\overline{a} and unit group \overline{a} and \overline{a} commutative group \overline{a}

V. BOVDI and M. SALIM

Dedicated to Professor W. Kimmerle on his 60th birthday

Communicated by M. B. Szendrei

Abstract. We investigate the group of normalized units of the group algebra $\mathbb{Z}_{p^e}G$ of a finite abelian p-group G over the ring \mathbb{Z}_{p^e} of residues modulo p^e with $e > 1$.

1 Introduction

Let $V(RG)$ be the group of normalized units of the group ring RG of a finite abelian p-group G over a commutative ring R of characteristic p^e with $e \geq 1$. It is well known ([4], Theorem 2.10, p.10) that $V(RG)=1+\omega(RG)$, where

$$
\omega(RG) = \left\{ \sum_{g \in G} a_g g \in RG \mid \sum_{g \in G} a_g = 0 \right\}
$$

is the augmentation ideal of RG.

In the case when $char(R) = p$ and G is an arbitrary finite (not necessary abelian) p-group, the structure of $V(RG)$ has been studied by several authors (see the survey [3]). For a finite abelian p -group G, the invariants and the basis of $V(\mathbb{Z}_p G)$ has been given by R. Sandling (see [12]). In general, when char(R) = p^e with $e \geq 2$, the structure of the abelian p-group $V(RG)$ is still not understood.

In the present paper we investigate the invariants of $V(RG)$ in the case when $R = \mathbb{Z}_{p^e}$ is the ring of residues modulo p^e . The question about the bases of $V(\mathbb{Z}_{p^e}G)$

Received January 31, 2013, and in revised form March 5, 2013.

AMS Subject Classifications: 16S34, 16U60, 20C05.

Key words and phrases: group algebra, unitary unit, symmetric unit.

This paper was supported by PPDNF and NRF Grant #31507 at UAEU.

is left open. Our research can be considered as a natural continuation of results of R. Sandling.

Note that the investigation of the group $V(\mathbb{Z}_{p^e}G)$ was started by F. Raggi (see, for example, [10]). We shall revisit his work done in [10] in order to get a more transparent description of the group $V(\mathbb{Z}_{p^e}G)$.

Several results concerning RG and $V(RG)$ have found applications in coding theory, cryptography and threshold logic (see [1, 2, 7, 8, 13]).

2 Main results

We start to study $V(\mathbb{Z}_{p^e}G)$ with the description of its elements of order p. It is easy to see that if $z \in \omega(RG)$ and $c \in G$ is of order p, then $c + p^{e-1}z$ is a nontrivial unit of order p in $\mathbb{Z}_{p^e}G$. We can ask whether the converse is true, namely that every element of order p in $V(\mathbb{Z}_{p^e}G)$ has the form $c + p^{e-1}z$, where $z \in \omega(RG)$ and $c \in G$ of order p. The first result gives an affirmative answer to this question.

Theorem 1. Let $V(\mathbb{Z}_{p^e}G)$ be the group of normalized units of the group ring $\mathbb{Z}_{p^e}G$ of a finite abelian p-group G, where $e \geq 2$. Then every unit $u \in V(\mathbb{Z}_{p^e}G)$ of order p has a form $u = c + p^{e-1}z$, where $c \in G[p]$ and $z \in \omega(\mathbb{Z}_{p^e}G)$. Moreover,

$$
V(\mathbb{Z}_{p^e}G)[p] = G[p] \times (1 + p^{e-1}\omega(\mathbb{Z}_{p^e}G)),
$$

where the order of the elementary p-group $1 + p^{e-1}\omega(\mathbb{Z}_{p^e}G)$ is $p^{|G|-1}$.

A full description of $V(\mathbb{Z}_{p^e}G)$ is given by the next theorem.

Theorem 2. Let $V(\mathbb{Z}_{p^e}G)$ be the group of normalized units of the group ring $\mathbb{Z}_{p^e}G$ of a finite abelian p-group G with $exp(G) = p^n$ where $e \geq 2$. Then

$$
V(\mathbb{Z}_{p^e}G) = G \times \mathfrak{L}(\mathbb{Z}_{p^e}G),
$$

$$
\mathfrak{L}(\mathbb{Z}_{p^e}G) \cong lC_{p^{e-1}} \times \Big(\bigvee_{i=1}^n C_{p^{d+e-1}}\Big),
$$

where the nonnegative integer s_i is equal to the difference of

$$
|{G^{p^{i-1}}}| - 2|{G^{p^i}}| + |{G^{p^{i+1}}}|
$$

and the number of cyclic subgroups of order p^i in the group G and where $l =$ $|G| - 1 - (s_1 + \cdots + s_n).$

Note that Lemma 9 itself can be considered as a separate result.

