3e2, ∠p

I
1m

I
3e2 are both acute.

Tangent tC3 meets tangent t2 in a point mC
1 , tangent tI3 meets tangent t2 in a

point mI
1 since 0 < α3 < π/2, furthermore, angles ∠pC

3m
C
1e2, ∠p

I
3m

I
1e2 are acute,

and the angle ∠pC
3op

C
1 is obtuse. It follows that tangent tC1 meets tangent tC3 in a

point mC
2 , and the angle ∠pC

3m
C
2p

C
1 is acute. Since tangent tC1 and tI1 differ just a

little in their direction, tI1 and tI3 meet in a point mI
2 . (See Figure 3.2.)

o

e1

e2

e3

e4
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1 pI

1

pC
3

pI
3

t1
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tC3

tI3
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3mI

3

mC
1

mI
1

mC
2
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2

bI
2

bI
3

bI
1

sI

sC

IC

Figure 3.2. Case 2: if tangents t3 and t2 are orthogonal

When all comes to all we obtain that both triangles �mC
1m

C
2m

C
3 , �mI

1m
I
2m

I
3

do exist and all angles are acute.
(Step a11) Let us denote midpoints of the edges of the trigon opposite to the

vertex mI
i by bI

i (i = 1, 2, 3). Right-perpendicular bisectors through bI
2 and bI

3

coincide with the Euclidean perpendicular bisectors, and have point of intersection
sI . This point is the Euclidean circumcenter of �mI

1m
I
2m

I
3 , and it also the right-

perpendicular circumcenter sI which is different from each midpoints bI
i as the

triangle has no right angle. Hence bI
1 s

I is the third Euclidean perpendicular bisector
which is perpendicular to tangent tI1 . At the same time, bI

1 s
I must be the third right-

perpendicular bisector which is parallel to pI
1o and consequently, perpendicular to tC1 .

Since the two tangents tI1 and tC1 are not parallel, we have arrived at a contradiction.
The proof is complete.

A line passing through a vertex of a trigon, right-perpendicular to its opposite
side is called the right-altitude through that point. We say that a trigon has a right-
orthocenter if the three right-altitudes are concurrent. Weiss proved [13, Theorem 1]
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that if every trigon has a right-orthocenter in a two-dimensional Minkowski space,
then its indicatrix is an ellipse. We present here an alternate proof (valid in higher
dimensions, as well).

Theorem 3.2. If the right-altitudes of any trigon in a Minkowski geometry are

concurrent, then its geometry is Euclidean.

Proof. (Step b1) We can start with (Step a1) and (Step a2) of the proof of Theo-
rem 3.1. So we need to consider two cases.

Case 1. |C ∩ I| ≥ 5.
(Step b2) Exactly the same way as in the proof of Theorem 3.1, via (Step a3)–

(Step a5) one can conclude to a configuration where tangents at pC
1 ∈ C and pI

1 ∈ I

are parallel, and pI
1 and pC

1 are not parallel at the same time (see Figure 3.3). The
intersections of the tangent lines are denoted the same way as before.

tC1

t2
t3

tI1

o

e1

e2

e3

e4

pC
1

pI
1

m1

mC
2 mC

3

mI
2 mI

3
sC

sI

Figure 3.3. Altitudes in the first case

(Step b3) By Euclidean geometry, right-altitudes of �m1m
C
2m

C
3 , clearly have

a common point sC , furthermore, mC
i s

C ‖ eio for i = 2, 3, and mC
1s

C ‖ opC
1 .

Let us denote the intersection of the right-altitudes of trigon �m1m
I
2m

I
3

through the vertices mI
3 and mI

2 by sI . Since trigons �m1m
C
3m

C
2 and �m1m

I
3m

I
2

are evidently homothetic with center m1, points m1, s
I , sC are collinear and clearly

different. Thus, m1s
I is parallel to pC

1o. On the other hand, the right-altitude
is parallel to pI

1o (because of the definition of right-perpendicularity). This is a
contradiction that proves the statement in the first case.

