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Abstract. We shall show in this paper a quite useful formula connecting the

essential minimum modulus and minimum modulus of any linear bounded

operator defined on a separable Hilbert space. Since this formula does not

depend on the structure of Hilbert space, this result enables us to define the

essential minimum modulus of linear operators in the more general context

of Banach spaces. The connection between our definition and that given by

Zemánek [Geometric interpretation of the essential minimum modulus, Opera-

tor Theory: Adv. Appl., 6, (1982), 225-227] is discussed. Moreover, the notion

of the essential surjectivity modulus and left (resp. right) essential minimum

modulus on Banach spaces are also defined and will be studied in this paper.

The asymptotic formula for the essential spectrum of a semi-Fredholm opera-

tor with index zero in terms of the left and right essential minimum moduli is

proved.

1. Terminology and introduction

Let B(X) be the algebra of bounded linear operators acting on an infinite-

dimensional complex Banach space X. We will denote by X′ the dual space of

X and the conjugate of T ∈ B(X) by T ′. Let K (X) be the set of all compact

operators and F (X) be the set of all finite rank operators in B(X). Denote by

C(X) = B(X)/K (X) the Calkin algebra and by π : B(X) −→ C(X) the canonical
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projection. Endowed with the essential norm ‖T‖e = ‖π(T )‖, C(X) is a Banach

algebra. The essential spectrum of T ∈ B(X) is defined by

σe(T ) = {λ ∈ C : π(T − λI) is not invertible in C(X)}.

The minimum modulus (also called injectivity modulus) of an operator T ∈ B(X)

is defined by

m(T ) = inf{‖T (x)‖ : x ∈ X and ‖x‖ = 1}, (1.1)

and the surjectivity modulus of T is defined by

q(T ) = sup{r ≥ 0 : rB(0, 1) ⊂ T (B(0, 1))}, (1.2)

where, as usual B(0, 1) denotes the closed unit ball of X.

We refer the reader to [4, 6, 7] for the properties of these quantities. It is well

known that for every T ∈ B(X),

m(T ) = q(T ′) (1.3)

and

m(T ′) = q(T ). (1.4)

A bounded operator T is called bounded below if m(T ) > 0. Recall that T is

bounded below if and only if it is injective and has closed range and T is onto if

and only if q(T ) > 0, see, for instance, [6, Theorem 9.4].

We define the left essential minimum modulus of T ∈ B(X) by

ne(T ) = sup{m(T +K) : K ∈ K (X)}, (1.5)

and the right essential minimum modulus of T by

pe(T ) = sup{q(T +K) : K ∈ K (X)}. (1.6)

We note that the existence of the supremum in (1.5) and (1.6) will be proved in

Section 3.

For an operator T ∈ B(X) we shall denote by α(T ) the dimension of the kernel

ker(T ), and by β(T ) the codimension of the range R(T ). We recall that an operator

T ∈ B(X) is called upper semi-Fredholm if α(T ) < +∞ and R(T ) is closed, while

T ∈ B(X) is called lower semi-Fredholm if β(T ) < +∞. Let Φ+(X) and Φ−(X)

denote the class of all upper semi-Fredholm operators and the class of all lower

semi-Fredholm operators, respectively. The class of all semi-Fredholm operators is

defined by Φ±(X) = Φ+(X) ∪ Φ−(X), while the class of all Fredholm operators is
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defined by Φ(X) = Φ+(X)∩Φ−(X). Recall that T is Fredholm if and only if π(T ) is

invertible in C(X). If T ∈ Φ±(X), the index of T is defined by ind(T ) = α(T )−β(T ).

It is well known that the index is a continuous function on the set of semi-Fredholm

operators.

The paper is organized as follows. In Section 2, we prove, for a separable

Hilbert space H, a useful formula for calculating the essential minimum modulus of

any linear bounded operator in terms of the minimum modulus. More precisely, we

prove in Theorem 2.1, that the essential minimum modulus me(T ) = sup{m(T+K) :

K ∈ K (H)}, for every T ∈ B(H). Furthermore, we show that this supremum is

always attained. In Section 3, we introduce the concepts of the essential minimum

modulus and the essential surjectivity modulus for any linear bounded operator

defined on a Banach space. We prove for these moduli some analogous properties

to the Hilbert space case. We also give stability perturbation results involving the

essential (resp. left essential, right essential) minimum modulus and the surjectivity

modulus in Banach spaces. In Section 4, we study the continuity of the function

Me(·), which denotes any one of the quantities me(·), qe(·) ne(·) and pe(·) given

respectively by relations (3.9), (3.10), (1.5) and (1.6). We also prove an asymptotic

formula for the essential spectrum in terms of Me(·):

dist(0, σe(T )) = sup
{
Me(T

k)1/k : k ∈ N\{0}
}
= lim

k→+∞
Me(T

k)1/k,

for every semi-Fredholm operator T with index zero. At the end of this paper, we

discuss the connection between our definitions of the essential minimum modulus

and the surjectivity modulus in Banach spaces and Zemánek’s definitions [11,12].

