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Abstract. The aim of the paper is to generalize two fundamental theorems of
K. Tandori. The coefficient sequences in his theorems are classical monotone
decreasing. We moderate the classical monotonicity to locally almost mono-
tonicity assumption.

1 Introduction

K. Tandori proved several very interesting theorems pertaining to the convergence

and divergence of orthogonal series. We refer to the monograph of G. Alexits

[1], where you find his twelve papers. The highest originality and worth of his

results, in my view, appears in those theorems in which he refines D. Menšov’s

fundamental results. Tandori proved — roughly speaking — that if a standard

sufficient condition for certain monotone coefficients does not hold, then there

exists a special orthonormal system {Φn(x)} such that the orthogonal series with

these monotone coefficients and functions Φn(x) has divergence phenomenon. In

other words, he proved that the condition in question for monotone coefficients is

a necessary and sufficient condition.

One of his most celebrated theorems proved in [4], a remarkable refinement of

Menšov’s theorem ([3]), reads as follows:

Received April 25, 2013, and in revised form June 3, 2013.
AMS Subject Classification: 42A20, 42A16.
Key words and phrases: orthogonal series, coefficient conditions, locally almost monotonicity.
∗Supported by the European Union and co-funded by the European Social Fund under the project
“Telemedicine-focused research activities on the field of Mathematics, Informatics and Medical
sciences” of project number “TÁMOP-4.2.2.A-11/1/KONV-2012-0073”.



Acta Scientiarum Mathematicarum 80:3–4 (2014) c© Bolyai Institute, University of Szeged

574 L. Leindler

Theorem T. If {an} is a positive monotone non-increasing sequence of numbers

for which
∞∑

n=2

a2n log
2 n = ∞, (1.1)

then there exists a uniformly bounded orthonormal function system {Φn(x)} depen-

dent on {an} such that the orthogonal series

∞∑
n=0

anΦn(x) (1.2)

diverges everywhere in the interval (a, b) of orthogonality.

Remarks. 1. In [4], among others, the following natural generalization of Theorem

T is proved: If (1.1) holds and a∗n � ηan, η > 0, then every series
∑

a∗nΦn(x) is

also divergent everywhere.

2. Tandori himself emphasized that the monotonicity assumption is crucial just

if {an} belongs to �2, i.e.
∑

a2n < ∞, namely if
∑

a2n = ∞ then the Rademacher

series
∑

anrn(x) diverges almost everywhere.

In a previous paper [2] we established two theorems in which the normal

monotonicity hypothesis is moderated to locally almost monotonicity assumption.

Unfortunately, in the theorem of that time stating divergence we could prove only a

weaker statement, namely our result asserts only that the series (1.2) with (1.1) is not

everywhere convergent, instead of that (1.2) diverges everywhere, as in Theorem T.

This is an essential difference.

The aim of this paper is to eliminate this shortcoming.

To perform this we received a great encouragement from the reconstructed

proof given by Alexits in his monograph for Theorem T.

2 Results

Our real aim is to extend Theorem T and one of its consequences in such a way

that the ordinary monotonicity assumption on the sequence {an} will be replaced

by locally almost monotone condition.

Now we recall some definitions.

A positive sequence c := {cn} is called locally almost monotone non-increasing

if there exists a constant K(c), depending on the sequence c only, such that for all

m and m � n � 2m

cn � K(c)cm (2.1)

holds. Such a sequence will be denoted by c ∈ LAMS.
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Hence throughout we assume that (a, b) ≡ (0, 1), furthermore that the coeffi-

cient sequences belong to �2.

Theorem 1. If {an} ∈ LAMS and satisfies (1.1) then there exists a uniformly

bounded orthonormal system {Φn(x)} such that the series (1.2) is divergent every-

where in (0, 1).

Combining this theorem with the classical Rademacher–Menšov theorem we

obtain immediately Theorem 2, see below.

The Rademacher–Menšov theorem ([1, Theorem 2.3.2]) reads as follows:

Theorem. If {ϕn(x)} is an orthonormal system then the series

∞∑
n=0

cnϕn(x) (2.2)

is convergent almost everywhere if

∞∑
n=2

c2n log
2 n < ∞. (2.3)

This classical theorem and Theorem 1 clearly imply:

Theorem 2. If {cn} ∈ LAMS then condition (2.3) is a necessary and sufficient

condition that the series (2.2) for every orthonormal system {ϕn(x)} should be

convergent almost everywhere.

The proofs of Theorem 1 and the lemmas, specially (4.2) show that a slight

generalization of Theorem 1 as in the case of Theorem T, clearly holds. This reads

as follows:

Theorem 1*. If a∗n � ηan, η > 0, a ∈ LAMS and (1.1) hold, then every series∑
a∗nΦn(x) is also divergent everywhere.

3 Lemmas

To the proof of Theorem 1 we shall use the following three lemmas.

Lemma 1. ([1, Theorem 2.4.4]). Let C � 1, p � 2 be integers and I = [u, v] an

arbitrary interval. Then there exists in [u, v] a system {f�(C, p, I;x)}
2p
1 of step-

functions (i.e. the interval [u, v] can be divided into finite subintervals such that

on these the functions are constant) orthogonal to one another with the following

properties:
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1◦ We have ∫ v

u

f2
� (C, p, I;x)dx = v − u.

2◦ For every point x of the half-open interval

F (C, I) :=
[
u+

v − u

5
·
2

C
, u+

v − u

5
·
3

C

)

there exists an index m(x) < p dependent on x such that the functions f�(C, p, I;x),

� = 1, 2, . . . , p+m(x), are positive and the inequality

p+m(x)∑
�=1

f�(C, p, I;x) � A(Cp)1/2 log p

holds, where A is a positive constant, independent of C, p, I and x.