Case 2. |C ∩ I| = 4.
(Step b4) We can continue with (Step a7) and finish the proof when e2 and

e3 are not perpendicular.
(Step b5) It remains to consider the case where t3 is perpendicular (right-

perpendicular) to t2.
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Let us choose points pC
1 and pC

3 on C close to e1 and e3 such that |∠(e1opC
1 )| =

|∠(e3op
C
3 )| = α, and the angles are directed in the same way (see Figure 3.4). Let

the tangents to C at these points be denoted by tCi (i = 1, 3).

t1

t3

tI3

tI1

t2

tC3

tC1

α

α
o

α

α1

α α2

e1

e3

e2

e4

pI
3

pI
1

mI
2

mI
3

mI
1

pC
1

pC
3

IC

Figure 3.4. Case 2 if e2 ⊥ e3

Let us denote the point of the ray
−−→
opC

i on the curve I by pI
i (i = 1, 3). The

tangents to I through these points are denoted by tIi (i = 1, 3). Clearly, the tangents
tC1 , tC3 and t2 form a trigon, as well as the tangents tI1 , tI3 and t2 are the side lines
of the trigon �mI

1m
I
2m

I
3 .

Obviously, the magnitude of the angle between tC1 and t2 is α, as well as that
of the angle between tC3 and the direction of e1. As a consequence of Lemma 2.5,
we obtain that tI1 and t2 close angle α2 bigger than α, and similarly, the angle α1

between tI3 and oe1 is bigger than α.
According to the right-perpendicularity, altitudes of the trigon �mI

1m
I
2m

I
3

are parallel to pI
1 ,p

I
3 , e2, hence the altitude through vertex mI

1 meets the altitude
through mI

2 outside the triangle, while the altitude through vertex mI
3 meets the

altitude through mI
2 inside the triangle. It follows that the three altitudes can not

form a pencil, which proves the theorem in this final case.

4. Characterizations by left-circumcenter and left-orthocenter

Concepts of left-circumcenter and left-orthocenter use the notion of left-perpendic-
ularity in Minkowsky geometries. We say that a point is the left-circumcenter of a
trigon if the three left-perpendicular bisectors of the edges of the trigon pass through
that point. Similarly, we say that a point is the left-orthocenter of a trigon if the
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three lines through the vertexes of the trigon, left-perpendicular to the respective
opposite edges, pass through that point.

Theorem 4.1. If the left-perpendicular bisectors of every trigon in a Minkowski

geometry are concurrent, then its geometry is Euclidean.

Proof. (Step c1) We can repeat the first step of the proof of Theorem 3.1, obtain
a centrally symmetric twice differentiable curve I and its circumscribed concentric
circle C (its Lowner–John ellipse), and our aim is to construct a trigon, the three
left-orthogonal lines in question of which can not pass through one point. Existence
of such a configuration contradicts the assumption of the theorem.

(Step c2) From Lemma 2.2 we know that there exist at least three points
in I ∩ C. Furthermore, according to part (ii) of Lemma 2.2, we also know that in
arbitrarily small neighborhood of (at least) one of the common points these curves
are different. Since common points occur in antipodal pairs we can find four different
common points ei such that

(i) e2 and e1 are antipodal points;
(ii) e3 and e4 are antipodal points;
(iii) e1 is a point such that there are different points pC

1 ∈ C and pI
1 ∈ I sufficiently

close to e1, being on the same ray starting from the origin o and having
tangents tC1 of C and tI1 of I, respectively, intersecting each other on that side
of line pC

1p
I
1 where e1 is (see Lemma 2.5);

(iv) in a circuit of C, one has the points in order e1 ≺ pC
1 ≺ e4 ≺ e2 ≺ e3.