2. The essential minimum modulus of linear operators in

Hilbert space

Let H be a separable complex Hilbert space. For T ∈ B(H), we will denote by

T ∗ the adjoint of T and by |T | = (T ∗T )1/2 the square root of T ∗T . The essential

minimum modulus of an operator T ∈ B(H) is defined by (see [2])

me(T ) = inf{λ : λ ∈ σe(|T |)}. (2.1)

The following basic properties of me(T ) were proved for Hilbert spaces in [2, Theo-

rem 2]:

me(T ) > 0 ⇐⇒ T ∈ Φ+(H), (2.2)

me(T ) > 0 and me(T
∗) > 0 =⇒ me(T ) = me(T

∗). (2.3)
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We note that in Hilbert space the minimum modulus of T ∈ B(H) is also

equal to (see [2, Theorem 1])

m(T ) = inf{λ : λ ∈ σ(|T |)}, (2.4)

where, for each T ∈ B(H), σ(T ) stands for the spectrum of the operator T .

Here there is a quite useful formula connecting the essential minimum modulus

to the minimum modulus.

Theorem 2.1. Let T ∈ B(H).

(i) If α(T ) < +∞ and α(T ) ≤ α(T ∗), then

me(T ) = sup{m(T +K) : K ∈ K (H)}; (2.5)

= sup{m(T +K) : K ∈ F (H)}. (2.6)

(ii) If α(T ∗) < +∞ and α(T ∗) ≤ α(T ), then

me(T
∗) = sup{q(T +K) : K ∈ K (H)}; (2.7)

= sup{q(T +K) : K ∈ F (H)}. (2.8)

Proof. (i) First, from (2.1) and (2.4), it follows that

me(T ) = inf σe(|T |) ≥ inf σ(|T |) = m(T ).

Now by [2, Theorem 2], we see that me(T ) = me(T +K), for every K ∈ K (H); this

implies that

me(T ) ≥ sup{m(T +K) : K ∈ K (H)} ≥ sup{m(T +K) : K ∈ F (H)}. (a)

For the reverse inequalities, if me(T ) = 0, there is nothing to prove. Thus, one may

assume that me(T ) > 0. Let T = V |T | with an isometry operator V and let E(·) be

the spectral measure for |T |. For ε > 0, define

Kε = me(T )E([0,me(T )− ε[)− V |T |E(]0,me(T )− ε[).

In view of [2, Theorem 2] and [3, Proposition XI.4.6], we see that

dimE([0,me(T )− ε[)H < +∞.

From this, we infer that Kε ∈ F (H). On the other hand, since

T +Kε = me(T )E([0,me(T )− ε[) + V |T |E([me(T )− ε,+∞[),
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it follows that

m(T +Kε) ≥ me(T )− ε.

Therefore,

sup
K∈K (H)

m(T +K) ≥ sup
K∈F(H)

m(T +K) ≥ sup
ε>0

m(T +Kε) ≥ me(T ). (b)

Thus (2.5) and (2.6) follows from (a) and (b).

(ii) Equalities (2.7) and (2.8) can be derived analogously, or by passing to

adjoint operators in (2.5) and (2.6), respectively. This completes the proof of Theo-

rem 2.1.

As an immediate consequence of the previous theorem and the relation (2.3),

we have the following result:

Corollary 2.2. Let T ∈ B(H). Then

me(T ) =

{
max{ne(T ), pe(T )}, if α(T ) < +∞,

0, if α(T ) = +∞.

Now we show that the suprema in (2.5) and (2.7) are always attained.

Theorem 2.3. Let T ∈ B(H).

(i) If α(T ) ≤ α(T ∗), then there exists K ∈ K (H) such that me(T ) = m(T +K).

(ii) If α(T ∗) ≤ α(T ), then there exists K ∈ K (H) such that me(T
∗) = q(T +K).

Proof. (i) Ifme(T ) = 0, Theorem 2.1 shows that m(T+K) = 0 for every K ∈ K (H).

Thus we can choose K = 0. Now assume that me(T ) > 0, then T ∈ Φ+(H). By

Theorem 2.1, we deduce that there exists K0 ∈ K (H) such that m(T +K0) > 0.

Put L = T +K0, then me(L) = me(T ) > 0. Let EL(·) be the spectral mesure for |L|.

Define K1 = EL([0,me(T )[)(−|L| + me(T )I), then K1 ∈ K (H). Indeed, let ε > 0

be given, and define

Kε = (−|L|+me(T )I) EL([0,me(T )− ε[).

