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On the convexity of a hitting distribution for

discrete random walks
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Abstract. We examine the convexity of the hitting distribution of the real axis
for symmetric random walks on Z

2. We prove that for a random walk starting
at (0, h), the hitting distribution is convex on [h− 2,∞) ∩ Z if h ≥ 2. We also
show an analogous fact for higher-dimensional discrete random walks. This
paper extends the results of a recent paper [NT].

1. Introduction

Let Z be the set of the integers and Z
2 the integer lattice on the plane. We will

consider (discrete) random and non-random walks on Z
2 with four possible (unit)

steps: ←, →, ↑ and ↓. (In a symmetric random walk each step is equally likely.)

By the length of a (finite) walk we mean the number of its steps. We will mostly

work with special walks. We say that a (k1, h) � (k2, 0) walk is positive, if it stays

strictly above the x-axis before its last step. (P � Q indicates a walk with starting

point P and endpoint Q.)

We denote by p
(k1,h)
k2

the probability that a symmetric random walk on Z
2,

started from the point (k1, h), first hits the x-axis at the point (k2, 0). We will use

the shorter form phk := p
(0,h)
k , too. In [NT] it has been proved that the sequence

{p1k}
∞
k=0 is convex, that is, p1k ≤ 1

2 (p
1
k−1+p1k+1) for all k ∈ N = {1, 2, . . .}. Improving

the technique used there, we obtain a simple, transparent convexity result also in

the case h ≥ 2. The problem was suggested by V. Totik (personal communication).

Theorem 1. The sequence {phk}
∞
k=h−2 is convex for all h ≥ 2.
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For the case h = 1, the proof given in [NT] relies on the fact that the number

of positive (0, 1) � (k, 0) walks of arbitrary fixed length starting with an up step is

not more than the number of different walks of the same type and length starting

with a left or right step. This can be shown by giving an injective length-preserving

map from the set of walks starting with an up step into the set of walks starting

with a left or right step. Similarly, in order to prove Theorem 1, it is sufficient to

give an injective length-preserving map from the set of positive (0, h) � (k, 0) walks

starting with an up or down step into the set of walks of the same type starting

with a left or right step in the case of k ≥ h − 1. Before stating this formally, let

us introduce a notation and make a remark. Let W
(k1,h)
k2

be the set of positive

walks from (k1, h) to (k2, 0), and Wh
k := W

(0,h)
k . The walks in Wh

k starting with

an up, down, left or right step can be identified with the walks in Wh+1
k , Wh−1

k ,

W
(−1,h)
k , and W

(1,h)
k , respectively, by omitting the first step. With these notations

and conventions, the main lemma of this paper can be stated as follows.

Lemma 2. For integers h, k such that h ≥ 2 and k ≥ h− 1, there exists a length-

preserving injection of Wh+1
k ∪Wh−1

k into W
(−1,h)
k ∪W

(1,h)
k .

We prove this lemma in the next section and see why it implies our main

theorem. Then we will discuss some open problems and possible extensions of

Theorem 1 in the last section. We investigate the tightness of the bound h− 2, and

sketch the proof of a higher-dimensional analogue of the theorem. We prefer purely

combinatorial arguments throughout the paper.

2. Proof of Theorem 1

First we show that Theorem 1 is implied by Lemma 2. Theorem 1 claims that

phk ≤
1

2

(
phk−1 + phk+1

)
(1)

holds for all h ≥ 2 and k ≥ h− 1. Conditioning on the first step, we clearly have

phk =
1

4

(
ph+1
k + ph−1

k + p
(−1,h)
k + p

(1,h)
k

)
,

thus, using the obvious facts p
(−1,h)
k = phk+1 and p

(1,h)
k = phk−1, inequality (1) is

equivalent to

ph+1
k + ph−1

k ≤ p
(−1,h)
k + p

(1,h)
k . (2)

Since for h > 0,

p
(k1,h)
k2

=
∑

W∈W
(k1,h)

k2

(1
4

)|W |

(3)
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where |W | denotes the length of W , Lemma 2 indeed implies (2) for the required h

and k values, and so Theorem 1.

