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Abstract. We investigate the group of normalized units of the group algebra

ZpeG of a finite abelian p-group G over the ring Zpe of residues modulo pe

with e ≥ 1.

1 Introduction

Let V (RG) be the group of normalized units of the group ring RG of a finite abelian

p-group G over a commutative ring R of characteristic pe with e ≥ 1. It is well

known ([4], Theorem 2.10, p.10) that V (RG) = 1 + ω(RG), where

ω(RG) =
{∑

g∈G

agg ∈ RG
∣∣∣ ∑

g∈G

ag = 0
}

is the augmentation ideal of RG.

In the case when char(R) = p and G is an arbitrary finite (not necessary

abelian) p-group, the structure of V (RG) has been studied by several authors (see

the survey [3]). For a finite abelian p-group G, the invariants and the basis of

V (ZpG) has been given by R. Sandling (see [12]). In general, when char(R) = pe

with e ≥ 2, the structure of the abelian p-group V (RG) is still not understood.

In the present paper we investigate the invariants of V (RG) in the case when

R = Zpe is the ring of residues modulo pe. The question about the bases of V (ZpeG)

Received January 31, 2013, and in revised form March 5, 2013.

AMS Subject Classifications: 16S34, 16U60, 20C05.

Key words and phrases: group algebra, unitary unit, symmetric unit.

This paper was supported by PPDNF and NRF Grant #31507 at UAEU.



Acta Scientiarum Mathematicarum 80:3–4 (2014) c© Bolyai Institute, University of Szeged

434 V. Bovdi and M. Salim

is left open. Our research can be considered as a natural continuation of results of

R. Sandling.

Note that the investigation of the group V (ZpeG) was started by F. Raggi

(see, for example, [10]). We shall revisit his work done in [10] in order to get a more

transparent description of the group V (ZpeG).

Several results concerning RG and V (RG) have found applications in coding

theory, cryptography and threshold logic (see [1, 2, 7, 8, 13]).

2 Main results

We start to study V (ZpeG) with the description of its elements of order p. It is easy

to see that if z ∈ ω(RG) and c ∈ G is of order p, then c+ pe−1z is a nontrivial unit

of order p in ZpeG. We can ask whether the converse is true, namely that every

element of order p in V (ZpeG) has the form c+ pe−1z, where z ∈ ω(RG) and c ∈ G

of order p. The first result gives an affirmative answer to this question.

Theorem 1. Let V (ZpeG) be the group of normalized units of the group ring ZpeG

of a finite abelian p-group G, where e ≥ 2. Then every unit u ∈ V (ZpeG) of order

p has a form u = c+ pe−1z, where c ∈ G[p] and z ∈ ω(ZpeG). Moreover,

V (ZpeG)[p] = G[p]× (1 + pe−1ω(ZpeG)),

where the order of the elementary p-group 1 + pe−1ω(ZpeG) is p|G|−1.

A full description of V (ZpeG) is given by the next theorem.

Theorem 2. Let V (ZpeG) be the group of normalized units of the group ring ZpeG

of a finite abelian p-group G with exp(G) = pn where e ≥ 2. Then

V (ZpeG) = G× L(ZpeG),

L(ZpeG) ∼= lCpe−1 ×
( n/∖

i=1

Cpd+e−1

)
,

where the nonnegative integer si is equal to the difference of

|Gpi−1

| − 2|Gpi

|+ |Gpi+1

|

and the number of cyclic subgroups of order pi in the group G and where l =

|G| − 1− (s1 + · · ·+ sn).

Note that Lemma 9 itself can be considered as a separate result.
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3 Preliminaries

If H is a subgroup of G, then we denote the left transversal of G with respect to

H by Rl(G/H). We denote the ideal of FG generated by the elements h − 1 for

h ∈ H by I(H). Furthermore FG/I(H) ∼= F [G/H] and

V (FG)/(1 + I(H)) ∼= V (F [G/H]).

Denote the subgroup of G generated by elements of order pn by G[pn].