From [2, Theorem 2] and [3, Proposition XI.4.6], we see that Kε ∈ K (H). Further-

more, it is clear that ‖K1−Kε‖ ≤ ε. From this, it follows that K1 ∈ K (H) because

K (H) is a closed ideal in B(H).

On the other hand, from

|L|+K1 = me(T )EL([0,me(T )[) + |L|EL([me(T ),+∞[),
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we infer that

m(|L|+K1) = me(T ).

Since ind(L) = ind(T ) ≤ 0, from [5, Solution 135], it follows that there exists an

isometry operator W such that L = W |L|. Put K = K0 +WK1, then K ∈ K (H).

From this, we obtain

m(T +K) = m(L+WK1) = m(|L|+K1) = me(T ).

This proves the first assertion.

(ii) By making use of the symmetry between T and T ∗ and using (i) we have

the result.

The proof is complete.

3. The essential minimum modulus of linear operators in

Banach spaces

In order to define the concept of essential minimum modulus of every operator on

Banach spaces we need to prove the following lemma.

Lemma 3.1. Let T ∈ B(X). Then

(i) m(T +K) ≤ ‖T‖ for all K ∈ K (X);

(ii) q(T +K) ≤ ‖T‖ for all K ∈ K (X).

Proof. (i) Assume, to the contrary, that there is a compact operator K0 ∈ K (X)

such that ‖T‖ < m(T +K0). Since ‖T +K0 −K0‖ < m(T +K0), from [4, Lemma

2.3], we deduce that K0 is bounded below, which is a contradiction.

(ii) follows from (1.4) and assertion (i). This completes the proof.

The next two corollaries follow easily from the preceding lemma.

Corollary 3.2. Let T ∈ B(X). Then

(i) m(T ) ≤ ‖T‖e ≤ ‖T‖;

(ii) q(T ) ≤ ‖T‖e ≤ ‖T‖.

Corollary 3.3. Let T ∈ B(X). Then

(i) sup{m(T +K) : K ∈ K (X)} ≤ ‖T‖e ≤ ‖T‖;

(ii) sup{q(T +K) : K ∈ K (X)} ≤ ‖T‖e ≤ ‖T‖.



Acta Scientiarum Mathematicarum 82:1–2 (2016) c© Bolyai Institute, University of Szeged

Essential minimum modulus in Banach spaces 153

Note that Corollary 3.3 ensures the finiteness of ne(T ) and pe(T ) for every

T ∈ B(X).

We define also

ñe(T
′) = sup{m(T ′ +K ′) : K ∈ K (X)}, (3.1)

p̃e(T
′) = sup{q(T ′ +K ′) : K ∈ K (X)}. (3.2)

From (1.3) and (1.4), we can only deduce that

ne(T ) = p̃e(T
′) ≤ pe(T

′), for all T ∈ B(X), (3.3)

pe(T ) = ñe(T
′) ≤ ne(T

′), for all T ∈ B(X). (3.4)

If, in addition, X is reflexive, then

ne(T ) = pe(T
′), for all T ∈ B(X), (3.5)

ne(T
′) = pe(T ), for all T ∈ B(X). (3.6)

Let us notice that, since m(·) and q(·) are super-multiplicative, it is easy to see that

ne(·) and pe(·) are also super-multiplicative, that is

ne(TL) ≥ ne(T )ne(L), for all T, L ∈ B(X), (3.7)

pe(TL) ≥ pe(T )pe(L), for all T, L ∈ B(X). (3.8)

We have the following proposition, which will be needed in the sequel.

Proposition 3.4. Let T ∈ B(X).

(i) If α(T ) ≤ α(T ′) then pe(T ) ≤ ne(T ).

(ii) If α(T ′) ≤ α(T ) then ne(T ) ≤ pe(T ).

Proof. (i) We will argue by contradiction, and so assume that ne(T ) < pe(T ). Then

there is K0 ∈ K (X), such that

m(T +K) < q(T +K0), for all K ∈ K (X). (a)

From this, we infer that T +K0 is surjective. In particular, T +K0 is semi-Fredholm

with non-negative index. Now, since K0 ∈ K (X), it follows that T is also semi-

Fredholm with non-negative index. Hence, in view of hypothesis, we have ind(T ) = 0.

Therefore T +K0 ∈ Φ±(X) with ind(T +K0) = 0. Moreover, since α(T ′ +K ′
0) = 0,

it follows that T + K0 is an invertible operator. Applying [6, Theorem 9.7], we

obtain

q(T +K0) =
1

‖(T +K0)−1‖
= m(T +K0).

But this is in contradiction with (a).
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(ii) Note that in general, we cannot deduce this assertion by passing to con-

jugate because inequalities (3.3) and (3.4) are not always equalities. But we can

prove it in the same way as (i). This completes the proof.