3 Preliminaries

If H is a subgroup of G, then we denote the left transversal of G with respect to H by $\Re_l(G/H)$. We denote the ideal of FG generated by the elements $h-1$ for $h \in H$ by $\mathfrak{I}(H)$. Furthermore $FG/\mathfrak{I}(H) \cong F[G/H]$ and

$$
V(FG)/(1+\Im(H)) \cong V(F[G/H]).
$$

Denote the subgroup of G generated by elements of order p^n by $G[p^n]$.

We start with the following well-known results.

Lemma 1. Let p be a prime and $j = p^l k$, where $(k, p) = 1$. If $l \leq n$, then p^{n-l} is the largest p-power divisor of the binomial coefficient $\binom{p^n}{j}$.

Proof. If $j = p^l k$ and $(k, p) = 1$, then the statement follows from

$$
\binom{p^n}{j} = p^{n-l} \cdot \frac{\prod_{i=1, (i,p)=1}^{j-1} (p^n - i) \cdot \prod_{i=1}^{p^{l-1}k} (p^n - pi)}{(j-1)!k}.
$$

Lemma 2. Let G be a finite p-group and let R be a commutative ring of characteristic p^e with $e \geq 1$. If $l \geq e$ then

$$
(1-g)^{p^l} = (1-g^{p^s})^{p^{(l-s)}}, \qquad (s = 0, \ldots, l-e+1).
$$

Proof. See Lemma 2.4 in [6].

Let R be a commutative ring of characteristic p^e with $e \geq 1$. The ideal $\omega(RG)$ is nilpotent ([4], Theorem 2.10, p. 10) and the nth power $\omega^{n}(RG)$ determines the so-called nth dimension subgroup

$$
\mathfrak{D}_n(RG) = G \cap (1 + \omega^n(RG)), \qquad (n \ge 1).
$$

Lemma 3. (See 1.14, [11].) Let $e \geq 1$. If G is a finite abelian p-group, then

$$
\mathfrak{D}_n(\mathbb{Z}_{p^e}G) = \begin{cases} G, & \text{if } n = 1; \\ G^{p^{e+i}}, & \text{if } p^i < n \le p^{i+1}. \end{cases}
$$

The next two lemmas are well known.

Lemma 4. If G is a finite abelian p-group, then

$$
V(\mathbb{Z}_p G)[p] = 1 + \Im(G[p]).
$$

Е

Proof. See Lemma 3.3 in [5].

Lemma 5. Let $U(R)$ be the group of units of a commutative ring R with 1. If I is a nilpotent ideal in R, then

$$
U(R)/(1+I) \cong U(R/I)
$$

and the group $(1+I^m)/(1+I^{m+1})$ is isomorphic to the additive group of the quotient I^m/I^{m+1} .

Proof. Note that I is the kernel of the natural epimorphism $\sigma : R \to R/I$. On $U(R)$ the map σ induces the group homomorphism $\tilde{\sigma}: U(R) \to U(R/I)$ which is an epimorphism with kernel $1 + I$. Indeed, if $x + I \in U(R/I)$ and $\sigma(w) = (x + I)^{-1}$, then

$$
\sigma(xw) = (x+I)(x+I)^{-1} = 1 + I.
$$

Thus $xw = 1 + t$ for some $t \in I$ and $1 + t$ is a unit in R, so $w \in U(R)$. Of course $x = w^{-1}(1 + t)$ is a unit such that $\tilde{\sigma}(w) = (x + I)^{-1} = x^{-1} + I$. Therefore $\tilde{\sigma}$: $U(R) \rightarrow U(R/I)$ is an epimorphism.

Now, let $x, y \in I^m$ and put $\psi(1+x) = x + I^{m+1}$. Then

$$
\psi((1+x)(1+y)) = xy + x + y + I^{m+1}
$$

= $x + y + I^{m+1} = \psi(1+x) + \psi(1+y),$

so ψ is a homomorphism of the multiplicative group $1 + I^m$ to the additive group I^m/I^{m+1} with kernel $1+I^{m+1}$.

Let $f_e: \mathbb{Z}_{p^e} \to \mathbb{Z}_{p^{e-1}}$ $(e \geq 2)$ be a ring homomorphism determined by

$$
f_e(a + (p^e)) = a + (p^{e-1}) \qquad (a \in \mathbb{Z}).
$$

Clearly $\mathbb{Z}_{p^e}/(p^{e-1}\mathbb{Z}_{p^e}) \cong \mathbb{Z}_{p^{e-1}}$ and the homomorphism f_e can be linearly extended to the group ring homomorphism

$$
\overline{f_e} \colon \mathbb{Z}_{p^e} G \to \mathbb{Z}_{p^{e-1}} G. \tag{1}
$$

