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Abstract. Our study is in the set S(H) of all semiclosed operators in a Hilbert

space H. We show that the set Ssa(H) of all selfadjoint operators is relatively

open in the set Ssym(H) of all semiclosed symmetric operators. We calculate the

value of a radius of minus-Laplacian −Δ. As a topological approach, we show

the selfadjointness of the Schrödinger operator with a Kato–Rellich potential.

1. Introduction

Let H be an infinite dimensional, complex Hilbert space. An operator means a

linear mapping from a domain in H into H, and the notation B(H) stands for

the set of all bounded operators with the domain H. An operator is said to be

semiclosed if its graph is a semiclosed subspace in the product Hilbert space H×H.

Characterizations for semiclosed operators in a Hilbert space are accomplished in

[8]. According to it, an operator is semiclosed if and only if it is a quotient of

bounded operators. Quotients of bounded operators are treated in [5], [7]. Moreover,

topological structures for them are studied in [3] and [4]. Especially, in the latter, we

introduced the metric which is called the q-metric on the set S(H) of all semiclosed

operators. The q-metric restricted to B(H) coincides with the metric induced from

the operator norm, and the q-metric is stronger than the gap metric on the set CD(H)

of all closed and densely defined operators. Moreover, we showed that CD(H) is

open in the metric space S(H).

A reason we study semiclosed operators is the following. The set S(H) which

contains the set of all closed operators is closed under sums, products, adjoints and
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closures if they exist. Hence sums of closed operators are necessarily semiclosed.

When we encounter sums of selfadjoint operators like Schrödinger type operators,

it is not so easy to decide that sums are selfadjoint or not, even closed or not. But

we can immediately deduce that their sums are symmetric and semiclosed. So we

believe that the set S(H) is one of the most suitable ones as a universal set when

we handle unbounded operators.

In this paper, we consider the set of selfadjoint operators in the set of semiclosed

symmetric operators from a topological stance. Our interest is a problem that

‘when are semiclosed and symmetric operators selfadjoint?’. For this, we obtain the

following main theorem which is proved in Section 3.

Theorem 1.1. Let (S(H), q) be the metric space. The set Ssa(H) of all selfadjoint

operators is relatively open in the set Ssym(H) of all semiclosed and symmetric

operators: For s ∈ Ssa(H), there exists a positive constant δ > 0 such that

q(s, t) < δ and t ∈ Ssym(H) imply t ∈ Ssa(H). (1.1)

In Section 4, we calculate the value of a positive constant δ > 0 as above

theorem for a selfadjoint operator s = −Δ. That is,

q(−Δ, t) <

√
2

4
and t ∈ Ssym(H) imply t ∈ Ssa(H).

As an application, the selfadjointness of the Schrödinger operator −Δ+ V with a

Kato–Rellich potential V is shown in Section 5, which gives another proof for the

Kato–Rellich Theorem.

2. Preliminaries

The notation (·, ·) denotes the inner product equipped with H and put ‖·‖ := (·, ·) 1

2 .

A subspace M in H is said to be semiclosed if there exists an inner product (·, ·)M
on M such that M is a complete inner product space (i.e. a Hilbert space) and the

inclusion mapping J : (M, ‖ · ‖M ) → H is continuous. When the inclusion mapping

J is continuous, that is, there exists a constant c > 0 such that ‖u‖ ≤ c‖u‖M for

u ∈ M , we write (M, ‖ · ‖M ) ↪→ H. In this case, we call ‖ · ‖M a Hilbert norm on M .

It is known that a subspace M in H is semiclosed if and only if M is an operator

range in H, that is, M = Y H for some Y ∈ B(H).

An operator s : dom(s) → H with a domain dom(s) ⊆ H is said to be semi-

closed if its graph {(u, su) : u ∈ dom(s)} is a semiclosed subspace in the product

Hilbert space H×H. Characterizations for semiclosed operators are given as follows.
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Theorem 2.1. ([8]) Let s : dom(s) → H. Then the following conditions are equiva-

lent.

(1) The operator s is a semiclosed operator in H.

(2) The domain dom(s) is a semiclosed subspace in H, so that

s̃ : (dom(s), ‖ · ‖dom(s)) → H

is bounded with respect to some (equivalently, any) Hilbert norm ‖ · ‖dom(s) on

dom(s). Here, s̃u = su for u ∈ dom(s).

(3) The operator s is represented by a quotient of bounded operators, namely there

exist A,B ∈ B(H) such that

kerA ⊆ kerB, dom(s) = AH, and sAu = Bu for u ∈ H.

In this case, we write s = B/A.