Since relations (2.5) and (2.7) do not depend on the structure of Hilbert space,

Corollary 2.2 suggests the following definition of the essential minimum modulus

and the essential surjectivity modulus for any Banach space operator.

The essential minimum modulus of an operator T ∈ B(X) is defined by

me(T ) =

{
max{ne(T ), pe(T )}, if α(T ) < +∞

0, if α(T ) = +∞,
(3.9)

and the essential surjectivity modulus of T is defined by

qe(T ) =

{
max{ne(T ), pe(T )}, if α(T ′) < +∞

0, if α(T ′) = +∞.
(3.10)

Note that in [11,12] J. Zemánek has given another definitions of the essential

minimum modulus and the essential surjectivity modulus in Banach spaces without

using the notions of the minimum modulus and the surjectivity modulus. He has

just used the upper and lower semi-Fredholm classes. But our definitions are more

natural because these are based on the minimum and the surjectivity moduli.

Clearly, from Corollary 3.3, we have

me(T ) ≤ ‖T‖e ≤ ‖T‖, for all T ∈ B(X), (3.11)

qe(T ) ≤ me(T
′) ≤ ‖T ′‖e ≤ ‖T‖e ≤ ‖T‖, for all T ∈ B(X). (3.12)

If, in addition, X is reflexive, then

qe(T ) = me(T
′), for all T ∈ B(X). (3.13)

Let T ∈ B(X) and K ∈ K (X). Assume that α(T ) < +∞, then me(T ) =

max{ne(T ), pe(T )}, and so, if α(T +K) < +∞, then me(T ) = me(T +K). Now, if

α(T +K) = +∞, then me(T +K) = 0 and R(T ) is not closed. From this, it is clear

that ne(T ) = pe(T ) = 0, and hence me(T ) = 0.

Assume now that α(T ) = +∞, then me(T ) = 0. If α(T + K) < +∞, then

necessarily R(T +K) cannot be closed, and hence me(T +K) = 0. Consequently,

me(T ) = me(T +K), for all T ∈ B(X), for all K ∈ K (X). (3.14)
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Exactly in the same way as above, we can prove that

qe(T ) = qe(T +K), for all T ∈ B(X), for all K ∈ K (X). (3.15)

We introduce the following notations for two special subsets of semi-Fredholm

operators:

• Φ−
+(X) = {T ∈ Φ+(X) : ind(T ) ≤ 0},

• Φ+
−(X) = {T ∈ Φ−(X) : ind(T ) ≥ 0}.

As it is known in Hilbert space, an upper (resp. lower) semi-Fredholm operator

can be characterized by the essential minimum (resp. surjectivity) modulus. Our

definitions enable us to characterize upper and lower semi-Fredholm operators even

in a Banach space and to retrieve the case of Hilbert space, which is the subject

of Theorem 3.5. This theorem also gives a characterization of a lower (resp. upper)

semi-Fredholm operator with non-negative (resp. non-positive) index in terms of

the right (resp. left) essential minimum modulus.

Theorem 3.5. Let T ∈ B(X).

(i) ne(T ) > 0 ⇐⇒ T ∈ Φ−
+(X).

(ii) pe(T ) > 0 ⇐⇒ T ∈ Φ+
−(X).

(iii) me(T ) > 0 ⇐⇒ T ∈ Φ+(X).

(iv) qe(T ) > 0 ⇐⇒ T ∈ Φ−(X).

Proof. (i) Let T ∈ B(X) and assume that ne(T ) > 0. Then there exists K ∈ K (X)

such that m(T + K) > 0, which implies that T + K ∈ Φ+(X) and ind(T ) =

ind(T +K) ≤ 0. This implies that T ∈ Φ−
+(X).

For the converse, by [8, Theorem 1.2], we see that there exists a compact

operator K ∈ K (X) such that T +K is bounded below, and hence m(T +K) > 0.

Finally, from (3.14), it follows that ne(T ) > 0.

Assertion (ii) can be proved exactly in the same way as (i).

(iii) If me(T ) = ne(T ) > 0, the result follows from (i), and so we may assume

that me(T ) = pe(T ) > 0. So, it follows from (ii) that T ∈ Φ−(X) and ind(T ) ≥ 0.

Since α(T ) < +∞, T has necessarily finite index, and consequently T ∈ Φ+(X).

For the converse, let T ∈ Φ+(X) so α(T ) < +∞. If ind(T ) ≤ 0, then T ∈ Φ−
+(X)

and from (i), we deduce that me(T ) ≥ ne(T ) > 0. Now if ind(T ) > 0, first we remark

that ind(T ) cannot be +∞. Therefore, T is Fredholm, and consequently T ∈ Φ+
−(X).

Finally, from (ii) it follows that me(T ) ≥ pe(T ) > 0.