Let us denote the common tangent of the curves at ei by ti, i = 2, 3. The tangents
tC1 , t2, t3 of the circle are perpendicular in Euclidean terms to pC

1 , e2 and e3, respec-
tively, hence neither two of them are parallel. Since the directions of tC1 and tI1 are
close to each other, chosing pC

1 properly close to e1, tangent tI1 meets t2 and t3, as
well (see Figure 4.1, left).

o

e1

e2

e3

e4

pC
1

pI
1

tC1

tI1

t2

t3

a1

a2

a3

b1

b2

b3

fC1

fI1

f2

f3

sC

Figure 4.1. Left-perpendicularity and bisectors if sC �= b1
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According to the definition of left-perpendicularity, line tI1 is left-perpendicular
to pI

1 .

Clearly, vectors pC
1 , e2 and e3 are linearly independent, so one can choose a

triangle �a1a2a3 such that a3a2 ‖ pC
1 , a2a1 ‖ e3, a1a3 ‖ e2 and the circuit of the

vertexes a1, a2, a3 is the same as that of points e3,p
C , e2 (see Figure 4.1, right).

Case 1. Vectors e2 and e3 are not perpendicular.

(Step c3) Let us denote the midpoints of the edges aiaj of �a1a2a3 by bk,
{i, j, k} = {1, 2, 3} (see Figure 4.1, right).

Let the lines b1f
C
1 ,b2f2,b3f3 be taken so that b1f

C
1 ‖ tC1 , b2f2 ‖ t2, b3f3 ‖ t3,

respectively. Since these lines are (in Euclidean terms) perpendicular to their respec-
tive edges of the trigon, they have a common point, sC , the Euclidean circumcenter.
Since the vectors e2 and e3 are not perpendicular, lines a2a1 and a3a1 are also not
perpendicular, therefore sC �= b1.

Consider now the line b1f
I
1 ‖ tI1 . It should pass through the left-circummcenter

sI = b2f2 ∩b3f3 of the trigon �a1a2a3, by assumption. Since sC = b2f2 ∩b3f3 and
sC �= b1, one gets b1f

I
1 = b1f

C
1 . However, this contradicts tI1 ∦ tC1 , so the theorem

is proved in this case.

Case 2. Vectors e2 and e3 are perpendicular.

(Step c4) If there were more antipodal pairs of common points in C ∩ I, than
just e1, e3 and e2, e4, say e6 ∈ C(e1, e2), then exchanging indexes 6 and 3, one gains
a configuration where t3 and t2 are not perpendicular, and the proof follows from
(Step a3).

(Step c5) If C ∩ I = {e1, e2, e3, e4}, then the proof of Theorem 3.2 in Case 2
(Step b4) is to follow. Consider the configuration on Figure 4.2, which is a modified
version of Figure 3.4.

o

e1

e2

e3e4

pC
1

pC
3

pI
1

pI
3

t1

t3

tC1

tI1

tC3tI3

t2

d1

d3

g2

gC
1

gI
1

gC
3

gI
3

α

α

IC

a2

a1

a3

b2b1

b3

fI1fC1

fI3fC3

f2f2

gC
1

gI
1

gC
3

gI
3

fI1fC1

fI3fC3

b2b1

b3

Figure 4.2. Left-perpendicularity and bisectors if sC = b1
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Let di = tCi ∩t
I
i (i = 1, 3), and introduce the notations

−−→
dig

C
i and

−−→
dig

I
i (i = 1, 3)

for the rays starting from di in the respective tangents, not containing the touching
points. It is clear that directed angles ∠(gC

i d1g
I
i ) have the same orientation as the

circuit of the curves C and I.
(Step c6) Take the rays

−−→
b1f

C
1 ‖

−−−→
d1g

C
1 ,

−−→
b2f2 ‖ −−→e2g2 and

−−→
b3f

C
3 ‖

−−−→
d3g

C
3 . The lines

of these rays are perpendicular bisectors of the respective edges of the right trigon
�a1a2a3, hence, by Euclidean geometry, they pass trough the circumcenter b2.

Consider now the rays
−−→
b1f

I
1 ‖

−−−→
d1g

I
1 and

−−→
b3f

I
3 ‖

−−−→
d3g

I
3 . The lines of these rays

are left-perpendicular bisectors of the respective edges of the trigon �a1a2a3, hence
by assumption, they pass trough one point, the left-circumcenter of the trigon.