Let us define the map $\mathfrak{r}: \mathbb{Z}_{p^e} \to \mathbb{Z}$ to be the map with the property that for any integer α with $0 \leq \alpha < p^e - 1$ we have $\mathfrak{r}^{-1}(\alpha) = \overline{\alpha} \in \mathbb{Z}_{p^e}$. Obviously, $\mathbb{Z}_{p^e} \ni \gamma_q =$ $\alpha_q + p^{e-1}\beta_q$, where $0 \leq \mathfrak{r}(\alpha_q) < p^{e-1}$. Hence any $x \in \mathbb{Z}_{p^e}G$ can be written as

$$
x = \sum_{g \in G} \gamma_g g = \sum_{g \in G} \alpha_g g + p^{e-1} \sum_{g \in G} \beta_g g,\tag{2}
$$

 \blacksquare

where $\text{red}_p(x) = \sum_{g \in G} \alpha_g g \in \mathbb{Z}_{p^e}G$ is called the *p-reduced part* of *x*.

It is easy to see, that $\mathfrak{Ker}(\overline{f_e}) = p^{e-1}\mathbb{Z}_{p^e}G$ and $(\mathfrak{Ker}(\overline{f_e}))^2 = 0$, so by (1) and (2) we obtain that

$$
\mathbb{Z}_{p^e}G/(p^{e-1}\mathbb{Z}_{p^e}G)\cong \mathbb{Z}_{p^{e-1}}G.
$$

Since $p^{e-1}\mathbb{Z}_{p^e}G$ is a nilpotent ideal by Lemma 5,

$$
U(\mathbb{Z}_{p^e}G)/(1+p^{e-1}\mathbb{Z}_{p^e}G)\cong U(\mathbb{Z}_{p^{e-1}}G).
$$

Clearly, $1 + p^{e-1} \mathbb{Z}_{p^e} G$ is an elementary abelian p-group of order

$$
|1 + p^{e-1} \mathbb{Z}_{p^e} G| = \frac{|V(\mathbb{Z}_{p^e} G)| \cdot |U(\mathbb{Z}_{p^e})|}{|V(\mathbb{Z}_{p^{e-1}} G)| \cdot |U(\mathbb{Z}_{p^{e-1}})|} = \frac{p^{e(|G|-1)} \cdot p}{p^{(e-1)(|G|-1)}} = p^{|G|}.
$$

Furthermore, if $u \in V(\mathbb{Z}_{p^e}G)=1+\omega(\mathbb{Z}_{p^e}G)$, then

$$
u = \text{red}_p(u) + p^{e-1} \sum_{g \in G} \beta_g(g-1),
$$

where $\text{red}_p(u) = 1 + \sum_{g \in G} \alpha_g(g-1)$ is a unit and $0 \le \mathfrak{r}(\alpha_g) < p^{e-1}$. It follows that

$$
u = \operatorname{red}_p(u)(1 + p^{e-1}z), \qquad (z \in \omega(\mathbb{Z}_{p^e}G)).
$$
 (3)

Lemma 6. Let $\overline{f_e}: V(\mathbb{Z}_{p^e}G) \to V(\mathbb{Z}_{p^{e-1}}G)$ be the group homomorphism naturally obtained from (1). Then $\text{Set}(\overline{f_e})= 1+ p^{e-1}\omega(\mathbb{Z}_{p^e}G)$ is an elementary abelian pgroup of order $p^{|G|-1}$ and

$$
V(\mathbb{Z}_{p^e}G)/(1+p^{e-1}\omega(\mathbb{Z}_{p^e}G)) \cong V(\mathbb{Z}_{p^{e-1}}G). \tag{4}
$$

Proof. Let $u \in V(\mathbb{Z}_{p^e}G)$. Then by (3) we have that

$$
\overline{f_e}(u) = 1 + \sum_{g \in G} (\alpha_g + (p^{e-1}))(g-1) \in V(\mathbb{Z}_{p^{e-1}}G),
$$

so $V(\mathbb{Z}_{p^e}G)/(1+p^{e-1}W) \cong V(\mathbb{Z}_{p^{e-1}}G)$, where $W \subseteq \omega(\mathbb{Z}_{p^e}G)$. It is easy to check that $1 + p^{e-1}W$ is an elementary abelian p-group of order

$$
|1 + p^{e-1}W| = \frac{|V(\mathbb{Z}_{p^e}G)|}{|V(\mathbb{Z}_{p^{e-1}}G)|} = \frac{p^{e(|G|-1)}}{p^{(e-1)(|G|-1)}} = p^{|G|-1}.
$$

Clearly, $|p^{e-1}\omega(\mathbb{Z}_{n^e}G)| = |p^{e-1}W| = p^{|G|-1}$ and consequently

$$
1 + p^{e-1}W = 1 + p^{e-1}\omega(\mathbb{Z}_{p^e}G).
$$

The proof is complete.