Assertion (iv) can be proved exactly in the same way as (iii). This completes

the proof of Theorem 3.5.
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Remark. Other characterizations of upper semi-Fredholm and lower semi-Fredholm

operators can be found in [13, Theorem 4.1].

It is well known that an operator T belongs to Φ+(X) if and only if its conjugate

T ′ belongs to Φ−(X
′). Also, an operator T belongs to Φ−(X) if and only if its

conjugate T ′ belongs to Φ+(X
′). Now, by using Proposition 3.4, Theorem 3.5 and

formulas (3.3)–(3.6), one can prove the following result.

Corollary 3.6. Let T ∈ B(X). Then

(i) T ∈ Φ−(X) ⇐⇒ me(T
′) > 0.

(ii) T ∈ Φ(X) ⇐⇒ me(T ) > 0 and qe(T ) > 0. In this case, me(T ) = qe(T ).

(iii) T ∈ Φ(X) ⇐⇒ me(T ) > 0 and me(T
′) > 0. In this case, if in addition X is

reflexive then me(T ) = me(T
′).

(iv) If α(T ) < +∞ and α(T ′) < +∞, then me(T ) > 0 ⇐⇒ me(T
′) > 0, whence

T ∈ Φ+(X) ⇐⇒ T ∈ Φ(X) ⇐⇒ T ∈ Φ−(X).

(v) If α(T ′) < +∞ then me(T
′) ≥ qe(T ) ≥ me(T ).

Now we prove the following result.

Theorem 3.7. Let T, L ∈ B(X). If ‖T − L‖ < me(T ) then

(i) me(L) > 0;

(ii) L ∈ Φ+(X);

(iii) ind(T ) = ind(L).

Analogous assertions hold when replacing me(·) with ne(·) (resp. pe(·), qe(·)) and

Φ+(X) with Φ−
+(X) (resp. Φ

+
−(X), Φ−(X)).

Proof. With our hypothesis we necessarily have me(T ) > 0. We first assume that

me(T ) = ne(T ) > 0. From the definition of ne(T ), we can find K ∈ K (X) such that

‖T −L‖ < m(T +K). Since ‖T +K− (L+K)‖ = ‖T −L‖, from [4, Lemma 2.3], it

follows that L+K is bounded below. Therefore me(L) ≥ m(L+K) > 0. Moreover,

from Theorem 3.5, it follows that L ∈ Φ+(X). By the continuity of the index on

Φ+(X), we deduce that ind(T ) = ind(L) ≤ 0.

Suppose now that me(T ) = pe(T ), by taking (1.4) into account we deduce, as

above, that there is K ∈ K (X) such that L′+K ′ is bounded below. In particular L

is semi-Fredholm, and the continuity of the index implies that ind(T ) = ind(L) ≥ 0.

Therefore α(L′) < +∞ and hence L ∈ Φ−(X). Finally, from Theorem 3.5, we

obtain pe(L) > 0. A similar proof follows for the other functions. This proves the

theorem.

The following corollary is an immediate consequence of Theorem 3.7.
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Corollary 3.8. Let T ∈ B(X).

(i) ne(T ) ≤ sup{r > 0 : T − S ∈ Φ−
+(X), for all S ∈ B(X), ‖S‖ < r}.

(ii) pe(T ) ≤ sup{r > 0 : T − S ∈ Φ+
−(X), for all S ∈ B(X), ‖S‖ < r}.

(iii) me(T ) ≤ sup{r > 0 : T − S ∈ Φ+(X), for all S ∈ B(X), ‖S‖ < r}.

(iv) qe(T ) ≤ sup{r > 0 : T − S ∈ Φ−(X), for all S ∈ B(X), ‖S‖ < r}.

Corollary 3.9. Let T, L ∈ B(X) be such that ‖T − L‖e < me(T ). Then

(i) me(L) > 0;

(ii) L ∈ Φ+(X);

(iii) ind(T ) = ind(L).

Analogous assertions hold when replacing me(·) with ne(·) (resp. pe(·), qe(·)) and

Φ+(X) with Φ−
+(X) (resp. Φ

+
−(X), Φ−(X)).

Proof. Let K ∈ K (X) be such that ‖T − L+K‖ < me(T ). Clearly, the corollary

follows from equality (3.14) and Theorem 3.7.

As consequence of Corollary 3.9, we have the following result.

Corollary 3.10. Let T ∈ B(X).

(i) ne(T ) ≤ sup{r > 0 : T − S ∈ Φ−
+(X), for all S ∈ B(X), ‖S‖e < r}.

(ii) pe(T ) ≤ sup{r > 0 : T − S ∈ Φ+
−(X), for all S ∈ B(X), ‖S‖e < r}.

(iii) me(T ) ≤ sup{r > 0 : T − S ∈ Φ+(X), for all S ∈ B(X), ‖S‖e < r}.