We start with the following well-known results.

Lemma 1. Let p be a prime and j = plk, where (k, p) = 1. If l ≤ n, then pn−l is

the largest p-power divisor of the binomial coefficient
(
pn

j

)
.

Proof. If j = plk and (k, p) = 1, then the statement follows from

(
pn

j

)
= pn−l ·

∏j−1
i=1,(i,p)=1(p

n − i) ·
∏pl−1k

i=1 (pn − pi)

(j − 1)!k
.

Lemma 2. Let G be a finite p-group and let R be a commutative ring of characteristic

pe with e ≥ 1. If l ≥ e then

(1− g)p
l

= (1− gp
s

)p
(l−s)

, (s = 0, . . . , l − e+ 1).

Proof. See Lemma 2.4 in [6].

Let R be a commutative ring of characteristic pe with e ≥ 1. The ideal ω(RG)

is nilpotent ([4], Theorem 2.10, p. 10) and the nth power ωn(RG) determines the

so-called nth dimension subgroup

Dn(RG) = G ∩ (1 + ωn(RG)), (n ≥ 1).

Lemma 3. (See 1.14, [11].) Let e ≥ 1. If G is a finite abelian p-group, then

Dn(ZpeG) =

{
G, if n = 1;

Gpe+i

, if pi < n ≤ pi+1.

The next two lemmas are well known.

Lemma 4. If G is a finite abelian p-group, then

V (ZpG)[p] = 1 + I(G[p]).
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Proof. See Lemma 3.3 in [5].

Lemma 5. Let U(R) be the group of units of a commutative ring R with 1. If I is

a nilpotent ideal in R, then

U(R)/(1 + I) ∼= U(R/I)

and the group (1+Im)/(1+Im+1) is isomorphic to the additive group of the quotient

Im/Im+1.

Proof. Note that I is the kernel of the natural epimorphism σ : R → R/I. On

U(R) the map σ induces the group homomorphism σ̃ : U(R) → U(R/I) which is

an epimorphism with kernel 1+ I. Indeed, if x+ I ∈ U(R/I) and σ(w) = (x+ I)−1,

then

σ(xw) = (x+ I)(x+ I)−1 = 1 + I.

Thus xw = 1 + t for some t ∈ I and 1 + t is a unit in R, so w ∈ U(R). Of

course x = w−1(1 + t) is a unit such that σ̃(w) = (x+ I)−1 = x−1 + I. Therefore

σ̃ : U(R) → U(R/I) is an epimorphism.

Now, let x, y ∈ Im and put ψ(1 + x) = x+ Im+1. Then

ψ((1 + x)(1 + y)) = xy + x+ y + Im+1

= x+ y + Im+1 = ψ(1 + x) + ψ(1 + y),

so ψ is a homomorphism of the multiplicative group 1 + Im to the additive group

Im/Im+1 with kernel 1 + Im+1.

Let fe : Zpe → Zpe−1 (e ≥ 2) be a ring homomorphism determined by

fe(a+ (pe)) = a+ (pe−1) (a ∈ Z).

Clearly Zpe/(pe−1Zpe) ∼= Zpe−1 and the homomorphism fe can be linearly extended

to the group ring homomorphism

fe : ZpeG → Zpe−1G. (1)

Let us define the map r : Zpe → Z to be the map with the property that for any

integer α with 0 ≤ α < pe − 1 we have r
−1(α) = α ∈ Zpe . Obviously, Zpe 	 γg =

αg + pe−1βg, where 0 ≤ r(αg) < pe−1. Hence any x ∈ ZpeG can be written as

x =
∑
g∈G

γgg =
∑
g∈G

αgg + pe−1
∑
g∈G

βgg, (2)
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where redp(x) =
∑

g∈G αgg ∈ ZpeG is called the p-reduced part of x.

It is easy to see, that Ker(fe) = pe−1ZpeG and (Ker(fe))
2 = 0, so by (1) and

(2) we obtain that

ZpeG
/
(pe−1

ZpeG) ∼= Zpe−1G.