For T ∈ B(H), we define the inner product (·, ·)T on the operator range TH by

(Tu, Tv)T := (u, v) u, v ∈ (kerT )⊥. Then (TH, (·, ·)T ) is a complete inner product

space and (TH, (·, ·)T ) ↪→ H. We call a Hilbert space (TH, (·, ·)T ) de Branges space

induced by T and denote it by M(T ). In case of considering de Branges space,

positive operators have important roles as the following Lemma 2.2 shows. Here, an

operator T ∈ B(H) is said to be positive, in short T ≥ 0, if (Tu, u) ≥ 0 for u ∈ H.

Lemma 2.2. ([1]) Let M be a semiclosed subspace in H and let ‖ · ‖M be a Hilbert

norm on M . Then there uniquely exists a positive operator T ∈ B(H) such that

(M, ‖ · ‖M ) = M(T ) (isometrically isomorphic). Here T is given by (JJ∗)
1

2 ≥ 0

satisfying J : (M, ‖ · ‖M ) ↪→ H.

From Lemma 2.2, there exists the bijective mapping from the set {‖ · ‖M :

(M, ‖ · ‖M ) ↪→ H} of all Hilbert norms on M to the set {T ≥ 0 : M = TH} of all

positive bounded operators whose ranges are M . Hence, we can choose a Hilbert

norm ‖ · ‖M from the set of all Hilbert norms on M for each semiclosed subspace

M , and let α be a corresponding M → ‖ · ‖M , equivalently M → T ≥ 0 such that

M = TH as above. Namely, a corresponding α is a choice function to choose a

Hilbert norm for each semiclosed subspace.

Now, we lay down two rules concerning the choice. The first is to choose the

original Hilbert norm ‖ · ‖ for H. Clearly the norm ‖ · ‖ corresponds to the identity

operator I on H. The second is, for a closed subspace M , to choose the original

Hilbert norm restricted on M , ‖ · ‖M (:= ‖ · ‖ on M). The norm ‖ · ‖M corresponds

to the orthogonal projection PM onto M .

Based on a corresponding α, we introduced in [4] the qα-metric on the set

S(H) of all semiclosed operators. Since, by Theorem 2.1 (2), a domain dom(s)
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of a semiclosed operator s is a semiclosed subspace, it is a Hilbert space with a

Hilbert norm ‖ · ‖dom(s) given by α. Hence, there uniquely exists a positive operator

A ∈ B(H) such that a Hilbert space dom(s) is isometrically isomorphic to de

Branges space M(A), that is, dom(s) = AH, ‖ ·‖dom(s) = ‖ ·‖A. Let B := sA. Since

s and A are semiclosed, their product B is also semiclosed. Since clearly the domain

of B is the whole space H, the operator B is in B(H) by the semiclosed graph

theorem. This means that s is uniquely represented by a quotient B/A. When we

emphasize the corresponding α, we write s
α
= B/A.

For s, t ∈ S(H), we set s
α
= B/A and t

α
= D/C as above. Then we define the

metric depending on the corresponding α by

q(s, t) = qα(s, t) = max{‖A− C‖, ‖B −D‖}.

We simply denote q(s, t) instead of qα(s, t) without confusion. The term ‖A− C‖
means the distance between semiclosed subspaces dom(s) and dom(t) under the

corresponding α. In case of S, T ∈ B(H), it follows from S
α
= S/I and T

α
= T/I

that q(S, T ) = ‖S − T‖.
For a quotient F/E : Eu → Fu, u ∈ H (E is not necessarily positive), a

positive bounded operator (E∗E +F ∗F )
1

2 has important roles in several situations.

It is shown in [8] that a quotient F/E is closed if and only if (E∗E + F ∗F )
1

2 has a

closed range in H. The following lemma will be used later in our arguments.

Lemma 2.3. ([4]) Let s ∈ S(H) and s = B/A be a quotient such that A ≥ 0.

Then, s is in CD(H) if and only if (A2 +B∗B)
1

2 has the inverse in B(H), that is,

invertible.

Remark 2.4. We call (A2 +B∗B)
1

2 the attached positive operator for B/A.

For an integer m ≥ 1, a subspace in L2(R)

dom(Dm
1 ) = {f ∈ L2(R) : D1f,D2

1f, . . . ,Dm
1 f ∈ L2(R)}

(
D1 =

1

i

d

dx

)
becomes a Hilbert space with a standard Hilbert structure

‖f‖Wm,2 :=
(‖f‖2 + ‖D1f‖2 + · · ·+ ‖Dm

1 f‖2)1/2.
(‖ · ‖ means L2-norm and D1 : dom(D1) → L2(R) is the differential operator in

a weak sense.) Since (dom(Dm
1 ), ‖ · ‖Wm,2) ↪→ L2(R), a subspace dom(Dm

1 ) is a

semiclosed subspace in L2(R). We call the Hilbert space (dom(Dm
1 ), ‖ · ‖Wm,2) the

standard Sobolev space Wm,2(R) with the order m. From Wm,2(R) ↪→ L2(R),
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Wm,2(R) is represented by de Branges space M(Am) for a unique positive operator