(iv) qe(T ) ≤ sup{r > 0 : T − S ∈ Φ−(X), for all S ∈ B(X), ‖S‖e < r}.

For T ∈ B(X), we denote by Be(T, r) = {S ∈ B(X) : ‖T − S‖e < r}.

Corollary 3.11. Let T, L ∈ B(X). If ‖T − L‖e < me(T ) +me(L) then

(i) T, L ∈ Φ+(X),

(ii) ind(T ) = ind(L).

Analogous assertions hold when replacing me(·) with ne(·) (resp. pe(·), qe(·)) and

Φ+(X) with Φ−
+(X) (resp. Φ

+
−(X), Φ−(X)).

Proof. If we assume that me(T ) = 0, then me(L) > 0. So it follows from Corollary

3.9, that me(T ) > 0, which is a contradiction. Therefore me(T ) > 0 and me(L) > 0

hold, and consequently T, L ∈ Φ+(X) by Theorem 3.5. Finally, if S ∈ Be(T, me(T ))∩

Be(L, me(L)), then from Corollary 3.9, we have ind(T ) = ind(S) = ind(L).

Remark. Analogous result of Corollary 3.11 can be found in [12, Theorem 4], for

the essential minimum modulus given by Zemánek.

From the last corollary we can further deduce the following.
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Corollary 3.12. Let T, L ∈ B(X). If ‖T − L‖ < me(T ) +me(L), then

(i) T, L ∈ Φ+(X),

(ii) ind(T ) = ind(L).

Analogous assertions hold when replacing me(·) with ne(·) (resp. pe(·), qe(·)) and

Φ+(X) with Φ−
+(X) (resp. Φ

+
−(X), Φ−(X)).

As an immediate consequence of Corollary 3.11 we obtain

Corollary 3.13. Let T, L ∈ Φ±(X). If ind(T ) �= ind(L) then

‖T − L‖e ≥ me(T ) +me(L).

Analogous inequality holds for the function qe(·).

Corollary 3.14. Let T, L ∈ Φ±(X). If ind(T ) �= ind(L) then

‖T − L‖e ≥ max{me(T ), qe(T )}+max{me(L), qe(L)}.

Proof. We will distinguish four cases.

Case 1. If max{me(T ), qe(T )} = me(T ) > 0 and max{me(L), qe(L)} =

me(L) > 0, the result follows immediately from Corollary 3.13.

Case 2. If max{me(T ), qe(T )} = qe(T ) > 0 and max{me(L), qe(L)} = qe(L) >

0, the result again follows from Corollary 3.13.

Case 3. If max{me(T ), qe(T )} = me(T ) > 0 and max{me(L), qe(L)} = qe(L) >

0, assume that ‖T − L‖e < me(T ) + qe(L), then Be(T, me(T )) ∩ Be(L, qe(L)) �= ∅.

Let S ∈ Be(T, me(T ))∩Be(L, qe(L)), from Corollary 3.9, we deduce that ind(T ) =

ind(S) = ind(L) and we get the contradiction, since ind(T ) �= ind(L).

Case 4. If max{me(T ), qe(T )} = qe(T ) > 0 and max{me(L), qe(L)} = me(L) >

0; this follows exactly in the same way as the previous case.

As a consequence, we have the following result.

Corollary 3.15. Let T, L ∈ B(X) be such that T is bounded below, L is onto and

ind(T ) �= ind(L). Then

‖T − L‖e ≥ me(T ) + qe(L).

Now define the following sets:

• S(X) = {T ∈ B(X) : ‖T (x)‖ = ‖x‖, for all x ∈ X}, the set of all isometries;

• U(X) = {T ∈ S(X) : T is bijective}, the set of all bijective isometries.

It is clear that for all S ∈ S(X),

m(S) = me(S) = ‖S‖e = ‖S‖ = 1. (3.16)

As a consequence of Corollary 3.11, we obtain the following result.
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Corollary 3.16. Let T, S ∈ S(X). If ‖T − S‖e < 2 then α(T ′) = α(S′) < +∞ or

α(T ′) = α(S′) = +∞.

Corollary 3.17. Let T, S ∈ B(X). If one of the conditions

(i) α(T ′) < α(T ) and S ∈ S(X), and

(ii) α(T ) < α(T ′) or α(T ′) < α(T ) and S ∈ U(X)

is satisfied, then

‖T − S‖e ≥ 1 + max{me(T ), qe(T )}.

Proof. Note that if me(T ) = qe(T ) = 0, the result follows from Corollary 3.11.

Now assume that max{me(T ), qe(T )} > 0, then from Theorem 3.5, we deduce

that T ∈ Φ±(X). Therefore by Corollary 3.14, we must have ‖T − S‖e ≥ 1 +

max{me(T ), qe(T )}.