Acta Scientiarum Mathematicarum 80:3-4 (2014) \circled{c} Bolyai Institute, University of Szeged

Г

4 Proof of the Theorems

Proof of Theorem 1. Use induction on e. The base of the induction is: $e = 2$. Put $H = G[p]$. Any $u \in V(\mathbb{Z}_{p^e}G)[p]$ can be written as

$$
u = c_1 x_1 + \cdots + c_t x_t,
$$

where $c_1, \ldots, c_t \in \Re_l(G/H)$ and $x_1, \ldots, x_t \in \mathbb{Z}_{p^2}H$.

First, assume that $c_i \notin H$ for any $i = 1, \ldots t$. Clearly,

$$
\overline{f_2}(u) = c_1 \overline{f_2}(x_1) + c_2 \overline{f_2}(x_2) + \dots + c_t \overline{f_2}(x_t) \in V(\mathbb{Z}_p G). \tag{5}
$$

Since $\overline{f_2}(u) \in 1 + \mathfrak{I}(H)$ (see Lemma 4), we have that $c_j \in H$ for some j, by (5), a contradiction.

Consequently, we can assume that $c_1 = 1 \in H$, $x_1 \neq 0$ and $1 \in \text{Supp}(x_1)$. This yields that

$$
\overline{f_2}(u) = \overline{f_2}(x_1 - \chi(x_1)) + c_2 \overline{f_2}(x_2 - \chi(x_2)) + \cdots + c_t \overline{f_2}(x_t - \chi(x_t)) + \n+ \overline{f_2}(\chi(x_1)) + c_2 \overline{f_2}(\chi(x_2)) + \cdots + c_t \overline{f_2}(\chi(x_t)) \in V(\mathbb{Z}_p G).
$$

Clearly, either $\overline{f_2}(u)=1$ or $\overline{f_2}(u)$ has order p. Lemma 4 ensures that

$$
f_2(\chi(x_1)) \equiv 1 \pmod{p}, \text{ and}
$$

$$
f_2(\chi(x_2)) \equiv \cdots \equiv f_2(\chi(x_t)) \equiv 0 \pmod{p}.
$$

It follows that u can be written as

$$
u = 1 + \sum_{i=1}^{t} c_i \sum_{h \in G[p]} \beta_h^{(i)}(h-1) + pz, \qquad (z \in \mathbb{Z}_{p^2}G). \tag{6}
$$

We can assume that $z = 0$. By Lemma 3 we have that

$$
G = \mathfrak{D}_1(G) \supset \mathfrak{D}_2(G) = \mathfrak{D}_3(G) = \cdots = \mathfrak{D}_p(G) = G^{p^2},
$$

so (6) can be rewritten as

$$
u = 1 + \sum_{i=1}^{t} c_i \sum_{h \in G[p] \setminus \mathfrak{D}_p} \beta_h^{(i)}(h-1) + w,
$$

where $w \in \omega^2(\mathbb{Z}_{p^2}G)$. Then, by the binomial formula,

$$
1 = u^{p} \equiv 1 + p \sum_{i=1}^{t} c_{i} \sum_{h \in G[p] \setminus \mathfrak{D}_{p}} \beta_{h}^{(i)}(h-1) +
$$

+ $\binom{p}{2} \Big(\sum_{i=1}^{t} c_{i} \sum_{h \in G[p] \setminus \mathfrak{D}_{p}} \beta_{h}^{(i)}(h-1) \Big)^{2} + \cdots \qquad (\text{mod } \omega^{2}(\mathbb{Z}_{p^{2}}G)).$

It follows that

$$
p\sum_{i=1}^{t} c_i \sum_{h\in G[p]\setminus \mathfrak{D}_p} \beta_h^{(i)}(h-1) \equiv 0 \pmod{\omega^2(\mathbb{Z}_{p^2}G)}
$$

and $\beta_h^{(i)} \equiv 0 \pmod{p^2}$ for any $h \in G[p] \setminus \mathfrak{D}_p$. Hence by (6), $u = 1 + w$, $(w \in \omega^2(\mathbb{Z}_{n^2}G)).$

Again, by Lemma 3, we have that

$$
G^{p^2} = \mathfrak{D}_p(G) \supset \mathfrak{D}_{p+1}(G) = \mathfrak{D}_{p+2}(G) = \cdots = \mathfrak{D}_{p^2}(G) = G^{p^3}
$$

and (6) can be rewritten as

$$
u = 1 + \sum_{i=1}^{t} c_i \sum_{h \in \mathfrak{D}_p \backslash \mathfrak{D}_{p^2}} \beta_h^{(i)}(h - 1) + w,
$$

where $w \in \omega^3(\mathbb{Z}_{p^2}G)$. This yields

$$
1 = u^p \equiv 1 + p \sum_{i=1}^t c_i \sum_{h \in \mathfrak{D}_p \backslash \mathfrak{D}_{p^2}} \beta_h^{(i)}(h-1) +
$$