Am in isometrically isomorphic sense. It is shown in [4] that Am is given by

Am = (I +D2
1 + · · ·+D2m

1 )1/2. (2.1)

For σ > 0, a subspace {f ∈ L2(RN ) : (1 + |ξ|2)σ
2 f̂ ∈ L2(RN )} is semiclosed

in L2(RN ) (N ≥ 1). Because this is a continuously embedded Hilbert space in

L2(RN ) with a norm ‖f‖Hσ := ‖(1 + |ξ|2)σ/2f̂‖, which is called the Fourier type

Sobolev space Hσ(RN ) with the order σ > 0. ( ·̂ means L2-Fourier transform and

|ξ|2 := ξ21 + · · ·+ ξ2N for (ξ1, . . . , ξN ) ∈ R
N . ) When N = 1, the standard Sobolev

norm coincides with the Fourier type Sobolev norm, that is, ‖ · ‖W 1,2 = ‖ · ‖H1 .

The Sobolev space Hσ(RN ) is expressed by de Branges space M(Ãσ) for a unique

positive operator Ãσ. The operator Ãσ is given ([4]) by

Ãσ = (I −Δ)−σ/2, (2.2)

which is known as the Bessel potential of the order σ > 0.

3. A proof of the main theorem

In this section, we shall prove Theorem 1.1. A positive constant δ is said to be a

radius of a selfadjoint operator s if it satisfies the condition (1.1) with respect to

the qα-metric. A radius does not mean the best possible constant.

To construct a radius of a given selfadjoint operator, we first prove a funda-

mental inequality as follows.

Lemma 3.1. For s, t ∈ S(H), let s
α
= B/A and t

α
= D/C. Then the following

inequality holds:

q(s− ζI, t− ζI) ≤ (1 + |ζ|) q(s, t) for ζ ∈ C. (3.1)

Proof. Since s− ζI = B/A− ζI
α
= (B − ζA)/A and t− ζI

α
= (D − ζC)/C,

q(s− ζI, t− ζI) = max{‖A− C‖, ‖(B − ζA)− (D − ζC)‖}
≤ max{‖A− C‖, ‖B −D‖+ |ζ|‖A− C‖}
≤ max{q(s, t), q(s, t) + |ζ|q(s, t)} = (1 + |ζ|) q(s, t).

According to [4], since the set CD(H) of all closed and densely defined operators

is open in (S(H), q), there exists a positive constant δ for s ∈ CD(H) such that

q(s, t) < δ and t ∈ S(H) imply t ∈ CD(H). In the following, we explicitly give it

under the hypothesis of nonempty resolvent set ρ(s) of s.
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Lemma 3.2. Let s ∈ CD(H), the resolvent set ρ(s) of s be nonempty and s
α
= B/A.

For any nonempty compact set Φ such that ρ(s) ⊃ Φ, we set

δ = δΦ = min
ζ∈Φ

‖(B − ζA)−1‖−1

1 + |ζ| . (3.2)

Then, q(s, t) < δ and t ∈ S(H) imply t ∈ CD(H) and ρ(t) ⊃ Φ.

Proof. We note that A ≥ 0 and AH is dense in H, so that kerA = {0}. For ζ ∈ Φ,

we see that the operator (s− ζI)−1 = ((B − ζA)/A)−1 = A/(B − ζA) belongs to

B(H). Hence we have ker(B − ζA) ⊆ kerA (= {0}) and (B − ζA)H = H. This

means that there exists the inverse (B − ζA)−1 ∈ B(H).

If q(s, t) < δ and t
α
= D/C in S(H), then, it follows from (3.2) that

(1 + |ζ|) q(s, t) < ‖(B − ζA)−1‖−1 for any ζ ∈ Φ.

Since ‖(B − ζA) − (D − ζC)‖ ≤ (1 + |ζ|) q(s, t) for any ζ ∈ Φ by the proof of

Lemma 3.1, we have

‖(B − ζA)− (D − ζC)‖ < ‖(B − ζA)−1‖−1.

Hence, we see that D−ζC is invertible. Then, by the relations t−ζI
α
= (D−ζC)/C

and kerC ⊆ ker(D − ζC), we easily see kerC = {0}. This means that t − ζI has

an inverse and (t − ζI)−1 = C(D − ζC)−1 ∈ B(H). It follows from this equation

that ζ ∈ ρ(t), or ρ(t) ⊃ Φ and t − ζI is closed, that is, t is closed. The denseness

of dom(t)(= CH) follows from the conditions kerC = {0} and C ≥ 0. Therefore

t ∈ CD(H).

We want to obtain a radius δΦ as large as possible for among a compact set

Φ as in Lemma 3.2.

Hence, we deal with the compact set Φ = {i,−i} consisting of two elements.