4. Continuity of the essential minimum modulus and an

asymptotic formula

Let us now present some useful lemmas to be used in the sequel.

Lemma 4.1. Let T, L ∈ B(X). Then

|ne(T )− ne(L)| ≤ ‖T − L‖e, (4.1)

|pe(T )− pe(L)| ≤ ‖T − L‖e. (4.2)

Proof. First, by [4, Lemma 2.2], we obtain

m(T +K1)−m(L+K2) ≤ ‖T +K1 − L−K2‖, for all K1, K2 ∈ K (X).

From this, we infer that

m(T +K1)− ne(L) ≤ ‖T +K1 − L−K2‖, for all K1, K2 ∈ K (X).

Now, taking the infimum of the right-hand side over all K2 ∈ K (X), we get

m(T +K1)− ne(L) ≤ ‖T − L‖e, for all K1 ∈ K (X),

and by taking the supremum of the left-hand side over all K1 ∈ K (X), we obtain

ne(T )− ne(L) ≤ ‖T − L‖e. (a)

By interchanging T and L in (a), we deduce ne(L)− ne(T ) ≤ ‖T − L‖e. Therefore

|ne(T )− ne(L)| ≤ ‖T − L‖e.

This proves (4.1). Inequality (4.2) can be proved exactly in the same way as (4.1).

This completes the proof.



Acta Scientiarum Mathematicarum 82:1–2 (2016) c© Bolyai Institute, University of Szeged

160 H. Skhiri

As a consequence of Proposition 3.4 and Lemma 4.1, we have the following

result.

Lemma 4.2. Let T, L ∈ B(X). If one of the following conditions

(i) α(T ) ≤ α(T ′) and α(L) ≤ α(L′),

(ii) α(T ′) ≤ α(T ) and α(L′) ≤ α(L)

is satisfied, then

|me(T )−me(L)| ≤ ‖T − L‖e, (4.3)

|qe(T )− qe(L)| ≤ ‖T − L‖e. (4.4)

By [12, Proposition 1], we know that the essential minimum modulus and the

essential surjectivity modulus for any Banach space operator given by Zemánek are

both continuous functions. The following theorem shows that the same is true for

the functions me(·) and qe(·).

Theorem 4.3. Let T, L ∈ B(X).

(i) If ‖T − L‖e < me(T ) then |me(T )−me(L)| ≤ ‖T − L‖e.

(ii) If ‖T − L‖e < qe(T ) then |qe(T )− qe(L)| ≤ ‖T − L‖e.

Proof. (i) From Corollary 3.9, we know that me(L) > 0 and ind(T ) = ind(L). Thus,

by Lemma 4.2, |me(T )−me(L)| ≤ ‖T − L‖e.

(ii) can be proved exactly in the same way as (i).

We prove now the following proposition.

Proposition 4.4. Let T ∈ Φ±(X) be such that ind(T ) = 0 and let L ∈ B(X) with

α(L) ≤ α(L′) or α(L) = +∞. Then

me(TL) ≤ ‖T‖e me(L).

Analogous inequality holds for the function ne(·).

Proof. Note that the inequality is clear if α(L) = +∞. Assume that α(L) < +∞.

Clearly, if me(TL) = 0, there is nothing to prove, so we can assume that me(TL) > 0.

In view of Theorem 3.5, we see that TL ∈ Φ+(X). Now from [6, Theorem 16.6], it

follows that L ∈ Φ+(X). Consequently,

ind(TL) = ind(T ) + ind(L) = ind(L) ≤ 0

which implies that α(TL) ≤ α(L′T ′). Thus, by Proposition 3.4, me(TL) = ne(TL).
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First we prove this result when T is invertible. Let ε > 0 and K1 ∈ K (X) be

such that ‖T +K1‖ < ‖T‖e + ε. By [8, Theorem 1.2], it is easy to see that we can

find K2 ∈ K (X) such that T +K2 is invertible and ‖T +K2‖ < ‖T‖e + ε. Since

m
(
(T +K2)(L+K)

)
≤ ‖T +K2‖m(L+K), for all K ∈ K (X),

it follows that

m
(
(T +K2)(L+K)

)
≤ ‖T +K2‖me(L), for all K ∈ K (X). (a)

On the other hand, we have

(T +K2)(L+K) = TL+K2L+ (T +K2)K (b)

and

K (X) = {K2L+ (T +K2)K : K ∈ K (X)}. (c)

Indeed, let S ∈ K (X) and put K0 = (T + K2)
−1(S − K2L). It is clear that

K0 ∈ K (X) and S = K2L+ (T +K2)K0. The reverse inclusion is trivial.

Now, by combining (a), (b) and (c), we get

me(TL) = ne(TL) ≤ ‖T +K2‖me(L).