Proof of Lemma 2. We give such an injection φ. Pick an arbitrary walk W ∈

Wh+1
k ∪Wh−1

k . Let P be the lattice point where W first hits a diagonal or a side of

the square with vertices (h, 0), (h, 2h), (−h, 2h) and (−h, 0). (Such a P obviously

exists.) P divides W into two parts, let W− be the subwalk preceding (the first visit

of) P , and let W+ be the rest of W .

If W ∈ Wh−1
k , then, as k ≥ h− 1, P lies on a diagonal. Let the image φ(W )

be the walk obtained from W by reflecting W− across the diagonal containing P

(if P = (0, h) then choose y = x + h), and leaving W+ unchanged, see Figure 1.

Clearly, |φ(W )| = |W |, and since the reflected part of W stays within the square,

φ(W ) does not hit the x-axis in a forbidden point, so φ(W ) ∈ W
(−1,h)
k ∪W

(1,h)
k is

also immediate.

. ..
W+

W

�h 0 h

x

P

W

Figure 1. The case when P lies on a diagonal

If W ∈ Wh+1
k , then P lies on one of the lines y = x+h, y = −x+h, and y = 2h.

If P lies on a diagonal, then follow the reflecting method introduced at the case

of W ∈ Wh−1
k . Now suppose that P = (m, 2h) (here m ∈ {−(h− 2), . . . , (h− 2)}).

We will prove in the next lemma that there exists a length-preserving injection

ψ : W
(m,2h)
k → W

(h,h+m)
k ∪W

(−h,h−m)
k . Note that W+ ∈ W

(m,2h)
k , and if we reflect

W− across the diagonal y = x + h or y = −x + h, then the obtained walk W̃−

ends at (h, h+m) or (−h, h−m), respectively, denoted by P ′ and P ′′ on Figure 2.

So φ(W ) can be defined to be the concatenation of W̃− and ψ(W+), where W̃− is
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obtained by the reflection of the above which sends P , the endpoint of W−, to the

starting point of ψ(W+).

...

.
..

x

W

W

W+

�h 0 h

(W+)

P

P   

P   

Figure 2. The case when P lies on the top side of the square

It is straightforward to check that φ has the required properties. The injectivity

follows from the facts that the conversions of W− and W+ are clearly injective and

that, for any walk W ′ ∈ W
(−1,h)
k ∪W

(1,h)
k , the only possible point where the two

converted parts can be glued together is the point where W ′ first hits a diagonal

or side of the same square as above.

Now we establish the lemma used in the proof. It generalizes a result of [NT],

the existence of the injective length-preserving map mentioned in Section 1, which

corresponds to the case h = 1, m = 0. In fact, the idea of the proof of the base case

is adapted to the general setting.

Lemma 3. For integers h, k,m such that h ≥ 1 and −h < m < h, there exists

a length-preserving injection of W
(m,2h)
k into W

(h,h+m)
k ∪ W

(−h,h−m)
k . (Note that

there is no condition on k.)

Proof. We give such an injection ψ. Pick an arbitrary walk W ∈ W
(m,2h)
k . Let →t,

↑t, and ↓t be the number of right, up, and down steps, respectively, among the first

t steps of W . Let t0 be the smallest natural number which is a solution of one of

the following equations:

→t − ↑t = h−m, (4)
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↓t − →t = h+m. (5)

Note that at t = 0 the left-hand side is less than the right-hand side at both

equations, but summing up the two equations, we get ↓t − ↑t= 2h, what happens to

be true after the last step. Taking into account that →t − ↑t and ↓t − →t change

at most one in each step, we conclude that such a t0 exists, and is strictly less than

the length of W . We note that t0 cannot be a solution of both equations, since in

Case 1 (that is when t0 satisfies (4)) the tth0 step is a right step, while in Case 2

(that is when t0 satisfies (5)) it must be a down step.

In Case 1, we define ψ(W ) by the following method. It starts from the point

(h, h + m). We get the first t0 steps of ψ(W ) from the first t0 steps of W by

interchanging the right and up steps (and leaving the rest unchanged), and we get

the last |W | − t0 steps of ψ(W ) by keeping these steps of W . It can be easily seen

that the first (t0-step) sections of W and ψ(W ) end at the same point. The two

walks from here are identical. To show that ψ(W ) is in W
(h,h+m)
k , we have to see

that ψ(W ) does not meet the x-axis before the last step. It is obvious that there

is no problem with the last ((|W | − t0)-step) part of ψ(W ), we have to check the

first section. For any t ≤ t0, we have ↓t − →t< h+m for W , and hence we have

↓t − ↑t< h + m in case of t ≤ t0 for ψ(W ). This means exactly that the walk

remains above the x-axis.