Lemma 3.3. Let s ∈ Ssa(H) and s
α
= B/A, and let R = (A2 + B∗B)1/2 be the

attached positive operator for a quotient B/A as in Remark 2.4. Then, (3.2) for

Φ := {i,−i} is given by

δ = δΦ =
1

2
‖(B ± iA)−1‖−1 =

1

2
γ(R). (3.3)

Here γ(R) = inf{‖Ru‖ : u ∈ (kerR)⊥, ‖u‖ = 1}.
Proof. It easily follows from (3.2) that δΦ = ‖(B± iA)−1‖−1/2. Thus it is sufficient

to show the equation ‖(B ± iA)−1‖−1 = γ(R). Let ζ be i or −i. Then,

‖(B − ζA)−1‖2 = sup
u�=0

‖(B − ζA)−1u‖2
‖u‖2 = sup

v �=0

‖v‖2
‖(B − ζA)v‖2 . (3.4)



Acta Scientiarum Mathematicarum 82:3–4 (2016) c© Bolyai Institute, University of Szeged

Selfadjoint operators and symmetric operators 535

Note that (Av,Bv) is real for v ∈ H from the selfadjointness of B/A and ζ + ζ̄ = 0.

Hence we have

‖(B − ζA)v‖2 = ((B − ζA)v, (B − ζA)v)

= ‖Bv‖2 + |ζ|2‖Av‖2 − (ζ + ζ̄)(Av,Bv) = ‖Av‖2 + ‖Bv‖2. (3.5)

From (3.4) and (3.5), we have

‖(B ± iA)−1‖2 = sup
v �=0

‖v‖2
‖Av‖2 + ‖Bv‖2 = sup

v �=0

1

(‖Av‖/‖v‖)2 + (‖Bv‖/‖v‖)2

=
(
inf

‖v‖=1
‖Av‖2 + ‖Bv‖2)−1

=
(
inf

‖v‖=1
‖(A2 +B∗B)

1

2 v‖2)−1

=
(
inf

‖v‖=1
‖Rv‖)−2

.

Hence we have ‖(B ± iA)−1‖−1 = inf‖v‖=1 ‖Rv‖. Since B/A ∈ CD(H), R = (A2 +

B∗B)
1

2 has the inverse in B(H) by Lemma 2.3, so that (kerR)⊥ = H. This means

that

inf
‖v‖=1

‖Rv‖ = inf{‖Rv‖ : v ∈ (kerR)⊥, ‖v‖ = 1} = γ(R) (= ‖R−1‖−1)

which completes the proof.

Proof of Theorem 1.1. For s ∈ Ssa(H), clearly ρ(s) ⊃ {i,−i}. We set

δ = δΦ =
1

2
γ(R) (3.6)

for Φ = {i,−i}. Suppose that q(s, t) < δ and t ∈ Ssym(H). It follows from

Lemma 3.2 that t ∈ CD(H) and ρ(t) ⊃ Φ, so that t is closed symmetric and

the range of t± iI is H. Thus t is selfadjoint1.

4. Examples

From now on, we shall give some examples of a radius (3.6) of differential operators

in the complex Hilbert space L2(RN ) (N ≥ 1). Differential operators here are

meant in a weak sense. The notation ·̂ stands for the L2-Fourier transformation and

L2
ξ(R

N ) means the range space of ξ-variable by ·̂.
1According to Theorem 4.2 in [10], a (not necessarily densely defined or closed) symmetric operator

t satisfies that the range of t± iI is H, then it is automatically selfadjoint.
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Example 4.1. (A radius of 1
i

d
dx ) Let D1 := 1

i
d
dx be the selfadjoint operator with the

maximal domain dom(D1) in L2(R). Let α be the choice function that we choose

the standard Sobolev norm ‖ · ‖W 1,2(= ‖ · ‖H1) for dom(D1), and we suitably choose

a Hilbert norm for each semiclosed subspace except for dom(D1). Let D1
α
= B/A1

for A1 = (I+D2
1)

−1/2 by (2.1), and let R := (A2
1+B∗B)1/2 be the attached positive

operator for a quotient B/A1 in CD(H). Then B = D1A1 = D1(I +D2
1)

−1/2, and

since (kerR)⊥ = L2(R) by Lemma 2.3, we have that, for f ∈ L2(R),

γ(R)2= inf
‖f‖=1

‖Rf‖2 = inf
‖f‖=1

{‖A1f‖2 + ‖Bf‖2}

= inf
‖f‖=1

{‖(I +D2
1)

− 1

2 f‖2 + ‖D1(I +D2
1)

− 1

2 f‖2}

= inf
‖f̂‖=1

{‖(1 + ξ2)−
1

2 f̂‖2 + ‖ξ(1 + ξ2)−
1

2 f̂‖2}= inf
‖f̂‖=1

‖(1 + ξ2)
1

2 (1 + ξ2)−
1

2 f̂‖2

= 1.