From this, we infer that

me(TL) ≤ (‖T‖e + ε)me(L).

Since ε is arbitrary, we deduce that me(TL) ≤ ‖T‖e me(L).

Assume now that T ∈ Φ±(X) and ind(T ) = 0. From [8, Theorem 1.2], we

know that there exists K ∈ K (X) such that T +K is invertible. Since me(TL) =

me((T +K)L), from the previous step, it follows that

me(TL) = me((T +K)L) ≤ ‖T +K‖e me(L) = ‖T‖e me(L).

This completes the proof.

Using the facts, that for T, L ∈ B(X),

q(LT ) ≤ q(L) ‖T‖ and LT ∈ Φ−(X) =⇒ L ∈ Φ−(X),

the following result can be proved in the same way as the previous proposition.
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Proposition 4.5. Let T ∈ Φ±(X) be such that ind(T ) = 0 and let L ∈ B(X) with

α(L′) ≤ α(L) or α(L′) = +∞. Then

qe(LT ) ≤ qe(L) ‖T‖e.

Analogous inequality holds for the function pe(·).

In the following we prove an asymptotic formula for the essential spectrum in

terms of the essential minimum modulus and the essential surjectivity modulus in

Banach spaces for every semi-Fredholm operator with index zero. In [12, Theorem

1] there is a similar asymptotic formula for an arbitrary operator T ∈ B(X) using

Zemánek’s definitions.

Theorem 4.6. Let T ∈ Φ±(X) be such that ind(T ) = 0. Then

dist(0, σe(T )) = sup
{
me(T

k)1/k : k ∈ N\{0}
}
= lim

k→+∞
me(T

k)1/k.

Analogous equalities hold when replacing me(·) with ne(·) (resp. pe(·), qe(·)).

Proof. Let L ∈ B(X) be the inverse of T modulo the set of compact operators. By

Theorem 3.7 and Proposition 4.4, we deduce that

1

‖L‖e
≤ me(T ) ≤ dist(0, σe(T )). (a)

On the other hand, let ρe(L) = sup{|λ| ∈ C : λ ∈ σe(L)}. We have

1

ρe(L)
=

1

inf
1≤k

‖Lk‖
1/k
e

= sup
1≤k

1

‖Lk‖
1/k
e

≤ sup
1≤k

me(T
k)1/k. (b)

Using the fact that dist(0, σe(T )) =
1

ρe(L) (see [1, Theorem 3.3.5]) together with

ρe((L)
k) = ρe(L)

k, for all k ≥ 1 and by taking account of (a), we get

sup
1≤k

me(T
k)1/k ≤ sup

1≤k

1

ρe(Lk)1/k
=

1

ρe(L)
. (c)

By combining (b) and (c), we get dist(0, σe(T )) = sup
{
me(T

k)1/k : k ∈ N\{0}
}

and

lim
k→+∞

me(T
k)1/k ≤

1

ρe(L)
. (d)

Furthermore, it is clear that

1

ρe(L)
= lim

k→+∞

1

‖Lk‖
1/k
e

≤ lim
k→+∞

me(T
k)1/k. (e)

Therefore, from (d) and (e), we conclude dist(0, σe(T )) = limk→+∞ me(T
k)1/k. A

similar proof follows for the other functions. This completes the proof.
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We finish this paper with some open questions.

Question 4.7. In [11], Zemánek for Hilbert space (see also [9, Theorem 3] for the

separable case) proved that

me(T ) = dist(T, B(H)\Φ+(H)), for all T ∈ B(H); (4.5)

qe(T ) = dist(T, B(H)\Φ−(H)), for all T ∈ B(H). (4.6)

We note that from Corollary 3.8, it follows that

me(T ) ≤ dist(T, B(X)\Φ+(X)) and qe(T ) ≤ dist(T, B(H)\Φ−(H)).

Can we prove (4.5) and (4.6) for Banach spaces?

If the answer to Question 4.7 is positive, then our definitions of the essential

minimum modulus and the surjectivity modulus are equivalent to Zemánek’s defi-

nitions [11,12], so in Banach spaces, we have a new characterization of the essential

minimum modulus and the surjectivity modulus in terms of the minimum and the

surjectivity moduli.

Question 4.8. In Hilbert space, we know from [10, Theorem 2.2, Corollary 2.3],

that

T ∈ S(H) + K (H) ⇐⇒ 1 = me(T ) = ‖T‖e and ind(T ) ≤ 0. (4.7)

From relation (3.16) it is clear that if T ∈ S(X) + K (X), then me(T ) = ‖T‖e = 1

and ind(T ) ≤ 0. It is a natural question whether (4.7) can be extended to the case

of Banach spaces.

Question 4.9. Can we prove Proposition 4.4 and Proposition 4.5, for all T ∈ B(X)?
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