Since pe−1ZpeG is a nilpotent ideal by Lemma 5,

U(ZpeG)/(1 + pe−1
ZpeG) ∼= U(Zpe−1G).

Clearly, 1 + pe−1ZpeG is an elementary abelian p-group of order

|1 + pe−1
ZpeG| =

|V (ZpeG)| · |U(Zpe)|

|V (Zpe−1G)| · |U(Zpe−1)|
=

pe(|G|−1) · p

p(e−1)(|G|−1)
= p|G|.

Furthermore, if u ∈ V (ZpeG) = 1 + ω(ZpeG), then

u = redp(u) + pe−1
∑
g∈G

βg(g − 1),

where redp(u) = 1+
∑

g∈G αg(g− 1) is a unit and 0 ≤ r(αg) < pe−1. It follows that

u = redp(u)(1 + pe−1z), (z ∈ ω(ZpeG)). (3)

Lemma 6. Let fe : V (ZpeG) → V (Zpe−1G) be the group homomorphism naturally

obtained from (1). Then Ker(fe) = 1 + pe−1ω(ZpeG) is an elementary abelian p-

group of order p|G|−1 and

V (ZpeG)/(1 + pe−1ω(ZpeG)) ∼= V (Zpe−1G). (4)

Proof. Let u ∈ V (ZpeG). Then by (3) we have that

fe(u) = 1 +
∑
g∈G

(αg + (pe−1))(g − 1) ∈ V (Zpe−1G),

so V (ZpeG)/(1 + pe−1W ) ∼= V (Zpe−1G), where W ⊆ ω(ZpeG). It is easy to check

that 1 + pe−1W is an elementary abelian p-group of order

|1 + pe−1W | =
|V (ZpeG)|

|V (Zpe−1G)|
=

pe(|G|−1)

p(e−1)(|G|−1)
= p|G|−1.

Clearly, |pe−1ω(ZpeG)| = |pe−1W | = p|G|−1 and consequently

1 + pe−1W = 1 + pe−1ω(ZpeG).

The proof is complete.
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4 Proof of the Theorems

Proof of Theorem 1. Use induction on e. The base of the induction is: e = 2.

Put H = G[p]. Any u ∈ V (ZpeG)[p] can be written as

u = c1x1 + · · ·+ ctxt,

where c1, . . . , ct ∈ Rl(G/H) and x1, . . . , xt ∈ Zp2H.

First, assume that ci �∈ H for any i = 1, . . . t. Clearly,

f2(u) = c1f2(x1) + c2f2(x2) + · · ·+ ctf2(xt) ∈ V (ZpG). (5)

Since f2(u) ∈ 1 + I(H) (see Lemma 4), we have that cj ∈ H for some j, by (5), a

contradiction.

Consequently, we can assume that c1 = 1 ∈ H, x1 �= 0 and 1 ∈ Supp (x1).

This yields that

f2(u) = f2(x1 − χ(x1)) + c2f2(x2 − χ(x2)) + · · ·+ ctf2(xt − χ(xt))+

+ f2(χ(x1)) + c2f2(χ(x2)) + · · ·+ ctf2(χ(xt)) ∈ V (ZpG).

Clearly, either f2(u) = 1 or f2(u) has order p. Lemma 4 ensures that

f2(χ(x1)) ≡ 1 (mod p), and

f2(χ(x2)) ≡ · · · ≡ f2(χ(xt)) ≡ 0 (mod p).