Hence we have γ(R) = 1, so that δ = γ(R)/2 = 1/2 which is a radius of 1
i

d
dx under

the choice function α as above.

Example 4.2. (A radius of − d2

dx2 ) Let D2 := − d2

dx2 (= D2
1) be the selfadjoint operator

with the maximal domain dom(D2) in L2(R). Let α be the choice function that we

choose the standard Sobolev norm ‖ · ‖W 2,2 for dom(D2), and we suitably choose a

Hilbert norm for each semiclosed subspace except for dom(D2). Let D2
α
= B/A2 for

A2 = (I+D2
1 +D4

1)
− 1

2 by (2.1), and let R := (A2
2+B∗B)

1

2 be the attached positive

operator for a quotient B/A2 in CD(H). Then B = D2A2 = D2(I + D2
1 + D4

1)
− 1

2 ,

and since (kerR)⊥ = L2(R) by Lemma 2.3, we have that, for f ∈ L2(R),

γ(R)2 = inf
‖f‖=1

‖Rf‖2 = inf
‖f‖=1

{‖A2f‖2 + ‖Bf‖2}

= inf
‖f‖=1

{‖(I +D2
1 +D4

1)
−1/2f‖2 + ‖D2(I +D2

1 +D4
1)

−1/2f‖2}

= inf
‖f̂‖=1

{‖(1 + ξ2 + ξ4)−1/2f̂‖2 + ‖ξ2(1 + ξ2 + ξ4)−1/2f̂‖2}

= inf
‖f̂‖=1

‖(1 + ξ4)
1

2 (1 + ξ2 + ξ4)−1/2f̂‖2 = inf
‖f̂‖=1

‖Mf̂‖2

= γ(M)2, ((kerM)⊥ = L2
ξ(R)),

where M := (1 + ξ4)1/2(1 + ξ2 + ξ4)−1/2 is a bounded multiplication operator and

invertible in B(L2
ξ(R)). Hence, we have

γ(R) = γ(M) = ‖M−1‖−1 =
∥∥∥(1 + ξ2 + ξ4

1 + ξ4

)1/2∥∥∥−1

∞
=

∥∥∥1 + ξ2 + ξ4

1 + ξ4

∥∥∥−1/2

∞

= (3/2)−1/2 =
√
6/3,



Acta Scientiarum Mathematicarum 82:3–4 (2016) c© Bolyai Institute, University of Szeged

Selfadjoint operators and symmetric operators 537

so that

δ =
1

2
γ(R) =

√
6

6
(= 0.408 . . .),

which is a radius of − d2

dx2 under the choice function α as above.

Example 4.3. (A radius of − d2

dx2 ) Let D2 := − d2

dx2 be the same operator as in

Lemma 4.2. Let α be the choice function that we choose the Fourier type Sobolev

norm ‖·‖H2 for dom(D2), and we suitably choose a Hilbert norm for each semiclosed

subspace except for dom(D2). Let D2
α
= B/Ã2 for Ã2 = (I + D2)

−1 by (2.2), and

let R := (Ã2

2
+B∗B)

1

2 be the attached positive operator for a quotient B/Ã2 = D2

in CD(H). Then B = D2Ã2 = D2(I + D2)
−1, and since (kerR)⊥ = L2(R) by

Lemma 2.3, we have that, for f ∈ L2(R),

γ(R)2 = inf
‖f‖=1

‖Rf‖2 = inf
‖f‖=1

{‖Ã2f‖2 + ‖Bf‖2}

= inf
‖f‖=1

{‖(I +D2)
−1f‖2 + ‖D2(I +D2)

−1f‖2}

= inf
‖f̂‖=1

{‖(1 + ξ2)−1f̂‖2 + ‖ξ2(1 + ξ2)−1f̂‖2}

= inf
‖f̂‖=1

‖(1 + ξ4)
1

2 (1 + ξ2)−1f̂‖2 = inf
‖f̂‖=1

‖Mf̂‖2

= γ(M)2, ((kerM)⊥ = L2
ξ(R)),

where M := (1+ ξ4)
1

2 (1+ ξ2)−1 is a bounded multiplication operator and invertible

in B(L2
ξ(R)). Hence, by calculations

γ(R) = γ(M) = ‖M−1‖−1 =
∥∥∥( (1 + ξ2)2

1 + ξ4

)1/2∥∥∥−1

∞
=

∥∥∥ (1 + ξ2)2

1 + ξ4

∥∥∥−1/2

∞
.

Since ‖ (1+ξ2)2

1+ξ4 ‖∞ = 2, we have

δ =
1

2
γ(R) =

1

2
· 2−1/2 =

√
2

4
(= 0.353 . . .),

which is a radius of − d2

dx2 under the choice function α as above.