+
$$
\binom{p}{2} \Big(\sum_{i=1}^t c_i \sum_{h \in \mathfrak{D}_p \backslash \mathfrak{D}_{p^2}} \beta_h^{(i)}(h-1) \Big)^2 + \cdots \pmod{\omega^3(\mathbb{Z}_{p^2}G)}.
$$

As before, it follows that

$$
p\sum_{i=1}^{t} c_i \sum_{h \in \mathfrak{D}_p \setminus \mathfrak{D}_{p^2}} \beta_h^{(i)}(h-1) \equiv 0 \pmod{\omega^3(\mathbb{Z}_{p^2}G)}
$$

and $\beta_h^{(i)} \equiv 0 \pmod{p^2}$ for any $h \in \mathfrak{D}_p \setminus \mathfrak{D}_{p^2}$. Therefore,

$$
u = 1 + w, \qquad (w \in \omega^3(\mathbb{Z}_{p^2}G)).
$$

By continuing this process we obtain that $u = 1 + pv$, because the augmentation ideal $\omega(\mathbb{Z}_{p^2}G)$ is nilpotent.

Now assume that the statement of our lemma is true for $\mathbb{Z}_{p^{e-1}}G$. This means that for a unit u of the form (3) we get $\beta_h^{(i)} = p^{e-2} \alpha_h^{(i)}$ and

$$
u = 1 + \sum_{i=1}^{t} c_i \sum_{h \in G[p]} p^{e-2} \alpha_h^{(i)}(h-1),
$$

so

$$
1 = u^{p} = 1 + p \sum_{i=1}^{t} c_{i} \sum_{h \in G[p]} p^{e-2} \alpha_{h}^{(i)}(h-1)
$$

and $\alpha_h^{(i)} \equiv 0 \pmod{p}$. The proof is complete.

Lemma 7. Let G be a finite abelian p-group. Then

$$
V(\mathbb{Z}_{p^e}G) = G \times \mathfrak{L}(\mathbb{Z}_{p^e}G)
$$

and the following conditions hold:

- (i) if $e \geq 2$, then $\overline{f_e}(\mathfrak{L}(\mathbb{Z}_{p^e}G)) = \mathfrak{L}(\mathbb{Z}_{p^{e-1}}G);$
- (ii) if $e \geq 2$, then $\operatorname{Rer}(\overline{f_e})=1+ p^{e-1} \omega(\mathbb{Z}_{p^e}G)=\mathfrak{L}(\mathbb{Z}_{p^e}G)[p]$ and

$$
\mathfrak{L}(\mathbb{Z}_{p^e}G)/(1+p^{e-1}\omega(\mathbb{Z}_{p^e}G)) \cong \mathfrak{L}(\mathbb{Z}_{p^{e-1}}G); \tag{7}
$$

(iii)
$$
\mathfrak{L}(\mathbb{Z}_{p^e}G)[p] \cong \mathfrak{L}(\mathbb{Z}_{p^{e-1}}G)[p]
$$
 for $e \geq 3$.

Proof. If $e = 1$, then there exists a subgroup $\mathfrak{L}(\mathbb{Z}_n)$ of $V(\mathbb{Z}_n)$ (see [9], Theorem 3) such that $V(\mathbb{Z}_p G) = G \times \mathfrak{L}(\mathbb{Z}_p G)$.

Assume $V(\mathbb{Z}_{p^{e-1}}G) = G \times \mathfrak{L}(\mathbb{Z}_{p^{e-1}}G)$. Consider the homomorphism

$$
\overline{f_e}: V(\mathbb{Z}_{p^e}G) \to V(\mathbb{Z}_{p^{e-1}}G) = G \times \mathfrak{L}(\mathbb{Z}_{p^{e-1}}G).
$$

Denote the preimage of $\mathfrak{L}(\mathbb{Z}_{p^{e-1}}G)$ in $V(\mathbb{Z}_{p^e}G)$ by $\mathfrak{L}(\mathbb{Z}_{p^e}G)$. Clearly, $\overline{f_e}(g) = g$ for all $q \in G$ and

$$
\operatorname{Ret}(\overline{f_e}) = 1 + p^{e-1} \omega(\mathbb{Z}_{p^e} G) \leq \mathfrak{L}(\mathbb{Z}_{p^e} G).
$$

If $x \in \mathfrak{L}(\mathbb{Z}_{p^e}G) \cap G$, then

$$
G \ni \overline{f_e}(x) \in \mathfrak{L}(\mathbb{Z}_{p^{e-1}}G) \cap G = \langle 1 \rangle,
$$

so $x = 1$. Hence $\mathfrak{L}(\mathbb{Z}_{p^e}G) \cap G = \langle 1 \rangle$ and $G \times \mathfrak{L}(\mathbb{Z}_{p^e}G) \subseteq V(\mathbb{Z}_{p^e}G)$. Since

$$
\overline{f_e}(G \times \mathfrak L(\mathbb{Z}_{p^e}G)) = V(\mathbb{Z}_{p^{e-1}}G)
$$

and $\mathfrak{Ker}(\overline{f_e}) \subseteq G \times \mathfrak{L}(\mathbb{Z}_{p^e}G)$, we have that $V(\mathbb{Z}_{p^e}G) = G \times \mathfrak{L}(\mathbb{Z}_{p^e}G)$ by properties of the homomorphism.