It follows that u can be written as

u = 1 +
t∑

i=1

ci
∑

h∈G[p]

β
(i)
h (h− 1) + pz, (z ∈ Zp2G). (6)

We can assume that z = 0. By Lemma 3 we have that

G = D1(G) ⊃ D2(G) = D3(G) = · · · = Dp(G) = Gp2

,

so (6) can be rewritten as

u = 1 +

t∑
i=1

ci
∑

h∈G[p]\Dp

β
(i)
h (h− 1) + w,

where w ∈ ω2(Zp2G). Then, by the binomial formula,

1 = up ≡ 1 + p
t∑

i=1

ci
∑

h∈G[p]\Dp

β
(i)
h (h− 1)+

+

(
p

2

)( t∑
i=1

ci
∑

h∈G[p]\Dp

β
(i)
h (h− 1)

)2

+ · · · (mod ω2(Zp2G)).
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It follows that

p
t∑

i=1

ci
∑

h∈G[p]\Dp

β
(i)
h (h− 1) ≡ 0 (mod ω2(Zp2G))

and β
(i)
h ≡ 0 (mod p2) for any h ∈ G[p] \Dp. Hence by (6),

u = 1 + w, (w ∈ ω2(Zp2G)).

Again, by Lemma 3, we have that

Gp2

= Dp(G) ⊃ Dp+1(G) = Dp+2(G) = · · · = Dp2(G) = Gp3

and (6) can be rewritten as

u = 1 +
t∑

i=1

ci
∑

h∈Dp\Dp2

β
(i)
h (h− 1) + w,

where w ∈ ω3(Zp2G). This yields

1 = up ≡ 1 + p

t∑
i=1

ci
∑

h∈Dp\Dp2

β
(i)
h (h− 1)+

+

(
p

2

)( t∑
i=1

ci
∑

h∈Dp\Dp2

β
(i)
h (h− 1)

)2

+ · · · (mod ω3(Zp2G)).

As before, it follows that

p

t∑
i=1

ci
∑

h∈Dp\Dp2

β
(i)
h (h− 1) ≡ 0 (mod ω3(Zp2G))

and β
(i)
h ≡ 0 (mod p2) for any h ∈ Dp \Dp2 . Therefore,

u = 1 + w, (w ∈ ω3(Zp2G)).

By continuing this process we obtain that u = 1 + pv, because the augmentation

ideal ω(Zp2G) is nilpotent.

Now assume that the statement of our lemma is true for Zpe−1G. This means

that for a unit u of the form (3) we get β
(i)
h = pe−2α

(i)
h and

u = 1 +

t∑
i=1

ci
∑

h∈G[p]

pe−2α
(i)
h (h− 1),
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so

1 = up = 1 + p

t∑
i=1

ci
∑

h∈G[p]

pe−2α
(i)
h (h− 1)

and α
(i)
h ≡ 0 (mod p). The proof is complete.

Lemma 7. Let G be a finite abelian p-group. Then

V (ZpeG) = G× L(ZpeG)

and the following conditions hold:

(i) if e ≥ 2, then fe(L(ZpeG)) = L(Zpe−1G);

(ii) if e ≥ 2, then Ker(fe) = 1 + pe−1ω(ZpeG) = L(ZpeG)[p] and

L(ZpeG)/(1 + pe−1ω(ZpeG)) ∼= L(Zpe−1G); (7)

(iii) L(ZpeG)[p] ∼= L(Zpe−1G)[p] for e ≥ 3.

Proof. If e = 1, then there exists a subgroup L(ZpG) of V (ZpG) (see [9], Theorem

3) such that V (ZpG) = G× L(ZpG).

Assume V (Zpe−1G) = G× L(Zpe−1G). Consider the homomorphism

fe : V (ZpeG) → V (Zpe−1G) = G× L(Zpe−1G).

Denote the preimage of L(Zpe−1G) in V (ZpeG) by L(ZpeG). Clearly, fe(g) = g for

all g ∈ G and

Ker(fe) = 1 + pe−1ω(ZpeG) ≤ L(ZpeG).

If x ∈ L(ZpeG) ∩G, then

G 	 fe(x) ∈ L(Zpe−1G) ∩G = 〈1〉,

so x = 1. Hence L(ZpeG) ∩G = 〈1〉 and G× L(ZpeG) ⊆ V (ZpeG). Since

fe(G× L(ZpeG)) = V (Zpe−1G)

and Ker(fe) ⊆ G× L(ZpeG), we have that V (ZpeG) = G× L(ZpeG) by properties

of the homomorphism.