In Case 2, we define ψ(W ) in a similar way, but we start ψ(W ) from (−h, h−m),

and in the first (t0-step) section we will interchange the down and right steps. Now

ψ(W ) ∈ W
(−h,h−m)
k .

The given map ψ is clearly length-preserving, and it is easy to see that it is

also injective. This is left to the reader.

We note that, as can be immediately deduced from result (1.4) of [GKS], the

number of l-step walks of W
(k1,h)
k2

has the closed form, with the notation k = k2−k1,(
l − 1

(l + k − h)/2

)(
l − 1

(l + k + h− 2)/2

)
−

(
l − 1

(l + k − h− 2)/2

)(
l − 1

(l + k + h)/2

)
,

from which another proof of Lemma 2 can be obtained, as the required inequalities can
be verified by an elementary (but a bit tedious) calculation. (In the above formula, the
binomial coefficient

(
l−1
r

)
is defined to be 0, if r /∈ {0, . . . , l − 1}.)

3. Further results and problems

After scaling by h−1, a random walk on Z
2 starting from (0, h) can be viewed as a random

walk on the grid h−1
Z× h−1

Z, starting from (0, 1). It is well known that as the grid size
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h−1 tends to 0, the discrete random walk on h−1
Z× h−1

Z tends to the planar Brownian
motion (roughly speaking). It is also known that the (abscissa of the) random point where
the planar Brownian motion, starting from (0, 1), first hits the x-axis follows standard
Cauchy distribution with density function 1

π(1+x2)
. Thus we conclude that, for any fixed x,

lim
h→∞

�hx�∑
k=−∞

phk =

∫ x

−∞

1

π(1 + t2)
dt;

see [S, Chapter 3, p. 156] for a rigorous proof. Since the function 1
π(1+x2)

is concave on

the interval (0, 1√
3
) and convex on ( 1√

3
,∞), this suggests that, for large h, the probability

sequence {phk}
K
k=0 is concave and {phk}

∞
k=K is convex for some constant K ∼ h√

3
. A plausible

next step would be to prove concavity for k ≤ αh with some constant α > 0, because this
would show that our convexity threshold h− 2 is optimal up to constant factors. There
is also room to sharpen this threshold, i.e. h− 2 can probably be replaced with βh, for a
better constant β < 1.

It is natural to check whether any of these goals can be achieved by constructing an
injective length-preserving function between the sets of Lemma 2, as above. The following
theorem shows that the answer is no, and somewhat surprisingly, a “nice” critical length
arises. We do not see any combinatorial proof for this fact.

Theorem 4. Let h ≥ 2 and k be fixed, and let Hl [and Vl] denote the number of l-length

walks in Wh
k that start with a horizontal (left or right) step [or vertical (up or down) step].

◦ If l = h2 − k2, then Hl = Vl.

◦ If l ≥ h2 − k2, then Hl ≥ Vl.

◦ If l ≤ h2 − k2, then Hl ≤ Vl.

And if l 	= h2 − k2, then Hl = Vl can occur only if Hl = Vl = 0, i.e. if l is such that Wh
k

does not contain any walk of length l.

Sketch of proof. This can be seen from the closed formula discussed at the end of
Section 2. We omit the details, since no ideas are needed, just some elementary but tedious
calculation.

We note that a non-constructive proof of Lemma 2 follows from this theorem. More-
over, we obtained that for 0 ≤ k < h − 1, as h2 − k2 > h + k then, both Hl > Vl and
Hl < Vl can occur as varying l. (The first inequality always holds for large enough lengths
l of the appropriate parity, and in this case the second one holds for l = h+k, for example,
as Hl, Vl 	= 0.) This means that Lemma 2 cannot be strengthened, for 0 ≤ k < h − 1,
no length-preserving injection exists between the sets (in any direction). So one needs
more sophisticated estimates of (2) using the weighted sum (3) to handle the convexity
of {phk}

∞
k=0 on the interval [0, k − 2].