Investigating the orientation of the directed angles ∠(fC1 b1f
I
1 ) and ∠(fC3 b3f

I
3 ),

one finds that rays
−−→
b1f

I
1 and

−−→
b3f

I
3 meet line b2f2 in opposite sides of b2, hence the

three left-perpendicular bisectors of this trigon can not go through one point. This
contradiction proves our theorem in this case, and completes the proof.

Theorem 4.2. If the left-altitudes of every trigon in a Minkowski geometry are

concurrent, then its geometry is Euclidean.

o

e1

e2

e3

e4

pC
1 pI

1

tC1

tI1

t2

t3

a1

a2

a3

fC1

fI1

f2

f3

sC

Figure 4.3. Left-perpendicularity and altitudes if sC �= a2

Proof. (Step d1) We can repeat (Step c1)–(Step c3) of the previous proof.
Then, as before, we can construct a trigon �a1a2a3, such that a1a2 ‖ oe3,

a2a3 ‖ opC
1 , a3a1 ‖ oe2, furthermore the circuit of points a1, a2, a3 is the same as

that of points e3,p
C
1 , e2. We investigate two cases (see Figure 4.3).

Case 1. Vectors e2 and e3 are not perpendicular.
(Step d2) In this step we apply arguments similar to that of (Step c3).
Let the lines a1fC1 , a2f2,a3f3 be chosen so that a1fC1 ‖ tC1 , a2f2 ‖ t2 and a3f3 ‖ t3.

Since these lines are (in Euclidean terms) perpendicular to the respective opposite
edges of the trigon, they all pass through the Euclidean orthocenter sC .
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Consider now the line a1f
I
1 ‖ tI1 . The lines a1f

I
1 , a2f2 and a3f3 are the left-

perpendicular altitudes of trigon �a1a2a3, hence, by assumption, they pass through
the left-orthocenter sI .

Since tC1 ∦ tI1 , we have a1f
C
1 �= a1f

I
1 , but this contradicts sC = a2f2 ∩a3f3 = sI ,

because a1 �= sC ∈ a1f
C
1 ∩ a1f

I
1 = {a1}. This contradiction proves Case 1.

Case 2. Vectors e2 and e3 are perpendicular.
(Step d3) We can proceed with (Step c4)–(Step c5), and finish with a modified

version of (Step c6), as follows (see Figure 4.4).

o

e1

e2

e3e4

pC
1

pC
3pI

1 pI
3

t1

t3

tC1

tI1

tC3tI3

t2

d1

d3

gC
1

gI
1

gC
3

gI
3

α

α

IC

a2

a1

a3

fI1

fI3

f2
f2

fC3

fC1gC
1

gI
1

fC3

fC1

fI1

fI3

f2
f2

a2

Figure 4.4. Left-perpendicularaty and altitudes if sC = a2

Take the rays
−−→
a1f

C
1 ‖

−−−→
d1g

C
1 ,

−−→
a2f2 ‖ t2 and

−−→
a3f

C
3 ‖

−−−→
d3g

C
3 . The lines aifCi (i = 1, 3)

and a2f2 are (Euclidean) altitudes of the right trigon �a1a2a3, hence they pass
trough the orthocenter a2 of the trigon.

Consider now the rays
−−→
a1f

I
1 ‖

−−−→
d1g

I
1 and

−−→
a3f

I
3 ‖

−−−→
d3g

I
3 . The lines aif

I
i (i = 1, 3)

and a2f2 are left-perpendicular altitudes of the right trigon �a1a2a3, hence by
assumption, they should pass trough the left-orthocenter of the trigon.

However, considering the directed angles ∠(fC1 a1f
I
1 ) and ∠(fC3 a3f

I
3 ), one finds

that rays
−−→
a1f

I
1 and

−−→
a3f

I
3 meet a2f2 in the opposite sides of a2, hence a1f

I
1 , a2f2 and

a3f
I
3 can not go through one point. This contradiction proves our theorem in this

final case.
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