(ii) Clearly the epimorphism $\overline{f_e}$ $(e \geq 2)$ satisfies (7) by construction.

(iii) Let $e \geq 3$. From (ii) we have

$$
\mathfrak{Ker}(\overline{f_e}) = 1 + p^{e-1}\omega(\mathbb{Z}_{p^e}G) = \mathfrak{L}(\mathbb{Z}_{p^e}G)[p]
$$

and $|1 + p^{e-1}\omega(\mathbb{Z}_{p^e}G)| = p^{|G|-1}$ (see Lemma 6). It follows that

$$
|\mathfrak{L}(\mathbb{Z}_{p^e}G)[p]| = |\mathfrak{L}(\mathbb{Z}_{p^{e-1}}G)[p]| = p^{|G|-1},
$$

so the proof is finished.

П

Lemma 8. Let $e \geq 2$. If $u \in \mathfrak{L}(\mathbb{Z}_{p^e}G)$, then

$$
|u| = p \cdot |\overline{f_e}(u)|. \tag{8}
$$

Proof. Let $|u| = p^m$. By Theorem 1 we obtain that $u^{p^{m-1}} = 1 + p^{e-1}z$ for some $z \in \omega(\mathbb{Z}_{p^e}G)$, and $\overline{f_e}(u^{p^{m-1}}) = 1$, so the statement follows by induction. \blacksquare

Lemma 9. Let $d \geq 1$ and $0 \neq y \in \mathbb{Z}_{p^e}G$. Then $(1 + p^d y)^{p^{e-d}} = 1$ and the following conditions hold:

(i) if $p^{e-1}y \neq 0$, then the unit $1 + p^d y$ has order p^{e-d} , except when

$$
p = 2
$$
, $d = 1$ and $y^2 \notin 2\mathbb{Z}_{2^e}G$;

(ii) if $p^{e-1}y = 0$ then $y = p^sz$, where $p^{e-1}z \neq 0$, and the unit $1 + p^{d+s}z$ has order p^{e-d-s} .

Proof. Let $j = p^l k$ and $(k, p) = 1$. By Lemma 1, the number $p^{e+(j-1)d-l}$ is the largest p-power divisor of $\binom{p^{e-d}}{j} p^{jd}$ for $j \geq 1$. Since

$$
e - d - l + p^{l}kd \ge e - d - l + p^{l}d = e + (p^{l} - 1)d - l \ge e + p^{l} - 1 - l \ge e;
$$

$$
dp^{e - d} \ge d + p^{e - d} \ge d + e - d \ge e,
$$

the number p^e divides the natural numbers $\binom{p^{e-d}}{j} p^{jd}$ and $p^{dp^{e-d}}$. Using these inequalities, we have

$$
(1+p^d y)^{p^{e-d}} = 1 + \sum_{j=1}^{p^{e-d}} {p^{e-d} \choose j} p^{jd} \cdot y^j + p^{dp^{e-d}} \cdot y^{p^{e-d}} = 1.
$$

Therefore, the order of $1 + p^d y$ is a divisor of p^{e-d} .

Assume that $(1 + p^d y)^{p^{e-d-1}} = 1$. Since

$$
dp^{e-d-1} \ge d + p^{e-d-1} \ge d + 1 + (e - d - 1) \ge e,
$$

we obtain that

$$
(1+pdy)^{pe-d-1} = 1 + \sum_{j=1}^{pe-d-1 - 1} {pe-d-1 \choose j} pj dyj + pdpe-d-1 \cdot y^{pe-d-1}
$$

$$
= 1 + \sum_{j=1}^{pe-d-1 - 1} {pe-d-1 \choose j} pj dyj = 1
$$

and $\sum_{j=1}^{p^{e-d-1}-1} \binom{p^{e-d-1}}{j} p^{jd} y^j = 0$. This yields that

$$
p^{e-1}y = -\binom{p^{e-d-1}}{2}p^{2d}y^2 - \sum_{j=3}^{p^{e-d-1}-1} \binom{p^{e-d-1}}{j} p^{jd}y^j.
$$
 (9)