(ii) Clearly the epimorphism fe (e ≥ 2) satisfies (7) by construction.

(iii) Let e ≥ 3. From (ii) we have

Ker(fe) = 1 + pe−1ω(ZpeG) = L(ZpeG)[p]

and |1 + pe−1ω(ZpeG)| = p|G|−1 (see Lemma 6). It follows that

|L(ZpeG)[p]| = |L(Zpe−1G)[p]| = p|G|−1,

so the proof is finished.
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Lemma 8. Let e ≥ 2. If u ∈ L(ZpeG), then

|u| = p · |fe(u)|. (8)

Proof. Let |u| = pm. By Theorem 1 we obtain that upm−1

= 1 + pe−1z for some

z ∈ ω(ZpeG), and fe(u
pm−1

) = 1, so the statement follows by induction.

Lemma 9. Let d ≥ 1 and 0 �= y ∈ ZpeG. Then (1 + pdy)p
e−d

= 1 and the following

conditions hold:

(i) if pe−1y �= 0, then the unit 1 + pdy has order pe−d, except when

p = 2, d = 1 and y2 �∈ 2Z2eG;

(ii) if pe−1y = 0 then y = psz, where pe−1z �= 0, and the unit 1+ pd+sz has order

pe−d−s.

Proof. Let j = plk and (k, p) = 1. By Lemma 1, the number pe+(j−1)d−l is the

largest p-power divisor of
(
pe−d

j

)
pjd for j ≥ 1. Since

e− d− l + plkd ≥ e− d− l + pld = e+ (pl − 1)d− l ≥ e+ pl − 1− l ≥ e;

dpe−d ≥ d+ pe−d ≥ d+ e− d ≥ e,

the number pe divides the natural numbers
(
pe−d

j

)
pjd and pdp

e−d

. Using these in-

equalities, we have

(1 + pdy)p
e−d

= 1 +
∑pe−d

j=1

(
pe−d

j

)
pjd · yj + pdp

e−d

· yp
e−d

= 1.

Therefore, the order of 1 + pdy is a divisor of pe−d.

Assume that (1 + pdy)p
e−d−1

= 1. Since

dpe−d−1 ≥ d+ pe−d−1 ≥ d+ 1 + (e− d− 1) ≥ e,

we obtain that

(1 + pdy)p
e−d−1

= 1 +

pe−d−1−1∑
j=1

(
pe−d−1

j

)
pjdyj + pdp

e−d−1

· yp
e−d−1

= 1 +

pe−d−1−1∑
j=1

(
pe−d−1

j

)
pjdyj = 1
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and
∑pe−d−1−1

j=1

(
pe−d−1

j

)
pjdyj = 0. This yields that

pe−1y = −

(
pe−d−1

2

)
p2dy2 −

pe−d−1−1∑
j=3

(
pe−d−1

j

)
pjdyj . (9)

Assume that pe−1y �= 0. Since j = plk, where (k, p) = 1, the number pe+(j−1)d−1−l

is the largest p-power divisor of
(
pe−d−1

j

)
pjd for j ≥ 2 by Lemma 1. Put

m = (j − 1)d− 1− l,

and consider the following cases:

1. Let l = 0. Then m = (k − 1)d− 1− l and k ≥ 2, so m ≥ 0.

2. Let l > 1. Then j = plk ≥ pl ≥ 4 and

m = (plk − 1)d− 1− l

≥ (pl − 1)− 1− l = pl − 2− l ≥ (pl + l)− l − 2 = pl − 2 ≥ 0.

3. Let l = 1. Then pk > 2 unless p = 2 and d = 1. If p = 2 and d = 1 we have

m = (pk − 1)2− 2 = 2pk − 4 ≥ 0.