Lemma 2. Let {cn} be a positive sequence of numbers and let Nm = 2m+2 − 4 for

all natural m. For every value of m it is possible to construct in [0, 1] a measurable

set Fm of measure

|Fm| �
1

10
min

(
1, Nm+1c

2
Nm+1

log2 Nm+1

)
(3.1)

and a system {Φn(x)} of orthonormal step-functions (uniformly bounded) with

following properties:

a) The sets F0, F1, . . . are stochastically independent, i.e. for every sequence

of indices k1 < k2 < · · · < ks the relation

|Fk1
∩ Fk2

∩ · · · ∩ Fks
| = |Fk1

| · |Fk2
| · · · |Fks

|

holds.

b) For every x ∈ Fm there exists an index nm(x) < 2m+2 − 1 such that

ΦNm
(x), . . . ,ΦNm+nm(x)(x) have equal signs and

∣∣ΦNm
(x) + · · ·+ΦNm+nm(x)(x)

∣∣ � B

cNm+1

, (3.2)

where B is a positive constant, independent of x and m.

Lemma 2 is proved in the monograph of Alexits as Theorem 2.4.5, namely the

assumption that {cn} is monotone decreasing was nowhere utilized in the proof.

In the proof of Tandori’s Hilfsatz III in [4] Lemma 2 is also verified implicitly,

but it appears in a more hidden form.
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Alexits proficiently separated the statements of Hilfssatz III pertaining to the

construction of the functions and sets, thus it becomes clear that only in his Theorem

2.4.6 (here the next Lemma 3) is used the monotonicity assumption combining with

condition (1.1). The other parts of the proofs do not utilize the monotonicity of the

coefficients.

We shall prove that the assumption {cn} ∈ LAMS with (1.1) is also sufficient

to the assertion of Alexits’s Theorem 2.4.6, herewith we arrive at Lemma 3.

Lemma 3. If {cn} ∈ LAMS satisfies the condition
∑

∞

n=2 c
2
n log

2 n = ∞, then the

set

F :=
∞⋂
k=1

( ∞⋃
�=k

F�

)
= lim

m→∞

Fm

is of measure |F | = 1, where Fk are from Lemma 2.

Proof of Lemma 3. Denote by CG the complement of an arbitrary set G ⊂ [0, 1]

to [0, 1]. Then we can represent the union set Fk ∪ Fk+1 ∪ · · · ∪ Fs as follows:

s⋃
�=k

F� = [0, 1]− C

s⋃
�=k

F� = [0, 1]−

s⋂
�=k

CF�.

In view of the stochastic independence of the sets F� we obtain that

∣∣∣
s⋃

�=k

F�

∣∣∣ = 1−

s∏
�=k

(1− |F�|). (3.3)

Next we use that {cn} ∈ LAMS. Then for every m and m � n � 4m holds

that

cn � K(c)2cm,

using this and the fact that Nk+1 � 4Nk, we obtain that

Nm∑
n=N1

c2n log
2 n �

m∑
k=1

Nk+1−1∑
n=Nk

c2n log
2 n � K(c)2

m∑
k=1

(Nk+1 −Nk)c
2
Nk

log2 Nk+1

� 2K(c)2
m∑

k=1

2k+2c2Nk
log2 Nk � 4K(c)2

m∑
k=1

Nkc
2
Nk

log2 Nk.

(3.4)

Since it is assumed that
∞∑

n=1
c2n log

2 n = ∞, (3.4) implies that

∞∑
k=1

Nkc
2
Nk

log2 Nk = ∞,
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whence, by (3.1),
∞∑

m=1

|Fm| = ∞ (3.5)

also holds. Next, following Alexits’s reasoning, by an elementary theorem concerning

infinite products and (3.5), we get that

∞∏
�=k

(1− |F�|) = 0,

thus (3.3) implies that

∣∣∣
∞⋃
�=k

F�

∣∣∣ = 1 (k = 0, 1, . . .),

and so

|F | = 1 (3.6)

also follows.

This completes the proof.

4 Proof of Theorem 1

By Lemma 2 with an in place of cn we have an orthonormal system {Φn(x)} and

sets Fm for which at every point x ∈ Fm there exists an index nm(x) < 2m+2 such

that (3.2) holds. By the definition of the set F if x ∈ F then x ∈ Fm also holds for

infinitely many m, consequently (3.2) is also satisfied for infinitely many m. Since

the functions being in (3.2) have equal signs, thus

|aNm
ΦNm

(x) + · · ·+ aNm+nm(x)ΦNm+nm(x)(x)|

� min
Nm�n�Nm+nm(x)

an|ΦNm
(x) + · · ·+ΦNm+nm(x)(x)|

� min
Nm�n�Nm+1

an
B

aNm+1

.

(4.1)

Since {an} ∈ LAMS implies that an � K−2(a)aNm+1
for any Nm � n � Nm+1,

thus (4.1) verifies that

|aNm
ΦNm

(x) + · · ·+ aNm+nm(x)ΦNm+nm(x)(x)| �
B

K(a)2
> 0 (4.2)
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holds at every x ∈ F for infinitely many m; whence, on account of Lemma 3, the

series (1.2) is divergent almost everywhere.

In order to furnish that (1.2) should diverge everywhere, we only need to

alter the values Φ(x) in a set of measure zero (putting Φn(x) = ∞) where (1.2) is

eventually convergent, thus the divergence is achieved everywhere, in accordance

with our statement.
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