Assume that $p^{e-1}y \neq 0$. Since $j = p^l k$, where $(k, p) = 1$, the number $p^{e+(j-1)d-1-l}$ is the largest p-power divisor of $\binom{p^{e-d-1}}{j} p^{jd}$ for $j \geq 2$ by Lemma 1. Put

$$
m = (j-1)d - 1 - l,
$$

and consider the following cases:

- 1. Let $l = 0$. Then $m = (k 1)d 1 l$ and $k \ge 2$, so $m \ge 0$.
- 2. Let $l > 1$. Then $j = p^l k \geq p^l \geq 4$ and

$$
m = (plk - 1)d - 1 - l
$$

\n
$$
\geq (pl - 1) - 1 - l = pl - 2 - l \geq (pl + l) - l - 2 = pl - 2 \geq 0.
$$

3. Let $l = 1$. Then $pk > 2$ unless $p = 2$ and $d = 1$. If $p = 2$ and $d = 1$ we have $m = (pk - 1)2 - 2 = 2pk - 4 > 0.$

In all cases $m \geq 0$ unless $p = 2$, $d = 1$ and $y^2 \notin 2\mathbb{Z}_{2^e}G$. Therefore

$$
p^{e+(j-1)d-1-l} \ge p^e
$$

and by (9), we get $p^{e-1}y = 0$, a contradiction. Hence, the order of the unit $1 + p^d y$ is p^{e-d} . The proof of part (i) is finished.

If $p^{e-1}y = 0$ then $y = p^sz$, where $p^{e-1}z \neq 0$, so by part (i), the unit $1 + p^{d+s}z$ has order p^{e-d-s} .

Corollary 1. If $G = \langle a \mid a^2 = 1 \rangle$ then

$$
V(\mathbb{Z}_{2^e}G) = G \times \langle 1 + 2(a-1) \rangle \cong C_2 \times C_{2^{e-1}}.
$$

Proof. Indeed, $(a-1)^2 = -2(a-1)$, so $|1+2(a-1)| = 2^{e-1}$.

Proof of Theorem 2. Let $|V(\mathbb{Z}_p G)[p]| = p^r$ and $\exp(G) = p^n$. Assume that

$$
V(\mathbb{Z}_p G) = \langle b_1 \rangle \times \cdots \times \langle b_r \rangle, \tag{10}
$$

where $|\langle b_j \rangle| = p^{c_j}$. The number $r = \text{rank}_p(V)$ is called the p-rank of $V(\mathbb{Z}_p G)$. **Obviously**

$$
V(\mathbb{Z}_p G)[p] = \langle b_1^{p^{c_1-1}} \rangle \times \langle b_2^{p^{c_2-1}} \rangle \times \cdots \times \langle b_r^{p^{c_r-1}} \rangle.
$$

$$
\blacksquare
$$

Put $H = G[p]$. Since $V(\mathbb{Z}_p G)[p] = 1 + \mathfrak{I}(H)$ (see Lemma 4), p^r equals the number of the elements of the ideal $\mathfrak{I}(H)$. It is well known (see [4], Lemma 2.2, p.7) that a basis of $\mathfrak{I}(H)$ consists of

$$
\{u_i(h_j - 1) \mid u_i \in \mathfrak{R}_l(G/H), \quad h_j \in H \setminus 1\}
$$

and the number of such elements is $\frac{|G|}{|H|}(|H|-1) = |G|-|G^p|$. Hence

$$
r = \operatorname{rank}_p(V) = |G| - |G^p|.
$$

Since $V(\mathbb{Z}_p G)^p = V(\mathbb{Z}_p G^p)$, we have $\text{rank}_p(V(\mathbb{Z}_p G)^p) = |G^p| - |G^{p^2}|$. It follows that the number of cyclic subgroups of order p in $V(\mathbb{Z}_pG)$ (see (10)) is

$$
(|G| - |Gp|) - (|Gp| - |Gp2|) = |G| - 2|Gp| + |Gp2|.
$$

Repeating this argument, one can easily see that the number of elements of order p^i in $V(\mathbb{Z}_p G)$ is equal to

$$
|G^{p^{i-1}}| - 2|G^{p^i}| + |G^{p^{i+1}}|, \qquad (i = 1, ..., n). \qquad (11)
$$

Recall that $V(\mathbb{Z}_p G) = G \times \mathfrak{L}(\mathbb{Z}_p G)$ (see [9], Theorem 3) is a finite abelian p-group and $\mathfrak{L}(\mathbb{Z}_pG)$ has a decomposition

$$
\mathfrak{L}(\mathbb{Z}_p G) \cong \bigvee_{d=1}^n s_d C_{p^d} \qquad (s_d \in \mathbb{N}),
$$
\n(12)

where $\operatorname{rank}_p(\mathfrak{L}(\mathbb{Z}_p G)) = r = s_1 + \cdots + s_n$ and $\exp(G) = p^n$. The number s_i is equal to the difference of (11) and the number of cyclic subgroups of order p^i in the direct decomposition of the group G.