Example 4.4. (A radius of kΔ) Let kΔ (k ∈ R \ {0}) be the selfadjoint operator

with the maximal domain dom(Δ). Let α be the choice function that we choose the

Fourier type Sobolev norm ‖ · ‖H2 for dom(Δ), and we suitably choose a Hilbert

norm for each semiclosed subspace except for dom(Δ). Then we see that Δ
α
= B/Ã2

for Ã2 = (I − Δ)−1 by (2.2). We also have kΔ
α
= kB/Ã2, and let R := (Ã2

2
+
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k2B∗B)
1

2 be the attached positive operator for a quotient kB/Ã2 in CD(H). Then

B = Δ(I −Δ)−1, and since (kerR)⊥ = L2(RN ) by Lemma 2.3, we have that, for

f ∈ L2(RN ),

γ(R)2 = inf
‖f‖=1

‖Rf‖2 = inf
‖f‖=1

{‖Ã2f‖2 + ‖kBf‖2}

= inf
‖f‖=1

{‖(I −Δ)−1f‖2 + ‖kΔ(I −Δ)−1f‖2}

= inf
‖f̂‖=1

{‖(1 + |ξ|2)−1f̂‖2 + ‖k|ξ|2(1 + |ξ|2)−1f̂‖2}

= inf
‖f̂‖=1

‖(1 + k2|ξ|4) 1

2 (1 + |ξ|2)−1f̂‖2 = inf
‖f̂‖=1

‖Mf̂‖2

= γ(M)2, ((kerM)⊥ = L2
ξ(R

N )),

where M := (1 + k2|ξ|4) 1

2 (1 + |ξ|2)−1 is a bounded multiplication operator and

invertible in B(L2
ξ(R

N )). Hence,

γ(R) = γ(M) =
∥∥M−1

∥∥−1
=

∥∥∥( (1 + |ξ|2)2
1 + k2|ξ|4

)1

2

∥∥∥−1

∞
=

∥∥∥ (1 + |ξ|2)2
1 + k2|ξ|4

∥∥∥−1/2

∞
=

|k|√
1 + k2

.

Hence, we have

δ =
1

2
γ(R) =

|k|
2
√
1 + k2

,

which is a radius of kΔ under the choice function α as above. This does not depend

on the dimension N of RN . In paticular, δ =
√
2/4 is a radius of −Δ.

5. An application

In this section, we show the selfadjointness of the Schrödinger operator −Δ + V

in L2(RN ) with a Kato–Rellich potential V . Related topics such as Schrödinger

operators are found in [6] and [9].

A real-valued function V (x) on R
N is said to be a Kato–Rellich potential if it

is decomposed as V = V1 + V2 ∈ Lp(RN ) +L∞(RN ). Here, p = 2 if N = 1, 2, 3 and

p is some constant such that p > N
2 if N ≥ 4.

A notation V has two meanings. One is a function and the other is a mul-

tiplication operator with dom(V ) = {f ∈ L2(RN ) : V f ∈ L2(RN )}. For a Kato-

Rellich potential V , it is known that the relation dom(−Δ) ⊆ dom(V ) holds. Hence

dom(−Δ) = dom(−Δ+V ). The following theorem is well known as a breakthrough

in the perturbation theory for operators.

Theorem 5.1. (cf. [6], [9]) Let V be a Kato–Rellich potential on R
N (N ≥ 1). Then,

−Δ+ V is a selfadjoint operator with dom(−Δ) in L2(RN ).
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We shall prove the above theorem using topological arguments. The sketch

for the proof is the following. For V ∈ Lp(RN ) + L∞(RN ), we can find sequences

{Vi,n}∞n=1 for i = 1, 2 such that V = V1,n + V2,n ∈ Lp(RN ) + L∞(RN ) with

‖V1,n‖Lp → 0 as n → ∞. Since V2,n is a bounded selfadjoint operator for each n,

−Δ+V2,n is the selfadjoint operator on dom(−Δ). It follows from the boundedness

for V2,n that a radius of −Δ+V2,n can be taken by a radius
√
2/4 of −Δ (Lemma 5.3).

We can see that q(−Δ+V,−Δ+V2,n) → 0 as n → ∞. Thus, a semiclosed symmetric

operator −Δ+ V is very near to the selfadjoint operator −Δ+ V2,n with a radius√
2/4 for sufficiently large n. It follows from Theorem 1.1 that −Δ+V is selfadjoint.

Lemma 5.2. For s, t ∈ S(H) with dom(s) = dom(t), let s
α
= B/A and t

α
= D/A.

Then, q(s, t) = q(s+X, t+X) for any X ∈ B(H).

Proof.

q(s+X, t+X)=q(B/A+X/I,D/A+X/I)=q(B/A+XA/A,D/A+XA/A)

=q((B+XA)/A, (D+XA)/A)=‖(B+XA)− (D+XA)‖
=‖B−D‖ = q(s, t).