In all cases m ≥ 0 unless p = 2, d = 1 and y2 �∈ 2Z2eG. Therefore

pe+(j−1)d−1−l ≥ pe

and by (9), we get pe−1y = 0, a contradiction. Hence, the order of the unit 1 + pdy

is pe−d. The proof of part (i) is finished.

If pe−1y = 0 then y = psz, where pe−1z �= 0, so by part (i), the unit 1+ pd+sz

has order pe−d−s.

Corollary 1. If G = 〈a | a2 = 1〉 then

V (Z2eG) = G× 〈1 + 2(a− 1)〉 ∼= C2 × C2e−1 .

Proof. Indeed, (a− 1)2 = −2(a− 1), so |1 + 2(a− 1)| = 2e−1.

Proof of Theorem 2. Let |V (ZpG)[p]| = pr and exp(G) = pn. Assume that

V (ZpG) = 〈b1〉 × · · · × 〈br〉, (10)

where |〈bj〉| = pcj . The number r = rankp(V ) is called the p-rank of V (ZpG).

Obviously

V (ZpG)[p] = 〈bp
c1−1

1 〉 × 〈bp
c2−1

2 〉 × · · · × 〈bp
cr−1

r 〉.
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Put H = G[p]. Since V (ZpG)[p] = 1 + I(H) (see Lemma 4), pr equals the number

of the elements of the ideal I(H). It is well known (see [4], Lemma 2.2, p.7) that a

basis of I(H) consists of

{ui(hj − 1) | ui ∈ Rl(G/H), hj ∈ H \ 1}

and the number of such elements is |G|
|H| (|H| − 1) = |G| − |Gp|. Hence

r = rankp(V ) = |G| − |Gp|.

Since V (ZpG)p = V (ZpG
p), we have rankp(V (ZpG)p) = |Gp| − |Gp2

|. It follows

that the number of cyclic subgroups of order p in V (ZpG) (see (10)) is

(|G| − |Gp|)− (|Gp| − |Gp2

|) = |G| − 2|Gp|+ |Gp2

|.

Repeating this argument, one can easily see that the number of elements of order

pi in V (ZpG) is equal to

|Gpi−1

| − 2|Gpi

|+ |Gpi+1

|, (i = 1, . . . , n). (11)

Recall that V (ZpG) = G× L(ZpG) (see [9], Theorem 3) is a finite abelian p-group

and L(ZpG) has a decomposition

L(ZpG) ∼=

n/∖
d=1

sdCpd (sd ∈ N), (12)

where rankp(L(ZpG)) = r = s1+ · · ·+ sn and exp(G) = pn. The number si is equal

to the difference of (11) and the number of cyclic subgroups of order pi in the direct

decomposition of the group G.

We use induction on e ≥ 2 to prove that

L(ZpeG) ∼= lCpe−1 ×
( n/∖

d=1

sdCpd+e−1

)
, (13)

where l = |G| − 1− r and where s1, . . . , sn ∈ N are from (12).

The base of the induction is: e = 2. According to Lemma 7, the kernel of the

epimorphism fe is Ker(fe) = 1 + pω(Zp2G), which consists of all elements of order

p in L(Zp2G) and |1 + pω(Zp2G)| = p|G|−1 by Lemma 6. Hence

exp(L(Zp2G)) = p · exp(L(ZpG)) = pn+1
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and the finite abelian p-group L(Zp2G) has a decomposition

L(Zp2G) ∼= lCp ×
( n/∖

d=1

sdCpd+1

)
,

where s1, . . . , sn ∈ N are from (12), and where l = |G| − 1− r by Lemma 6.

Assume that

L(Zpe−1G) ∼= lCpe−2 ×
( n/∖

d=1

sdCpd+e−2

)
.

Using Lemma 8, we get

exp(L(ZpeG)) = p · exp(L(Zpe−1G)) = pn+e−1

and L(ZpeG)[p] ∼= L(Zpe−1G)[p] with e > 2, by Lemma 7(iii). Now, again as before,

we obtain (13). The proof is complete.
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