We use induction on $e \geq 2$ to prove that

$$
\mathfrak{L}(\mathbb{Z}_{p^e}G) \cong lC_{p^{e-1}} \times \left(\bigtimes_{d=1}^n s_d C_{p^{d+e-1}}\right),\tag{13}
$$

where $l = |G| - 1 - r$ and where $s_1, \ldots, s_n \in \mathbb{N}$ are from (12).

The base of the induction is: $e = 2$. According to Lemma 7, the kernel of the epimorphism $\overline{f_e}$ is $\operatorname{Rer}(\overline{f_e})=1+ p\omega(\mathbb{Z}_p2G)$, which consists of all elements of order p in $\mathfrak{L}(\mathbb{Z}_{p^2}G)$ and $|1 + p\omega(\mathbb{Z}_{p^2}G)| = p^{|G|-1}$ by Lemma 6. Hence

$$
\exp(\mathfrak{L}(\mathbb{Z}_{p^2}G)) = p \cdot \exp(\mathfrak{L}(\mathbb{Z}_p G)) = p^{n+1}
$$

and the finite abelian p-group $\mathfrak{L}(\mathbb{Z}_{p^2}G)$ has a decomposition

$$
\mathfrak{L}(\mathbb{Z}_{p^2}G) \cong \mathfrak{l}C_p \times \left(\bigtimes_{d=1}^n s_d C_{p^{d+1}}\right),\,
$$

where $s_1, \ldots, s_n \in \mathbb{N}$ are from (12), and where $l = |G| - 1 - r$ by Lemma 6. Assume that

$$
\mathfrak{L}(\mathbb{Z}_{p^{e-1}}G) \cong lC_{p^{e-2}} \times \Big(\bigvee_{d=1}^n s_d C_{p^{d+e-2}}\Big).
$$

Using Lemma 8, we get

$$
\exp(\mathfrak{L}(\mathbb{Z}_{p^e}G)) = p \cdot \exp(\mathfrak{L}(\mathbb{Z}_{p^{e-1}}G)) = p^{n+e-1}
$$

and $\mathfrak{L}(\mathbb{Z}_{p^e}G)[p] \cong \mathfrak{L}(\mathbb{Z}_{p^{e-1}}G)[p]$ with $e > 2$, by Lemma 7(iii). Now, again as before, we obtain (13). The proof is complete.

References

- [1] N. N. AĬZENBERG, A. A. BOVDI, E. I. GERGO and F. E. GECHE, Algebraic aspects of threshold logic, Cybernetics, 2 (1980), 26–30.
- [2] M. I. Anokhin, On some sets of group functions, Mat. Zametki, 74 (2003), 3–11.
- [3] A. Bovdi, The group of units of a group algebra of characteristic p , Publ. Math. Debrecen, 52 (1998), 193–244.
- [4] A. A. Bovdi, Group rings, Kiev.UMK VO (1988), 155 (in Russian).
- [5] V. BOVDI AND A. GRISHKOV, Unitary and symmetric units of a commutative group algebra, Proc. Edinburgh Math. Soc., to appear.
- [6] C. COLEMAN and D. EASDOWN, Complementation in the group of units of a ring, Bull. Austral. Math. Soc., 62 (2000), 183–192.
- [7] B. Hurley and T. Hurley, Group ring cryptography, Int. J. Pure Appl. Math., 69 (2011), 67–86.
- [8] T. HURLEY, Convolutional codes from units in matrix and group rings, Int. J. Pure Appl. Math., 50 (2009), 431–463.
- [9] D. L. JOHNSON, The modular group-ring of a finite p-group, Proc. Amer. Math. Soc., 68 (1978), 19–22.
- [10] F. RAGGI C, Las unidades en anillos de gruppo con coefficientes em K_{p^n} , \mathbb{Z}_{p^n} and \widehat{F}_{p^n} , Anales del Inst. de Mat.de la UNAM, 10 (1977), 29-65.
- [11] R. Sandling, Dimension subgroups over arbitrary coefficient rings, J. Algebra, 21 $(1972), 250-265.$
- [12] R. SANDLING, Units in the modular group algebra of a finite abelian p -group, J. Pure Appl. Algebra, 33 (1984), 337–346.

[13] W. Willems, A note on self-dual group codes, IEEE Trans. Inform. Theory, 48 (2002), 3107–3109.

V. Bovdi, Department of Math. Sciences, UAE University - Al-Ain, United Arab Emirates; e-mail: vbovdi@gmail.com

M. Salim, Department of Math. Sciences, UAE University - Al-Ain, United Arab Emirates; e-mail: MSalim@uaeu.ac.ae