Lemma 5.3. Let s ∈ Ssa(H) and let δ > 0 be a radius of s. For any bounded

selfadjoint operator S ∈ B(H), the sum s+ S is selfadjoint and δ is also a radius

of s+ S. That is, q(s+ S, t) < δ and t ∈ Ssym(H) imply t ∈ Ssa(H).

Proof. Clearly s+S is selfadjoint. By Lemma 5.2, we see that q(s+S, t) = q(s+S+

(−S), t+ (−S)) = q(s, t− S) < δ. Since t− S is a semiclosed symmetric operator,

we see that t− S is selfadjoint. Therefore, t (= (t− S) + S) is selfadjoint.

Proof of Theorem 5.1. Let H = L2(RN ) and let α be the choice function that we

choose the Fourier type Sobolev norm ‖ · ‖H2 for dom(−Δ), and we suitably choose

a Hilbert norm for each semiclosed subspace except for dom(−Δ).

Let V be a Kato-Rellich potential such that V = V1+V2 ∈ Lp(RN )+L∞(RN ).

(If V ∈ L∞, then clearly −Δ+ V is selfadjoint. In the sequel, it may be assumed

that V is unbounded.) For sufficiently large n such that ‖V2‖∞ < n, we define Zn

by Zn := {x ∈ R
N : |V (x)| > n}. Note that V2 = 0 on Zn (a.e.). Let V1,n(x) :=

V1(x)χZn
(x) = V (x)χZn

(x), where χZn
(x) is the characteristic function (the value is

1 if x ∈ Zn, 0 otherwise), and let V2,n(x) := V (x)−V1,n(x). Then V = V1,n+V2,n ∈
Lp(RN ) + L∞(RN ) and ‖V1,n‖Lp → 0 as n → ∞ by the Lebesgue convergence

theorem.
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Now, let −Δ
α
= B/Ã2. De Branges space M(Ã2) is isometrically isomorphic to

the Sobolev space H2(RN ) (‖ ·‖
Ã2

= ‖ ·‖H2). And let V
α
= D/C be a multiplication

operator. Since dom(−Δ)(= Ã2H) ⊆ dom(V )(= CH), there uniquely exists an

operator Y ∈ B(H) such that Ã2 = CY (and kerY ∗ ⊇ kerC = {0}) by Douglas’s

majorization theorem([2]). Now we have

q(−Δ+ V,−Δ+ V2,n) = q(B/Ã2 +D/C,B/Ã2 + V2,n/I)

= q(B/Ã2 +DY/CY,B/Ã2 + V2,nÃ2/Ã2)

= q((B +DY )/Ã2, (B + V2,nÃ2)/Ã2)

= ‖DY − V2,nÃ2‖ = ‖V CY − V2,nÃ2‖ (D = V C)

= ‖V Ã2 − V2,nÃ2‖ = ‖(V − V2,n)Ã2‖ = ‖V1,nÃ2‖.

Moreover,

‖V1,nÃ2‖ = sup
‖g‖=1,g∈L2

‖V1,nÃ2g‖ = sup
‖Ã2g‖Ã2

=1

‖V1,nÃ2g‖

= sup
‖f‖

H2=1

‖V1,nf‖ (f := Ã2g).

The Sobolev embedding theorem says that H2(RN ) ↪→ L∞(RN ) holds if

N = 1, 2, 3 and H2(RN ) ↪→ Lr(RN ) holds for any 0 < r < ∞ if N = 4 and for any

0 < r < ( 12 − 2
N )−1 if N ≥ 5.

Now, let p be the positive constant in the definition of the Kato–Rellich

potential and let p′ be the positive constant such that 1
p + 1

p′
= 1

2 , where p′ = ∞ if

p = 2. If N = 1, 2, 3, then p = 2, so that p′ = ∞. And if N ≥ 4, then p > N
2 , so that

p′ = ( 12 − 1
p )

−1, or p′ < ( 12 − 2
N )−1. Hence, it follows from the Sobolev embedding

theorem that

H2(RN ) ↪→ Lp′

(RN ), where

{
p′ = ∞, (N = 1, 2, 3),

0 < p′ < ( 12 − 2
N )−1, (N ≥ 4).

(5.1)

Therefore, for V1,n ∈ Lp(RN ) and f ∈ H2(RN ), it follows from Hölder’s inequality

and (5.1) that

sup
‖f‖

H2=1

‖V1,nf‖ ≤ sup
‖f‖

H2=1

‖V1,n‖Lp‖f‖Lp′

≤ sup
‖f‖

H2=1

‖V1,n‖Lp · C‖f‖H2 for some constant C > 0

= C‖V1,n‖Lp → 0 (n → ∞).
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This means that q(−Δ+ V,−Δ+ V2,n) → 0 (n → ∞).