Remark. By an analogous calculation to the proof of Theorem 4, it can be verified that,
for h ≥ 2, among the (h−k)(2h−1)-length walks of Wh

k , there are as many walks starting
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with a right step as there are starting with a down step. (Moreover, there are more walks
of the first type for larger lengths, and there are more walks of the second type for smaller
lengths in the non-degenerate cases.) We note that the critical length (h− k)(2h− 1) is
valid for negative k values, too. Thus, by symmetry, the number of walks of Wh

k starting
with a left step can be compared with the number of walks of Wh

k starting with a down
step for any fixed length, the critical length is (h+ k)(2h− 1) here. And the similar “right
versus up” and “left versus up” comparisons can be trivially reduced to the former ones.

We end with the higher-dimensional analogue of our main theorem. Since the 2-
dimensional result implies the higher-dimensional one in essentially the same way as in
[NT], we only sketch the proof here.

We start with some notations and definitions. The standard basis vectors of the n-
dimensional space are denoted by e1, . . . , en, where ei is the vector with ith coordinate 1

and all others zero. For a point k ∈ Z
n, let N(k) denote the set of 2n neighbors of k in

Z
n, i.e. N(k) := {k ± ei : i = 1, . . . , n}. We say that the discrete function f : Zn → R is

subharmonic on U ⊂ Z
n, if for all k ∈ U such that N(k) ⊂ U ,

f(k) ≤
1

2n

∑
j∈N(k)

f(j). (6)

Fix an arbitrary dimension d ≥ 2. The discrete walks on Z
d are defined analogously to the

2-dimensional case; now there are 2d possible steps, the steps ±ei. For a given h ∈ N and
k = (k1, . . . , kd−1) ∈ Z

d−1, let phk denote the probability that a symmetric random walk on
Z
d, started from (0, . . . , 0, h), first hits the hyperplane xd = 0 at the point (k1, . . . , kd−1, 0).

In [NT] it has been proved that p1k is a subharmonic function on Z
d−1\{0}, of

variable k. (In fact, slightly more has been showed: inequality (6) holds for all k 	= 0.)
From Lemma 2, a similar result can be obtained for h ≥ 2 as well, which is a generalization
of Theorem 1.

Theorem 5. For arbitrary fixed h ≥ 2, the function Z
d−1 � k 
→ phk is subharmonic on

the set [h− 2,∞)d−1 ∩ Z
d−1.

Sketch of proof. Pick an arbitrary k = (k1, . . . , kd−1) ∈ Z
d−1 such that ki ≥ h− 1 for

all i. We have to show that

phk ≤
1

2(d− 1)

∑
j∈N(k)

phj .

Analogously to the way (2) was derived, we obtain the equivalent inequality

(d− 1)(ph+1
k + ph−1

k ) ≤
∑

j∈N(k)

phj ,

which will follow by summing the inequalities (for i = 1, . . . , d− 1)

ph+1
k + ph−1

k ≤ phk−ei
+ phk+ei

. (7)
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To see (7) for a fixed i, it is enough to give a length-preserving injection from the set of
“positive” (0, . . . , 0, h± 1) � (k1, . . . , kd−1, 0) walks to the set of “positive” (0, . . . , 0, h) �

(k1, . . . , ki−1, ki ± 1, ki+1, . . . , kd−1, 0) walks. (We denote these sets by S1 and S2, respec-
tively.) Such an injection can be easily constructed using Lemma 2. We can think of the
d-dimensional steps ed, −ed, −ei, and ei as up, down, left, and right steps, respectively.
(Note that, with a slight abuse of notation, ei is a (d− 1)-dimensional vector in (7), while
it is a d-dimensional vector here.) These steps, interpreting them as 2-dimensional steps,
form a walk of Wh+1

ki
∪Wh−1

ki
for the walks in S1, and they form a walk of W(−1,h)

ki
∪W

(1,h)
ki

for the walks in S2. It is easy to see that if we convert these four types of steps in the
walks of S1 by applying the injection of Lemma 2 to the walk they form and leaving the
other types of steps unchanged, we obtain a length-preserving injection S1 → S2. Recall
that ki ≥ h− 1, that is why we could use Lemma 2.
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