On the other hand, since V2,n is a bounded selfadjoint operator, it follows

from Lemma 5.3 that a radius of −Δ + V2,n can be taken by a radius δ =
√
2/4

(Example 4.4) of −Δ. Therefore, the selfadjoint operator −Δ+ V2,n is sufficiently

near to the semiclosed symmetric operator −Δ+ V so that their distance is within√
2/4 for large n. Hence we conclude that −Δ+ V is selfadjoint.

6. Concluding remarks

There is a situation that we handle operators on the constant domain as in the case

of the Kato–Rellich theorem. Now, we shall consider a radius in such a situation. A

positive constant δ is said to be a radius of a selfadjoint operator s on the constant

domain if it satisfies the following conditions:

q(s, t) < δ, t ∈ Ssym(H) and dom(s) = dom(t) imply t ∈ Ssa(H). (6.1)

For s, t ∈ S(H) with dom(s) = dom(t), we have representations of quotients s
α
=

B/A and t
α
= D/A. Then, since s − ζI

α
= (B − ζA)/A and t − ζI

α
= (D − ζA)/A,

we see that (3.1) corresponds to q(s− ζI, t− ζI) = q(s, t). Hence, when s ∈ CD(H)

and the resolvent ρ(s) of s is nonempty, we see that (3.2) corresponds to

δΦ = min
ζ∈Φ

‖(B − ζA)−1‖−1.

Therefore, when s ∈ Ssa(H), we see that (3.3) corresponds to

δΦ = ‖(B ± iA)−1‖−1 = γ(R),

where R = (A2 + B∗B)
1

2 . Now, we use the compact set Φc = {ci,−ci} (c > 0)

instead of Φ = {i,−i} . Then, we have that

δΦc
= ‖(B ± ciA)−1‖−1 = γ(Rc),

where Rc := (c2A2 + B∗B)1/2. A positive constant δΦc
is a radius of s on the

constant domain for each c > 0. However we want to get as large a radius as

possible. Hence, taking the supremum among c > 0, we have

δ = sup
c>0

δΦc
= sup

c>0
γ(Rc),

which is a radius of s on the constant domain.
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Example 6.1. Now we shall calculate a radius of kΔ (k ∈ R \ {0}) on the constant

domain. Let α be the choice function of Example 4.4. Then we see that Δ
α
= B/Ã2

for Ã2 = (I − Δ)−1 by (2.2) and kΔ
α
= kB/Ã2. Let Rc = (c2Ã2

2
+ k2B∗B)

1

2 .

Then, Rc is the attached positive operator for a quotient kB/cÃ2 = k
cΔ in CD(H).

Thus, it follows from Lemma 2.3 that (kerRc)
⊥ = L2(RN ). So we have that, for

f ∈ L2(RN ),

γ(Rc)
2 = inf

‖f‖=1
‖Rcf‖2 = inf

‖f‖=1
{‖cÃ2f‖2 + ‖kBf‖2} (B = Δ(I −Δ)−1)

= inf
‖f‖=1

{‖c(I −Δ)−1f‖2 + ‖kΔ(I −Δ)−1f‖2}

= inf
‖f̂‖=1

{‖c(1 + |ξ|2)−1f̂‖2 + ‖k|ξ|2(1 + |ξ|2)−1f̂‖2}

= inf
‖f̂‖=1

‖(c2 + k2|ξ|4)1/2(1 + |ξ|2)−1f̂‖2 = inf
‖f̂‖=1

‖Mcf̂‖2

= γ(Mc)
2, ((kerMc)

⊥ = L2
ξ(R

N )),

where Mc := (c2 + k2|ξ|4) 1

2 (1 + |ξ|2)−1 is a bounded multiplication operator which

is invertible in B(L2
ξ(R

N )). Hence,

γ(Rc) = γ(Mc) = ‖M−1
c ‖−1 =

∥∥∥( (1 + |ξ|2)2
c2 + k2|ξ|4

) 1

2

∥∥∥−1

∞
=

∥∥∥ (1 + |ξ|2)2
c2 + k2|ξ|4

∥∥∥−1/2

∞

= |k| ·
∥∥∥ (1 + |ξ|2)2
(c/k)2 + |ξ|4

∥∥∥−1/2

∞
= |k| ·

(1 + (c/k)2

(c/k)2

)−1/2

= |k| · c√
c2 + k2

.

Here, we used the fact that ‖g‖∞ = 1+�2

�2 for g(x) = (1+x2)2

�2+x4 (x ≥ 0, � is a constant).

Therefore we have

δ = sup
c>0

γ(Rc) = |k| · sup
c>0

c√
c2 + k2

= |k|,

which is a radius of kΔ on the constant domain. In paticular, a radius of −Δ on

the constant domain is 1.
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